1 /* 2 * x86 gdb server stub 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * Copyright (c) 2013 SUSE LINUX Products GmbH 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2.1 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "exec/gdbstub.h" 23 24 #ifdef TARGET_X86_64 25 static const int gpr_map[16] = { 26 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP, 27 8, 9, 10, 11, 12, 13, 14, 15 28 }; 29 #else 30 #define gpr_map gpr_map32 31 #endif 32 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; 33 34 /* 35 * Keep these in sync with assignment to 36 * gdb_num_core_regs in target/i386/cpu.c 37 * and with the machine description 38 */ 39 40 /* 41 * SEG: 6 segments, plus fs_base, gs_base, kernel_gs_base 42 */ 43 44 /* 45 * general regs -----> 8 or 16 46 */ 47 #define IDX_NB_IP 1 48 #define IDX_NB_FLAGS 1 49 #define IDX_NB_SEG (6 + 3) 50 #define IDX_NB_CTL 6 51 #define IDX_NB_FP 16 52 /* 53 * fpu regs ----------> 8 or 16 54 */ 55 #define IDX_NB_MXCSR 1 56 /* 57 * total ----> 8+1+1+9+6+16+8+1=50 or 16+1+1+9+6+16+16+1=66 58 */ 59 60 #define IDX_IP_REG CPU_NB_REGS 61 #define IDX_FLAGS_REG (IDX_IP_REG + IDX_NB_IP) 62 #define IDX_SEG_REGS (IDX_FLAGS_REG + IDX_NB_FLAGS) 63 #define IDX_CTL_REGS (IDX_SEG_REGS + IDX_NB_SEG) 64 #define IDX_FP_REGS (IDX_CTL_REGS + IDX_NB_CTL) 65 #define IDX_XMM_REGS (IDX_FP_REGS + IDX_NB_FP) 66 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS) 67 68 #define IDX_CTL_CR0_REG (IDX_CTL_REGS + 0) 69 #define IDX_CTL_CR2_REG (IDX_CTL_REGS + 1) 70 #define IDX_CTL_CR3_REG (IDX_CTL_REGS + 2) 71 #define IDX_CTL_CR4_REG (IDX_CTL_REGS + 3) 72 #define IDX_CTL_CR8_REG (IDX_CTL_REGS + 4) 73 #define IDX_CTL_EFER_REG (IDX_CTL_REGS + 5) 74 75 #ifdef TARGET_X86_64 76 #define GDB_FORCE_64 1 77 #else 78 #define GDB_FORCE_64 0 79 #endif 80 81 82 int x86_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n) 83 { 84 X86CPU *cpu = X86_CPU(cs); 85 CPUX86State *env = &cpu->env; 86 87 uint64_t tpr; 88 89 /* N.B. GDB can't deal with changes in registers or sizes in the middle 90 of a session. So if we're in 32-bit mode on a 64-bit cpu, still act 91 as if we're on a 64-bit cpu. */ 92 93 if (n < CPU_NB_REGS) { 94 if (TARGET_LONG_BITS == 64) { 95 if (env->hflags & HF_CS64_MASK) { 96 return gdb_get_reg64(mem_buf, env->regs[gpr_map[n]]); 97 } else if (n < CPU_NB_REGS32) { 98 return gdb_get_reg64(mem_buf, 99 env->regs[gpr_map[n]] & 0xffffffffUL); 100 } else { 101 return gdb_get_regl(mem_buf, 0); 102 } 103 } else { 104 return gdb_get_reg32(mem_buf, env->regs[gpr_map32[n]]); 105 } 106 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { 107 floatx80 *fp = (floatx80 *) &env->fpregs[n - IDX_FP_REGS]; 108 int len = gdb_get_reg64(mem_buf, cpu_to_le64(fp->low)); 109 len += gdb_get_reg16(mem_buf, cpu_to_le16(fp->high)); 110 return len; 111 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { 112 n -= IDX_XMM_REGS; 113 if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) { 114 return gdb_get_reg128(mem_buf, 115 env->xmm_regs[n].ZMM_Q(0), 116 env->xmm_regs[n].ZMM_Q(1)); 117 } 118 } else { 119 switch (n) { 120 case IDX_IP_REG: 121 if (TARGET_LONG_BITS == 64) { 122 if (env->hflags & HF_CS64_MASK) { 123 return gdb_get_reg64(mem_buf, env->eip); 124 } else { 125 return gdb_get_reg64(mem_buf, env->eip & 0xffffffffUL); 126 } 127 } else { 128 return gdb_get_reg32(mem_buf, env->eip); 129 } 130 case IDX_FLAGS_REG: 131 return gdb_get_reg32(mem_buf, env->eflags); 132 133 case IDX_SEG_REGS: 134 return gdb_get_reg32(mem_buf, env->segs[R_CS].selector); 135 case IDX_SEG_REGS + 1: 136 return gdb_get_reg32(mem_buf, env->segs[R_SS].selector); 137 case IDX_SEG_REGS + 2: 138 return gdb_get_reg32(mem_buf, env->segs[R_DS].selector); 139 case IDX_SEG_REGS + 3: 140 return gdb_get_reg32(mem_buf, env->segs[R_ES].selector); 141 case IDX_SEG_REGS + 4: 142 return gdb_get_reg32(mem_buf, env->segs[R_FS].selector); 143 case IDX_SEG_REGS + 5: 144 return gdb_get_reg32(mem_buf, env->segs[R_GS].selector); 145 146 case IDX_SEG_REGS + 6: 147 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { 148 return gdb_get_reg64(mem_buf, env->segs[R_FS].base); 149 } 150 return gdb_get_reg32(mem_buf, env->segs[R_FS].base); 151 152 case IDX_SEG_REGS + 7: 153 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { 154 return gdb_get_reg64(mem_buf, env->segs[R_GS].base); 155 } 156 return gdb_get_reg32(mem_buf, env->segs[R_GS].base); 157 158 case IDX_SEG_REGS + 8: 159 #ifdef TARGET_X86_64 160 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { 161 return gdb_get_reg64(mem_buf, env->kernelgsbase); 162 } 163 return gdb_get_reg32(mem_buf, env->kernelgsbase); 164 #else 165 return gdb_get_reg32(mem_buf, 0); 166 #endif 167 168 case IDX_FP_REGS + 8: 169 return gdb_get_reg32(mem_buf, env->fpuc); 170 case IDX_FP_REGS + 9: 171 return gdb_get_reg32(mem_buf, (env->fpus & ~0x3800) | 172 (env->fpstt & 0x7) << 11); 173 case IDX_FP_REGS + 10: 174 return gdb_get_reg32(mem_buf, 0); /* ftag */ 175 case IDX_FP_REGS + 11: 176 return gdb_get_reg32(mem_buf, 0); /* fiseg */ 177 case IDX_FP_REGS + 12: 178 return gdb_get_reg32(mem_buf, 0); /* fioff */ 179 case IDX_FP_REGS + 13: 180 return gdb_get_reg32(mem_buf, 0); /* foseg */ 181 case IDX_FP_REGS + 14: 182 return gdb_get_reg32(mem_buf, 0); /* fooff */ 183 case IDX_FP_REGS + 15: 184 return gdb_get_reg32(mem_buf, 0); /* fop */ 185 186 case IDX_MXCSR_REG: 187 update_mxcsr_from_sse_status(env); 188 return gdb_get_reg32(mem_buf, env->mxcsr); 189 190 case IDX_CTL_CR0_REG: 191 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { 192 return gdb_get_reg64(mem_buf, env->cr[0]); 193 } 194 return gdb_get_reg32(mem_buf, env->cr[0]); 195 196 case IDX_CTL_CR2_REG: 197 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { 198 return gdb_get_reg64(mem_buf, env->cr[2]); 199 } 200 return gdb_get_reg32(mem_buf, env->cr[2]); 201 202 case IDX_CTL_CR3_REG: 203 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { 204 return gdb_get_reg64(mem_buf, env->cr[3]); 205 } 206 return gdb_get_reg32(mem_buf, env->cr[3]); 207 208 case IDX_CTL_CR4_REG: 209 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { 210 return