1 /* 2 * i386 virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef I386_CPU_H 21 #define I386_CPU_H 22 23 #include "qemu-common.h" 24 #include "cpu-qom.h" 25 #include "hyperv-proto.h" 26 27 #ifdef TARGET_X86_64 28 #define TARGET_LONG_BITS 64 29 #else 30 #define TARGET_LONG_BITS 32 31 #endif 32 33 #include "exec/cpu-defs.h" 34 35 /* The x86 has a strong memory model with some store-after-load re-ordering */ 36 #define TCG_GUEST_DEFAULT_MO (TCG_MO_ALL & ~TCG_MO_ST_LD) 37 38 /* Maximum instruction code size */ 39 #define TARGET_MAX_INSN_SIZE 16 40 41 /* support for self modifying code even if the modified instruction is 42 close to the modifying instruction */ 43 #define TARGET_HAS_PRECISE_SMC 44 45 #ifdef TARGET_X86_64 46 #define I386_ELF_MACHINE EM_X86_64 47 #define ELF_MACHINE_UNAME "x86_64" 48 #else 49 #define I386_ELF_MACHINE EM_386 50 #define ELF_MACHINE_UNAME "i686" 51 #endif 52 53 #define CPUArchState struct CPUX86State 54 55 enum { 56 R_EAX = 0, 57 R_ECX = 1, 58 R_EDX = 2, 59 R_EBX = 3, 60 R_ESP = 4, 61 R_EBP = 5, 62 R_ESI = 6, 63 R_EDI = 7, 64 R_R8 = 8, 65 R_R9 = 9, 66 R_R10 = 10, 67 R_R11 = 11, 68 R_R12 = 12, 69 R_R13 = 13, 70 R_R14 = 14, 71 R_R15 = 15, 72 73 R_AL = 0, 74 R_CL = 1, 75 R_DL = 2, 76 R_BL = 3, 77 R_AH = 4, 78 R_CH = 5, 79 R_DH = 6, 80 R_BH = 7, 81 }; 82 83 typedef enum X86Seg { 84 R_ES = 0, 85 R_CS = 1, 86 R_SS = 2, 87 R_DS = 3, 88 R_FS = 4, 89 R_GS = 5, 90 R_LDTR = 6, 91 R_TR = 7, 92 } X86Seg; 93 94 /* segment descriptor fields */ 95 #define DESC_G_SHIFT 23 96 #define DESC_G_MASK (1 << DESC_G_SHIFT) 97 #define DESC_B_SHIFT 22 98 #define DESC_B_MASK (1 << DESC_B_SHIFT) 99 #define DESC_L_SHIFT 21 /* x86_64 only : 64 bit code segment */ 100 #define DESC_L_MASK (1 << DESC_L_SHIFT) 101 #define DESC_AVL_SHIFT 20 102 #define DESC_AVL_MASK (1 << DESC_AVL_SHIFT) 103 #define DESC_P_SHIFT 15 104 #define DESC_P_MASK (1 << DESC_P_SHIFT) 105 #define DESC_DPL_SHIFT 13 106 #define DESC_DPL_MASK (3 << DESC_DPL_SHIFT) 107 #define DESC_S_SHIFT 12 108 #define DESC_S_MASK (1 << DESC_S_SHIFT) 109 #define DESC_TYPE_SHIFT 8 110 #define DESC_TYPE_MASK (15 << DESC_TYPE_SHIFT) 111 #define DESC_A_MASK (1 << 8) 112 113 #define DESC_CS_MASK (1 << 11) /* 1=code segment 0=data segment */ 114 #define DESC_C_MASK (1 << 10) /* code: conforming */ 115 #define DESC_R_MASK (1 << 9) /* code: readable */ 116 117 #define DESC_E_MASK (1 << 10) /* data: expansion direction */ 118 #define DESC_W_MASK (1 << 9) /* data: writable */ 119 120 #define DESC_TSS_BUSY_MASK (1 << 9) 121 122 /* eflags masks */ 123 #define CC_C 0x0001 124 #define CC_P 0x0004 125 #define CC_A 0x0010 126 #define CC_Z 0x0040 127 #define CC_S 0x0080 128 #define CC_O 0x0800 129 