1 /* 2 * i386 helpers (without register variable usage) 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qapi/qapi-events-run-state.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "sysemu/runstate.h" 25 #include "kvm/kvm_i386.h" 26 #ifndef CONFIG_USER_ONLY 27 #include "sysemu/hw_accel.h" 28 #include "monitor/monitor.h" 29 #endif 30 #include "qemu/log.h" 31 #ifdef CONFIG_TCG 32 #include "tcg/insn-start-words.h" 33 #endif 34 35 void cpu_sync_avx_hflag(CPUX86State *env) 36 { 37 if ((env->cr[4] & CR4_OSXSAVE_MASK) 38 && (env->xcr0 & (XSTATE_SSE_MASK | XSTATE_YMM_MASK)) 39 == (XSTATE_SSE_MASK | XSTATE_YMM_MASK)) { 40 env->hflags |= HF_AVX_EN_MASK; 41 } else{ 42 env->hflags &= ~HF_AVX_EN_MASK; 43 } 44 } 45 46 void cpu_sync_bndcs_hflags(CPUX86State *env) 47 { 48 uint32_t hflags = env->hflags; 49 uint32_t hflags2 = env->hflags2; 50 uint32_t bndcsr; 51 52 if ((hflags & HF_CPL_MASK) == 3) { 53 bndcsr = env->bndcs_regs.cfgu; 54 } else { 55 bndcsr = env->msr_bndcfgs; 56 } 57 58 if ((env->cr[4] & CR4_OSXSAVE_MASK) 59 && (env->xcr0 & XSTATE_BNDCSR_MASK) 60 && (bndcsr & BNDCFG_ENABLE)) { 61 hflags |= HF_MPX_EN_MASK; 62 } else { 63 hflags &= ~HF_MPX_EN_MASK; 64 } 65 66 if (bndcsr & BNDCFG_BNDPRESERVE) { 67 hflags2 |= HF2_MPX_PR_MASK; 68 } else { 69 hflags2 &= ~HF2_MPX_PR_MASK; 70 } 71 72 env->hflags = hflags; 73 env->hflags2 = hflags2; 74 } 75 76 static void cpu_x86_version(CPUX86State *env, int *family, int *model) 77 { 78 int cpuver = env->cpuid_version; 79 80 if (family == NULL || model == NULL) { 81 return; 82 } 83 84 *family = (cpuver >> 8) & 0x0f; 85 *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f); 86 } 87 88 /* Broadcast MCA signal for processor version 06H_EH and above */ 89 int cpu_x86_support_mca_broadcast(CPUX86State *env) 90 { 91 int family = 0; 92 int model = 0; 93 94 cpu_x86_version(env, &family, &model); 95 if ((family == 6 && model >= 14) || family > 6) { 96 return 1; 97 } 98 99 return 0; 100 } 101 102 /***********************************************************/ 103 /* x86 mmu */ 104 /* XXX: add PGE support */ 105 106 void x86_cpu_set_a20(X86CPU *cpu, int a20_state) 107 { 108 CPUX86State *env = &cpu->env; 109 110 a20_state = (a20_state != 0); 111 if (a20_state != ((env->a20_mask >> 20) & 1)) { 112 CPUState *cs = CPU(cpu); 113 114 qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state); 115 /* if the cpu is currently executing code, we must unlink it and 116 all the potentially executing TB */ 117 cpu_interrupt(cs, CPU_INTERRUPT_EXITTB); 118 119 /* when a20 is changed, all the MMU mappings are invalid, so 120 we must flush everything */ 121 tlb_flush(cs); 122 env->a20_mask = ~(1 << 20) | (a20_state << 20); 123 } 124 } 125 126 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0) 127 { 128 X86CPU *cpu = env_archcpu(env); 129 int pe_state; 130 131 qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0); 132 if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) != 133 (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) { 134 tlb_flush(CPU(cpu)); 135 } 136 137 #ifdef TARGET_X86_64 138 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) && 139 (env->efer & MSR_EFER_LME)) { 140 /* enter in long mode */ 141 /* XXX: generate an exception */ 142 if (!(env->cr[4] & CR4_PAE_MASK)) 143 return; 144 env->efer |= MSR_EFER_LMA; 145 env->hflags |= HF_LMA_MASK; 146 } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) && 147 (env->efer & MSR_EFER_LMA)) { 148 /* exit long mode */ 149 env->efer &= ~MSR_EFER_LMA; 150 env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK); 151 env->eip &= 0xffffffff; 152 } 153 #endif 154 env->cr[0] = new_cr0 | CR0_ET_MASK; 155 156 /* update PE flag in hidden flags */ 157 pe_state = (env->cr[0] & CR0_PE_MASK); 158 env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT); 159 /* ensure that ADDSEG is always set