1 /* 2 * x86 gdb server stub 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * Copyright (c) 2013 SUSE LINUX Products GmbH 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2.1 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "exec/gdbstub.h" 23 24 #ifdef TARGET_X86_64 25 static const int gpr_map[16] = { 26 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP, 27 8, 9, 10, 11, 12, 13, 14, 15 28 }; 29 #else 30 #define gpr_map gpr_map32 31 #endif 32 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; 33 34 /* 35 * Keep these in sync with assignment to 36 * gdb_num_core_regs in target/i386/cpu.c 37 * and with the machine description 38 */ 39 40 /* 41 * SEG: 6 segments, plus fs_base, gs_base, kernel_gs_base 42 */ 43 44 /* 45 * general regs -----> 8 or 16 46 */ 47 #define IDX_NB_IP 1 48 #define IDX_NB_FLAGS 1 49 #define IDX_NB_SEG (6 + 3) 50 #define IDX_NB_CTL 6 51 #define IDX_NB_FP 16 52 /* 53 * fpu regs ----------> 8 or 16 54 */ 55 #define IDX_NB_MXCSR 1 56 /* 57 * total ----> 8+1+1+9+6+16+8+1=50 or 16+1+1+9+6+16+16+1=66 58 */ 59 60 #define IDX_IP_REG CPU_NB_REGS 61 #define IDX_FLAGS_REG (IDX_IP_REG + IDX_NB_IP) 62 #define IDX_SEG_REGS (IDX_FLAGS_REG + IDX_NB_FLAGS) 63 #define IDX_CTL_REGS (IDX_SEG_REGS + IDX_NB_SEG) 64 #define IDX_FP_REGS (IDX_CTL_REGS + IDX_NB_CTL) 65 #define IDX_XMM_REGS (IDX_FP_REGS + IDX_NB_FP) 66 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS) 67 68 #define IDX_CTL_CR0_REG (IDX_CTL_REGS + 0) 69 #define IDX_CTL_CR2_REG (IDX_CTL_REGS + 1) 70 #define IDX_CTL_CR3_REG (IDX_CTL_REGS + 2) 71 #define IDX_CTL_CR4_REG (IDX_CTL_REGS + 3) 72 #define IDX_CTL_CR8_REG (IDX_CTL_REGS + 4) 73 #define IDX_CTL_EFER_REG (IDX_CTL_REGS + 5) 74 75 #ifdef TARGET_X86_64 76 #define GDB_FORCE_64 1 77 #else 78 #define GDB_FORCE_64 0 79 #endif 80 81 static int gdb_read_reg_cs64(uint32_t hflags, GByteArray *buf, target_ulong val) 82 { 83 if ((hflags & HF_CS64_MASK) || GDB_FORCE_64) { 84 return gdb_get_reg64(buf, val); 85 } 86 return gdb_get_reg32(buf, val); 87 } 88 89 static int gdb_write_reg_cs64(uint32_t hflags, uint8_t *buf, target_ulong *val) 90 { 91 if (hflags & HF_CS64_MASK) { 92 *val = ldq_p(buf); 93 return 8; 94 } 95 *val = ldl_p(buf); 96 return 4; 97 } 98 99 int x86_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n) 100 { 101 X86CPU *cpu = X86_CPU(cs); 102 CPUX86State *env = &cpu->env; 103 104 uint64_t tpr; 105 106 /* N.B. GDB can't deal with changes in registers or sizes in the middle 107 of a session. So if we're in 32-bit mode on a 64-bit cpu, still act 108 as if we're on a 64-bit cpu. */ 109 110 if (n < CPU_NB_REGS) { 111 if (TARGET_LONG_BITS == 64) { 112 if (env->hflags & HF_CS64_MASK) { 113 return gdb_get_reg64(mem_buf, env->regs[gpr_map[n]]); 114 } else if (n < CPU_NB_REGS32) { 115 return gdb_get_reg64(mem_buf, 116 env->regs[gpr_map[n]] & 0xffffffffUL); 117 } else { 118 