gdb_get_reg64(mem_buf, env->cr[4]); 211 } 212 return gdb_get_reg32(mem_buf, env->cr[4]); 213 214 case IDX_CTL_CR8_REG: 215 #ifdef CONFIG_SOFTMMU 216 tpr = cpu_get_apic_tpr(cpu->apic_state); 217 #else 218 tpr = 0; 219 #endif 220 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { 221 return gdb_get_reg64(mem_buf, tpr); 222 } 223 return gdb_get_reg32(mem_buf, tpr); 224 225 case IDX_CTL_EFER_REG: 226 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { 227 return gdb_get_reg64(mem_buf, env->efer); 228 } 229 return gdb_get_reg32(mem_buf, env->efer); 230 } 231 } 232 return 0; 233 } 234 235 static int x86_cpu_gdb_load_seg(X86CPU *cpu, X86Seg sreg, uint8_t *mem_buf) 236 { 237 CPUX86State *env = &cpu->env; 238 uint16_t selector = ldl_p(mem_buf); 239 240 if (selector != env->segs[sreg].selector) { 241 #if defined(CONFIG_USER_ONLY) 242 cpu_x86_load_seg(env, sreg, selector); 243 #else 244 unsigned int limit, flags; 245 target_ulong base; 246 247 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { 248 int dpl = (env->eflags & VM_MASK) ? 3 : 0; 249 base = selector << 4; 250 limit = 0xffff; 251 flags = DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | 252 DESC_A_MASK | (dpl << DESC_DPL_SHIFT); 253 } else { 254 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, 255 &flags)) { 256 return 4; 257 } 258 } 259 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags); 260 #endif 261 } 262 return 4; 263 } 264 265 int x86_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) 266 { 267 X86CPU *cpu = X86_CPU(cs); 268 CPUX86State *env = &cpu->env; 269 uint32_t tmp; 270 271 /* N.B. GDB can't deal with changes in registers or sizes in the middle 272 of a session. So if we're in 32-bit mode on a 64-bit cpu, still act 273 as if we're on a 64-bit cpu. */ 274 275 if (n < CPU_NB_REGS) { 276 if (TARGET_LONG_BITS == 64) { 277 if (env->hflags & HF_CS64_MASK) { 278 env->regs[gpr_map[n]] = ldtul_p(mem_buf); 279 } else if (n < CPU_NB_REGS32) { 280 env->regs[gpr_map[n]] = ldtul_p(mem_buf) & 0xffffffffUL; 281 } 282 return sizeof(target_ulong); 283 } else if (n < CPU_NB_REGS32) { 284 n = gpr_map32[n]; 285 env->regs[n] &= ~0xffffffffUL; 286 env->regs[n] |= (uint32_t)ldl_p(mem_buf); 287 return 4; 288 } 289 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { 290 floatx80 *fp = (floatx80 *) &env->fpregs[n - IDX_FP_REGS]; 291 fp->low = le64_to_cpu(* (uint64_t *) mem_buf); 292 fp->high = le16_to_cpu(* (uint16_t *) (mem_buf + 8)); 293 return 10; 294 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { 295 n -= IDX_XMM_REGS; 296 if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) { 297 env->xmm_regs[n].ZMM_Q(0) = ldq_p(mem_buf); 298 env->xmm_regs[n].ZMM_Q(1) = ldq_p(mem_buf + 8); 299 return 16; 300 } 301 } else { 302 switch (n) { 303 case IDX_IP_REG: 304 if (TARGET_LONG_BITS == 64) { 305 if (env->hflags & HF_CS64_MASK) { 306 env->eip = ldq_p(mem_buf); 307 } else { 308 env->eip = ldq_p(mem_buf) & 0xffffffffUL; 309 } 310 return 8; 311 } else { 312 env->eip &= ~0xffffffffUL; 313 env->eip |= (uint32_t)ldl_p(mem_buf); 314 return 4; 