in real mode */ 160 env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT); 161 /* update FPU flags */ 162 env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) | 163 ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)); 164 } 165 166 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in 167 the PDPT */ 168 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3) 169 { 170 env->cr[3] = new_cr3; 171 if (env->cr[0] & CR0_PG_MASK) { 172 qemu_log_mask(CPU_LOG_MMU, 173 "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3); 174 tlb_flush(env_cpu(env)); 175 } 176 } 177 178 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4) 179 { 180 uint32_t hflags; 181 182 #if defined(DEBUG_MMU) 183 printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4); 184 #endif 185 if ((new_cr4 ^ env->cr[4]) & 186 (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK | 187 CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) { 188 tlb_flush(env_cpu(env)); 189 } 190 191 /* Clear bits we're going to recompute. */ 192 hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK | HF_UMIP_MASK); 193 194 /* SSE handling */ 195 if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) { 196 new_cr4 &= ~CR4_OSFXSR_MASK; 197 } 198 if (new_cr4 & CR4_OSFXSR_MASK) { 199 hflags |= HF_OSFXSR_MASK; 200 } 201 202 if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) { 203 new_cr4 &= ~CR4_SMAP_MASK; 204 } 205 if (new_cr4 & CR4_SMAP_MASK) { 206 hflags |= HF_SMAP_MASK; 207 } 208 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_UMIP)) { 209 new_cr4 &= ~CR4_UMIP_MASK; 210 } 211 if (new_cr4 & CR4_UMIP_MASK) { 212 hflags |= HF_UMIP_MASK; 213 } 214 215 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) { 216 new_cr4 &= ~CR4_PKE_MASK; 217 } 218 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) { 219 new_cr4 &= ~CR4_PKS_MASK; 220 } 221 222 env->cr[4] = new_cr4; 223 env->hflags = hflags; 224 225 cpu_sync_bndcs_hflags(env); 226 cpu_sync_avx_hflag(env); 227 } 228 229 #if !defined(CONFIG_USER_ONLY) 230 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 231 MemTxAttrs *attrs) 232 { 233 X86CPU *cpu = X86_CPU(cs); 234 CPUX86State *env = &cpu->env; 235 target_ulong pde_addr, pte_addr; 236 uint64_t pte; 237 int32_t a20_mask; 238 uint32_t page_offset; 239 int page_size; 240 241 *attrs = cpu_get_mem_attrs(env); 242 243 a20_mask = x86_get_a20_mask(env); 244 if (!(env->cr[0] & CR0_PG_MASK)) { 245 pte = addr & a20_mask; 246 page_size = 4096; 247 } else if (env->cr[4] & CR4_PAE_MASK) { 248 target_ulong pdpe_addr; 249 uint64_t pde, pdpe; 250 251 #ifdef TARGET_X86_64 252 if (env->hflags & HF_LMA_MASK) { 253 bool la57 = env->cr[4] & CR4_LA57_MASK; 254 uint64_t pml5e_addr, pml5e; 255 uint64_t pml4e_addr, pml4e; 256 int32_t sext; 257 258 /* test virtual address sign extension */ 259 sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47; 260 if (sext != 0 && sext != -1) { 261 return -1; 262 } 263 264 if (la57) { 265 pml5e_addr = ((env->cr[3] & ~0xfff) + 266 (((addr >> 48) & 0x1ff) << 3)) & a20_mask; 267 pml5e = x86_ldq_phys(cs, pml5e_addr); 268 if (!(pml5e & PG_PRESENT_MASK)) { 269 return -1; 270 } 271 } else { 272 pml5e = env->cr[3]; 273 } 274 275 pml4e_addr = ((pml5e & PG_ADDRESS_MASK) + 276 (((addr >> 39) & 0x1ff) << 3)) & a20_mask; 277 pml4e = x86_ldq_phys(cs, pml4e_addr); 278 if (!(pml4e & PG_PRESENT_MASK)) { 279 return -1; 280 } 281 pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + 282 (((addr >> 30) & 0x1ff) << 3)) & a20_mask; 283 pdpe = x86_ldq_phys(cs, pdpe_addr); 284 if (!(pdpe & PG_PRESENT_MASK)) { 285 return -1; 286 } 287 if (pdpe & PG_PSE_MASK) { 288 page_size = 1024 * 1024 * 1024; 289 pte = pdpe; 290 goto out; 291 } 292 293 } else 294 #endif 295 { 296 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & 297 a20_mask; 298 pdpe = x86_ldq_phys(cs, pdpe_addr); 299 if (!