return gdb_get_regl(mem_buf, 0); 119 } 120 } else { 121 return gdb_get_reg32(mem_buf, env->regs[gpr_map32[n]]); 122 } 123 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { 124 floatx80 *fp = (floatx80 *) &env->fpregs[n - IDX_FP_REGS]; 125 int len = gdb_get_reg64(mem_buf, cpu_to_le64(fp->low)); 126 len += gdb_get_reg16(mem_buf, cpu_to_le16(fp->high)); 127 return len; 128 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { 129 n -= IDX_XMM_REGS; 130 if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) { 131 return gdb_get_reg128(mem_buf, 132 env->xmm_regs[n].ZMM_Q(1), 133 env->xmm_regs[n].ZMM_Q(0)); 134 } 135 } else { 136 switch (n) { 137 case IDX_IP_REG: 138 if (TARGET_LONG_BITS == 64) { 139 if (env->hflags & HF_CS64_MASK) { 140 return gdb_get_reg64(mem_buf, env->eip); 141 } else { 142 return gdb_get_reg64(mem_buf, env->eip & 0xffffffffUL); 143 } 144 } else { 145 return gdb_get_reg32(mem_buf, env->eip); 146 } 147 case IDX_FLAGS_REG: 148 return gdb_get_reg32(mem_buf, env->eflags); 149 150 case IDX_SEG_REGS: 151 return gdb_get_reg32(mem_buf, env->segs[R_CS].selector); 152 case IDX_SEG_REGS + 1: 153 return gdb_get_reg32(mem_buf, env->segs[R_SS].selector); 154 case IDX_SEG_REGS + 2: 155 return gdb_get_reg32(mem_buf, env->segs[R_DS].selector); 156 case IDX_SEG_REGS + 3: 157 return gdb_get_reg32(mem_buf, env->segs[R_ES].selector); 158 case IDX_SEG_REGS + 4: 159 return gdb_get_reg32(mem_buf, env->segs[R_FS].selector); 160 case IDX_SEG_REGS + 5: 161 return gdb_get_reg32(mem_buf, env->segs[R_GS].selector); 162 case IDX_SEG_REGS + 6: 163 return gdb_read_reg_cs64(env->hflags, mem_buf, env->segs[R_FS].base); 164 case IDX_SEG_REGS + 7: 165 return gdb_read_reg_cs64(env->hflags, mem_buf, env->segs[R_GS].base); 166 167 case IDX_SEG_REGS + 8: 168 #ifdef TARGET_X86_64 169 return gdb_read_reg_cs64(env->hflags, mem_buf, env->kernelgsbase); 170 #else 171 return gdb_get_reg32(mem_buf, 0); 172 #endif 173 174 case IDX_FP_REGS + 8: 175 return gdb_get_reg32(mem_buf, env->fpuc); 176 case IDX_FP_REGS + 9: 177 return gdb_get_reg32(mem_buf, (env->fpus & ~0x3800) | 178 (env->fpstt & 0x7) << 11); 179 case IDX_FP_REGS + 10: 180 return gdb_get_reg32(mem_buf, 0); /* ftag */ 181 case IDX_FP_REGS + 11: 182 return gdb_get_reg32(mem_buf, 0); /* fiseg */ 183 case IDX_FP_REGS + 12: 184 return gdb_get_reg32(mem_buf, 0); /* fioff */ 185 case IDX_FP_REGS + 13: 186 return gdb_get_reg32(mem_buf, 0); /* foseg */ 187 case IDX_FP_REGS + 14: 188 return gdb_get_reg32(mem_buf, 0); /* fooff */ 189 case IDX_FP_REGS + 15: 190 return gdb_get_reg32(mem_buf, 0); /* fop */ 191 192 case IDX_MXCSR_REG: 193 update_mxcsr_from_sse_status(env); 194 return gdb_get_reg32(mem_buf, env->mxcsr); 195 196 case IDX_CTL_CR0_REG: 197 return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[0]); 198 case IDX_CTL_CR2_REG: 199 return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[2]); 