315 } 316 case IDX_FLAGS_REG: 317 env->eflags = ldl_p(mem_buf); 318 return 4; 319 320 case IDX_SEG_REGS: 321 return x86_cpu_gdb_load_seg(cpu, R_CS, mem_buf); 322 case IDX_SEG_REGS + 1: 323 return x86_cpu_gdb_load_seg(cpu, R_SS, mem_buf); 324 case IDX_SEG_REGS + 2: 325 return x86_cpu_gdb_load_seg(cpu, R_DS, mem_buf); 326 case IDX_SEG_REGS + 3: 327 return x86_cpu_gdb_load_seg(cpu, R_ES, mem_buf); 328 case IDX_SEG_REGS + 4: 329 return x86_cpu_gdb_load_seg(cpu, R_FS, mem_buf); 330 case IDX_SEG_REGS + 5: 331 return x86_cpu_gdb_load_seg(cpu, R_GS, mem_buf); 332 333 case IDX_SEG_REGS + 6: 334 if (env->hflags & HF_CS64_MASK) { 335 env->segs[R_FS].base = ldq_p(mem_buf); 336 return 8; 337 } 338 env->segs[R_FS].base = ldl_p(mem_buf); 339 return 4; 340 341 case IDX_SEG_REGS + 7: 342 if (env->hflags & HF_CS64_MASK) { 343 env->segs[R_GS].base = ldq_p(mem_buf); 344 return 8; 345 } 346 env->segs[R_GS].base = ldl_p(mem_buf); 347 return 4; 348 349 case IDX_SEG_REGS + 8: 350 #ifdef TARGET_X86_64 351 if (env->hflags & HF_CS64_MASK) { 352 env->kernelgsbase = ldq_p(mem_buf); 353 return 8; 354 } 355 env->kernelgsbase = ldl_p(mem_buf); 356 #endif 357 return 4; 358 359 case IDX_FP_REGS + 8: 360 cpu_set_fpuc(env, ldl_p(mem_buf)); 361 return 4; 362 case IDX_FP_REGS + 9: 363 tmp = ldl_p(mem_buf); 364 env->fpstt = (tmp >> 11) & 7; 365 env->fpus = tmp & ~0x3800; 366 return 4; 367 case IDX_FP_REGS + 10: /* ftag */ 368 return 4; 369 case IDX_FP_REGS + 11: /* fiseg */ 370 return 4; 371 case IDX_FP_REGS + 12: /* fioff */ 372 return 4; 373 case IDX_FP_REGS + 13: /* foseg */ 374 return 4; 375 case IDX_FP_REGS + 14: /* fooff */ 376 return 4; 377 case IDX_FP_REGS + 15: /* fop */ 378 return 4; 379 380 case IDX_MXCSR_REG: 381 cpu_set_mxcsr(env, ldl_p(mem_buf)); 382 return 4; 383 384 case IDX_CTL_CR0_REG: 385 if (env->hflags & HF_CS64_MASK) { 386 cpu_x86_update_cr0(env, ldq_p(mem_buf)); 387 return 8; 388 } 389 cpu_x86_update_cr0(env, ldl_p(mem_buf)); 390 return 4; 391 392 case IDX_CTL_CR2_REG: 393 if (env->hflags & HF_CS64_MASK) { 394 env->cr[2] = ldq_p(mem_buf); 395 return 8; 396 } 397 env->cr[2] = ldl_p(mem_buf); 398 return 4; 399 400 case IDX_CTL_CR3_REG: 401 if (env->hflags & HF_CS64_MASK) { 402 cpu_x86_update_cr3(env, ldq_p(mem_buf)); 403 return 8; 404 } 405 cpu_x86_update_cr3(env, ldl_p(mem_buf)); 406 return 4; 407 408 case IDX_CTL_CR4_REG: 409 if (env->hflags & HF_CS64_MASK) { 410 cpu_x86_update_cr4(env, ldq_p(mem_buf)); 411 return 8; 412 } 413 cpu_x86_update_cr4(env, ldl_p(mem_buf)); 414 return 4; 415 416 case IDX_CTL_CR8_REG: 417 if (env->hflags & HF_CS64_MASK) { 418 #ifdef CONFIG_SOFTMMU 419 cpu_set_apic_tpr(cpu->apic_state, ldq_p(mem_buf)); 420 #endif 421 return 8; 422 } 423 #ifdef CONFIG_SOFTMMU 424 cpu_set_apic_tpr(cpu->apic_state, ldl_p(mem_buf)); 425 #endif 426 return 4; 427 428 case IDX_CTL_EFER_REG: 429 if (env->hflags & HF_CS64_MASK) { 430 cpu_load_efer(env, ldq_p(mem_buf)); 431 return 8; 432 } 433 cpu_load_efer(env, ldl_p(mem_buf)); 434 return 4; 435 436 } 437 } 438 /* Unrecognised register. */ 439 return 0; 440 } 441