(pdpe & PG_PRESENT_MASK)) 300 return -1; 301 } 302 303 pde_addr = ((pdpe & PG_ADDRESS_MASK) + 304 (((addr >> 21) & 0x1ff) << 3)) & a20_mask; 305 pde = x86_ldq_phys(cs, pde_addr); 306 if (!(pde & PG_PRESENT_MASK)) { 307 return -1; 308 } 309 if (pde & PG_PSE_MASK) { 310 /* 2 MB page */ 311 page_size = 2048 * 1024; 312 pte = pde; 313 } else { 314 /* 4 KB page */ 315 pte_addr = ((pde & PG_ADDRESS_MASK) + 316 (((addr >> 12) & 0x1ff) << 3)) & a20_mask; 317 page_size = 4096; 318 pte = x86_ldq_phys(cs, pte_addr); 319 } 320 if (!(pte & PG_PRESENT_MASK)) { 321 return -1; 322 } 323 } else { 324 uint32_t pde; 325 326 /* page directory entry */ 327 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask; 328 pde = x86_ldl_phys(cs, pde_addr); 329 if (!(pde & PG_PRESENT_MASK)) 330 return -1; 331 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { 332 pte = pde | ((pde & 0x1fe000LL) << (32 - 13)); 333 page_size = 4096 * 1024; 334 } else { 335 /* page directory entry */ 336 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask; 337 pte = x86_ldl_phys(cs, pte_addr); 338 if (!(pte & PG_PRESENT_MASK)) { 339 return -1; 340 } 341 page_size = 4096; 342 } 343 pte = pte & a20_mask; 344 } 345 346 #ifdef TARGET_X86_64 347 out: 348 #endif 349 pte &= PG_ADDRESS_MASK & ~(page_size - 1); 350 page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); 351 return pte | page_offset; 352 } 353 354 typedef struct MCEInjectionParams { 355 Monitor *mon; 356 int bank; 357 uint64_t status; 358 uint64_t mcg_status; 359 uint64_t addr; 360 uint64_t misc; 361 int flags; 362 } MCEInjectionParams; 363 364 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar, 365 bool recursive) 366 { 367 MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive}; 368 369 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action, 370 &mff); 371 } 372 373 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data) 374 { 375 MCEInjectionParams *params = data.host_ptr; 376 X86CPU *cpu = X86_CPU(cs); 377 CPUX86State *cenv = &cpu->env; 378 uint64_t *banks = cenv->mce_banks + 4 * params->bank; 379 g_autofree char *msg = NULL; 380 bool need_reset = false; 381 bool recursive; 382 bool ar = !!(params->status & MCI_STATUS_AR); 383 384 cpu_synchronize_state(cs); 385 recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP); 386 387 /* 388 * If there is an MCE exception being processed, ignore this SRAO MCE 389 * unless unconditional injection was requested. 390 */ 391 if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) { 392 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive); 393 return; 394 } 395 396 if (params->status & MCI_STATUS_UC) { 397 /* 398 * if MSR_MCG_CTL is not all 1s, the uncorrected error 399 * reporting is disabled 400 */ 401 if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) { 402 monitor_printf(params->mon, 403 "CPU %d: Uncorrected error reporting disabled\n", 404 cs->cpu_index); 405 return; 406 } 407 408 /* 409 * if MSR_MCi_CTL is not all 1s, the uncorrected error 410 * reporting is disabled for the bank 411 */ 412 if (banks[0] != ~(uint64_t)0) { 413 monitor_printf(params->mon, 414 "CPU %d: Uncorrected error reporting disabled for" 415 " bank %d\n", 416 cs->cpu_index, params->bank); 417 return; 418 } 419 420 if (!(cenv->cr[4] & CR4_MCE_MASK)) { 421 need_reset = true; 422 msg = g_strdup_printf("CPU %d: MCE capability is not enabled, " 423 "raising triple fault", cs->cpu_index); 424 } else if (recursive) { 425 need_reset = true; 426 msg = g_strdup_printf("CPU %d: Previous MCE still in progress, " 427 "raising triple fault", cs->cpu_index); 428 } 429 430 if (need_reset) { 431 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar, 432 recursive); 433 monitor_puts(params->mon, msg); 434 qemu_log_mask(CPU_LOG_RESET, "%s\n", msg); 435 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 436 return; 437 } 438 439 if (banks[1] & MCI_STATUS_VAL) { 440 params->status |= MCI_STATUS_OVER; 441 } 442 banks[2] = params->addr; 443 banks[3] = params->misc; 444 cenv->mcg_status = params->mcg_status; 445 banks[1] = params->status; 446 cpu_interrupt(cs, CPU_INTERRUPT_MCE); 447 } else if (!