200 case IDX_CTL_CR3_REG: 201 return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[3]); 202 case IDX_CTL_CR4_REG: 203 return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[4]); 204 case IDX_CTL_CR8_REG: 205 #ifndef CONFIG_USER_ONLY 206 tpr = cpu_get_apic_tpr(cpu->apic_state); 207 #else 208 tpr = 0; 209 #endif 210 return gdb_read_reg_cs64(env->hflags, mem_buf, tpr); 211 212 case IDX_CTL_EFER_REG: 213 return gdb_read_reg_cs64(env->hflags, mem_buf, env->efer); 214 } 215 } 216 return 0; 217 } 218 219 static int x86_cpu_gdb_load_seg(X86CPU *cpu, X86Seg sreg, uint8_t *mem_buf) 220 { 221 CPUX86State *env = &cpu->env; 222 uint16_t selector = ldl_p(mem_buf); 223 224 if (selector != env->segs[sreg].selector) { 225 #if defined(CONFIG_USER_ONLY) 226 cpu_x86_load_seg(env, sreg, selector); 227 #else 228 unsigned int limit, flags; 229 target_ulong base; 230 231 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { 232 int dpl = (env->eflags & VM_MASK) ? 3 : 0; 233 base = selector << 4; 234 limit = 0xffff; 235 flags = DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | 236 DESC_A_MASK | (dpl << DESC_DPL_SHIFT); 237 } else { 238 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, 239 &flags)) { 240 return 4; 241 } 242 } 243 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags); 244 #endif 245 } 246 return 4; 247 } 248 249 int x86_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) 250 { 251 X86CPU *cpu = X86_CPU(cs); 252 CPUX86State *env = &cpu->env; 253 target_ulong tmp; 254 int len; 255 256 /* N.B. GDB can't deal with changes in registers or sizes in the middle 257 of a session. So if we're in 32-bit mode on a 64-bit cpu, still act 258 as if we're on a 64-bit cpu. */ 259 260 if (n < CPU_NB_REGS) { 261 if (TARGET_LONG_BITS == 64) { 262 if (env->hflags & HF_CS64_MASK) { 263 env->regs[gpr_map[n]] = ldtul_p(mem_buf); 264 } else if (n < CPU_NB_REGS32) { 265 env->regs[gpr_map[n]] = ldtul_p(mem_buf) & 0xffffffffUL; 266 } 267 return sizeof(target_ulong); 268 } else if (n < CPU_NB_REGS32) { 269 n = gpr_map32[n]; 270 env->regs[n] &= ~0xffffffffUL; 271 env->regs[n] |= (uint32_t)ldl_p(mem_buf); 272 return 4; 273 } 274 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { 275 floatx80 *fp = (floatx80 *) &env->fpregs[n - IDX_FP_REGS]; 276 fp->low = le64_to_cpu(* (uint64_t *) mem_buf); 277 fp->high = le16_to_cpu(* (uint16_t *) (mem_buf + 8)); 278 return 10; 279 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { 280 n -= IDX_XMM_REGS; 281 if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) { 282 env->xmm_regs[n].ZMM_Q(0) = ldq_p(mem_buf); 283 env->xmm_regs[n].ZMM_Q(1) = ldq_p(mem_buf + 8); 284 return 16; 285 } 286 } else { 287 switch (n) { 288 case IDX_IP_REG: 289 if (TARGET_LONG_BITS == 64) { 290 if (env->hflags & HF_CS64_MASK) { 291 env->eip = ldq_p(mem_buf); 292 } else { 