(banks[1] & MCI_STATUS_VAL) 448 || !(banks[1] & MCI_STATUS_UC)) { 449 if (banks[1] & MCI_STATUS_VAL) { 450 params->status |= MCI_STATUS_OVER; 451 } 452 banks[2] = params->addr; 453 banks[3] = params->misc; 454 banks[1] = params->status; 455 } else { 456 banks[1] |= MCI_STATUS_OVER; 457 } 458 459 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive); 460 } 461 462 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank, 463 uint64_t status, uint64_t mcg_status, uint64_t addr, 464 uint64_t misc, int flags) 465 { 466 CPUState *cs = CPU(cpu); 467 CPUX86State *cenv = &cpu->env; 468 MCEInjectionParams params = { 469 .mon = mon, 470 .bank = bank, 471 .status = status, 472 .mcg_status = mcg_status, 473 .addr = addr, 474 .misc = misc, 475 .flags = flags, 476 }; 477 unsigned bank_num = cenv->mcg_cap & 0xff; 478 479 if (!cenv->mcg_cap) { 480 monitor_printf(mon, "MCE injection not supported\n"); 481 return; 482 } 483 if (bank >= bank_num) { 484 monitor_printf(mon, "Invalid MCE bank number\n"); 485 return; 486 } 487 if (!(status & MCI_STATUS_VAL)) { 488 monitor_printf(mon, "Invalid MCE status code\n"); 489 return; 490 } 491 if ((flags & MCE_INJECT_BROADCAST) 492 && !cpu_x86_support_mca_broadcast(cenv)) { 493 monitor_printf(mon, "Guest CPU does not support MCA broadcast\n"); 494 return; 495 } 496 497 run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); 498 if (flags & MCE_INJECT_BROADCAST) { 499 CPUState *other_cs; 500 501 params.bank = 1; 502 params.status = MCI_STATUS_VAL | MCI_STATUS_UC; 503 params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; 504 params.addr = 0; 505 params.misc = 0; 506 CPU_FOREACH(other_cs) { 507 if (other_cs == cs) { 508 continue; 509 } 510 run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); 511 } 512 } 513 } 514 515 static inline target_ulong get_memio_eip(CPUX86State *env) 516 { 517 #ifdef CONFIG_TCG 518 uint64_t data[TARGET_INSN_START_WORDS]; 519 CPUState *cs = env_cpu(env); 520 521 if (!cpu_unwind_state_data(cs, cs->mem_io_pc, data)) { 522 return env->eip; 523 } 524 525 /* Per x86_restore_state_to_opc. */ 526 if (cs->tcg_cflags & CF_PCREL) { 527 return (env->eip & TARGET_PAGE_MASK) | data[0]; 528 } else { 529 return data[0] - env->segs[R_CS].base; 530 } 531 #else 532 qemu_build_not_reached(); 533 #endif 534 } 535 536 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access) 537 { 538 X86CPU *cpu = env_archcpu(env); 539 CPUState *cs = env_cpu(env); 540 541 if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) { 542 env->tpr_access_type = access; 543 544 cpu_interrupt(cs, CPU_INTERRUPT_TPR); 545 } else if (tcg_enabled()) { 546 target_ulong eip = get_memio_eip(env); 547 548 apic_handle_tpr_access_report(cpu->apic_state, eip, access); 549 } 550 } 551 #endif /* !CONFIG_USER_ONLY */ 552 553 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector, 554 target_ulong *base, unsigned int *limit, 555 unsigned int *flags) 556 { 557 CPUState *cs = env_cpu(env); 558 SegmentCache *dt; 559 target_ulong ptr; 560 uint32_t e1, e2; 561 int index; 562 563 if (selector & 0x4) 564 dt = &env->ldt; 565 else 566 dt = &env->gdt; 567 index = selector & ~7; 568 ptr = dt->base + index; 569 if ((index + 7) > dt->limit 570 || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0 571 || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0) 572 return 0; 573 574 *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000)); 575 *limit = (e1 & 0xffff) | (e2 & 0x000f0000); 576 if (e2 & DESC_G_MASK) 577 *limit = (*limit << 12) | 0xfff; 578 *flags = e2; 579 580 return 1; 581 } 582 583 #if !defined(CONFIG_USER_ONLY) 584 void do_cpu_init(X86CPU *cpu) 585 { 586 CPUState *cs = CPU(cpu); 587 CPUX86State *env = &cpu->env; 588 CPUX86State *save = g_new(CPUX86State, 1); 589 int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI; 590 591 *save = *env; 592 593 cpu_reset(cs); 594 cs->interrupt_request = sipi; 595 memcpy(&env->start_init_save, &save->start_init_save, 596 offsetof(CPUX86State, end_init_save) - 597 offsetof(CPUX86State, start_init_save)); 598 g_free(save); 599 600 if (kvm_enabled()) { 601 kvm_arch_do_init_vcpu(cpu); 602 } 603 apic_init_reset(cpu->apic_state); 604 } 605 606 void do_cpu_sipi(X86CPU *cpu) 607 { 608 apic_sipi(cpu->apic_state); 609 } 610 #else 611 void do_cpu_init(X86CPU *cpu) 612 { 613 } 614 void do_cpu_sipi(X86CPU *cpu) 615 { 616 } 617 #endif 618 619 #ifndef CONFIG_USER_ONLY 620 621 void cpu_load_efer(CPUX86State *env, uint64_t val) 622 { 623 env->efer = val; 624 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK); 625 if (env->efer & MSR_EFER_LMA) { 626 env->hflags |= HF_LMA_MASK; 627 } 628 if (env->efer & MSR_EFER_SVME) { 629 env->hflags |= HF_SVME_MASK; 630 } 631 } 632 633 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr) 634 { 635 X86CPU *cpu = X86_CPU(cs); 636 CPUX86State *env = &cpu->env; 637 MemTxAttrs attrs = cpu_get_mem_attrs(env); 638 AddressSpace *as = cpu_addressspace(cs, attrs); 639 640 return address_space_ldub(as, addr, attrs, NULL); 641 } 642 643 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr) 644 { 645 X86CPU *cpu = X86_CPU(cs); 646 CPUX86State *env = &cpu->env; 647 MemTxAttrs attrs = cpu_get_mem_attrs(env); 648 AddressSpace *as = cpu_addressspace(cs, attrs); 649 650 return address_space_lduw(as, addr, attrs, NULL); 651 } 652 653 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr) 654 { 655 X86CPU *cpu = X86_CPU(cs); 656 CPUX86State *env = &cpu->env; 657 MemTxAttrs attrs = cpu_get_mem_attrs(env); 658 AddressSpace *as = cpu_addressspace(cs, attrs); 659 660 return address_space_ldl(as, addr, attrs, NULL); 661 } 662 663 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr) 664 { 665 X86CPU *cpu = X86_CPU(cs); 666 CPUX86State *env = &cpu->env; 667 MemTxAttrs attrs = cpu_get_mem_attrs(env); 668 AddressSpace *as = cpu_addressspace(cs, attrs); 669 670 return address_space_ldq(as, addr, attrs, NULL); 671 } 672 673 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val) 674 { 675 X86CPU *cpu = X86_CPU(cs); 676 CPUX86State *env = &cpu->env; 677 MemTxAttrs attrs = cpu_get_mem_attrs(env); 678 AddressSpace *as = cpu_addressspace(cs, attrs); 679 680 address_space_stb(as, addr, val, attrs, NULL); 681 } 682 683 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val) 684 { 685 X86CPU *cpu = X86_CPU(cs); 686 CPUX86State *env = &cpu->env; 687 MemTxAttrs attrs = cpu_get_mem_attrs(env); 688 AddressSpace *as = cpu_addressspace(cs, attrs); 689 690 address_space_stl_notdirty(as, addr, val, attrs, NULL); 691 } 692 693 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val) 694 { 695 X86CPU *cpu = X86_CPU(cs); 696 CPUX86State *env = &cpu->env; 697 MemTxAttrs attrs = cpu_get_mem_attrs(env); 698 AddressSpace *as = cpu_addressspace(cs, attrs); 699 700 address_space_stw(as, addr, val, attrs, NULL); 701 } 702 703 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val) 704 { 705 X86CPU *cpu = X86_CPU(cs); 706 CPUX86State *env = &cpu->env; 707 MemTxAttrs attrs = cpu_get_mem_attrs(env); 708 AddressSpace *as = cpu_addressspace(cs, attrs); 709 710 address_space_stl(as, addr, val, attrs, NULL); 711 } 712 713 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val) 714 { 715 X86CPU *cpu = X86_CPU(cs); 716 CPUX86State *env = &cpu->env; 717 MemTxAttrs attrs = cpu_get_mem_attrs(env); 718 AddressSpace *as = cpu_addressspace(cs, attrs); 719 720 address_space_stq(as, addr, val, attrs, NULL); 721 } 722 #endif 723