293 env->eip = ldq_p(mem_buf) & 0xffffffffUL; 294 } 295 return 8; 296 } else { 297 env->eip &= ~0xffffffffUL; 298 env->eip |= (uint32_t)ldl_p(mem_buf); 299 return 4; 300 } 301 case IDX_FLAGS_REG: 302 env->eflags = ldl_p(mem_buf); 303 return 4; 304 305 case IDX_SEG_REGS: 306 return x86_cpu_gdb_load_seg(cpu, R_CS, mem_buf); 307 case IDX_SEG_REGS + 1: 308 return x86_cpu_gdb_load_seg(cpu, R_SS, mem_buf); 309 case IDX_SEG_REGS + 2: 310 return x86_cpu_gdb_load_seg(cpu, R_DS, mem_buf); 311 case IDX_SEG_REGS + 3: 312 return x86_cpu_gdb_load_seg(cpu, R_ES, mem_buf); 313 case IDX_SEG_REGS + 4: 314 return x86_cpu_gdb_load_seg(cpu, R_FS, mem_buf); 315 case IDX_SEG_REGS + 5: 316 return x86_cpu_gdb_load_seg(cpu, R_GS, mem_buf); 317 case IDX_SEG_REGS + 6: 318 return gdb_write_reg_cs64(env->hflags, mem_buf, &env->segs[R_FS].base); 319 case IDX_SEG_REGS + 7: 320 return gdb_write_reg_cs64(env->hflags, mem_buf, &env->segs[R_GS].base); 321 case IDX_SEG_REGS + 8: 322 #ifdef TARGET_X86_64 323 return gdb_write_reg_cs64(env->hflags, mem_buf, &env->kernelgsbase); 324 #endif 325 return 4; 326 327 case IDX_FP_REGS + 8: 328 cpu_set_fpuc(env, ldl_p(mem_buf)); 329 return 4; 330 case IDX_FP_REGS + 9: 331 tmp = ldl_p(mem_buf); 332 env->fpstt = (tmp >> 11) & 7; 333 env->fpus = tmp & ~0x3800; 334 return 4; 335 case IDX_FP_REGS + 10: /* ftag */ 336 return 4; 337 case IDX_FP_REGS + 11: /* fiseg */ 338 return 4; 339 case IDX_FP_REGS + 12: /* fioff */ 340 return 4; 341 case IDX_FP_REGS + 13: /* foseg */ 342 return 4; 343 case IDX_FP_REGS + 14: /* fooff */ 344 return 4; 345 case IDX_FP_REGS + 15: /* fop */ 346 return 4; 347 348 case IDX_MXCSR_REG: 349 cpu_set_mxcsr(env, ldl_p(mem_buf)); 350 return 4; 351 352 case IDX_CTL_CR0_REG: 353 len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp); 354 #ifndef CONFIG_USER_ONLY 355 cpu_x86_update_cr0(env, tmp); 356 #endif 357 return len; 358 359 case IDX_CTL_CR2_REG: 360 len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp); 361 #ifndef CONFIG_USER_ONLY 362 env->cr[2] = tmp; 363 #endif 364 return len; 365 366 case IDX_CTL_CR3_REG: 367 len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp); 368 #ifndef CONFIG_USER_ONLY 369 cpu_x86_update_cr3(env, tmp); 370 #endif 371 return len; 372 373 case IDX_CTL_CR4_REG: 374 len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp); 375 #ifndef CONFIG_USER_ONLY 376 cpu_x86_update_cr4(env, tmp); 377 #endif 378 return len; 379 380 case IDX_CTL_CR8_REG: 381 len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp); 382 #ifndef CONFIG_USER_ONLY 383 cpu_set_apic_tpr(cpu->apic_state, tmp); 384 #endif 385 return len; 386 387 case IDX_CTL_EFER_REG: 388 len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp); 389 #ifndef CONFIG_USER_ONLY 390 cpu_load_efer(env, tmp); 391 #endif 392 return len; 393 } 394 } 395 /* Unrecognised register. */ 396 return 0; 397 } 398