130 #define TF_SHIFT 8 131 #define IOPL_SHIFT 12 132 #define VM_SHIFT 17 133 134 #define TF_MASK 0x00000100 135 #define IF_MASK 0x00000200 136 #define DF_MASK 0x00000400 137 #define IOPL_MASK 0x00003000 138 #define NT_MASK 0x00004000 139 #define RF_MASK 0x00010000 140 #define VM_MASK 0x00020000 141 #define AC_MASK 0x00040000 142 #define VIF_MASK 0x00080000 143 #define VIP_MASK 0x00100000 144 #define ID_MASK 0x00200000 145 146 /* hidden flags - used internally by qemu to represent additional cpu 147 states. Only the INHIBIT_IRQ, SMM and SVMI are not redundant. We 148 avoid using the IOPL_MASK, TF_MASK, VM_MASK and AC_MASK bit 149 positions to ease oring with eflags. */ 150 /* current cpl */ 151 #define HF_CPL_SHIFT 0 152 /* true if hardware interrupts must be disabled for next instruction */ 153 #define HF_INHIBIT_IRQ_SHIFT 3 154 /* 16 or 32 segments */ 155 #define HF_CS32_SHIFT 4 156 #define HF_SS32_SHIFT 5 157 /* zero base for DS, ES and SS : can be '0' only in 32 bit CS segment */ 158 #define HF_ADDSEG_SHIFT 6 159 /* copy of CR0.PE (protected mode) */ 160 #define HF_PE_SHIFT 7 161 #define HF_TF_SHIFT 8 /* must be same as eflags */ 162 #define HF_MP_SHIFT 9 /* the order must be MP, EM, TS */ 163 #define HF_EM_SHIFT 10 164 #define HF_TS_SHIFT 11 165 #define HF_IOPL_SHIFT 12 /* must be same as eflags */ 166 #define HF_LMA_SHIFT 14 /* only used on x86_64: long mode active */ 167 #define HF_CS64_SHIFT 15 /* only used on x86_64: 64 bit code segment */ 168 #define HF_RF_SHIFT 16 /* must be same as eflags */ 169 #define HF_VM_SHIFT 17 /* must be same as eflags */ 170 #define HF_AC_SHIFT 18 /* must be same as eflags */ 171 #define HF_SMM_SHIFT 19 /* CPU in SMM mode */ 172 #define HF_SVME_SHIFT 20 /* SVME enabled (copy of EFER.SVME) */ 173 #define HF_SVMI_SHIFT 21 /* SVM intercepts are active */ 174 #define HF_OSFXSR_SHIFT 22 /* CR4.OSFXSR */ 175 #define HF_SMAP_SHIFT 23 /* CR4.SMAP */ 176 #define HF_IOBPT_SHIFT 24 /* an io breakpoint enabled */ 177 #define HF_MPX_EN_SHIFT 25 /* MPX Enabled (CR4+XCR0+BNDCFGx) */ 178 #define HF_MPX_IU_SHIFT 26 /* BND registers in-use */ 179 180 #define HF_CPL_MASK (3 << HF_CPL_SHIFT) 181 #define HF_INHIBIT_IRQ_MASK (1 << HF_INHIBIT_IRQ_SHIFT) 182 #define HF_CS32_MASK (1 << HF_CS32_SHIFT) 183 #define HF_SS32_MASK (1 << HF_SS32_SHIFT) 184 #define HF_ADDSEG_MASK (1 << HF_ADDSEG_SHIFT) 185 #define HF_PE_MASK (1 << HF_PE_SHIFT) 186 #define HF_TF_MASK (1 << HF_TF_SHIFT) 187 #define HF_MP_MASK (1 << HF_MP_SHIFT) 188 #define HF_EM_MASK (1 << HF_EM_SHIFT) 189 #define HF_TS_MASK (1 << HF_TS_SHIFT) 190 #define HF_IOPL_MASK (3 << HF_IOPL_SHIFT) 191 #define HF_LMA_MASK (1 << HF_LMA_SHIFT) 192 #define HF_CS64_MASK (1 << HF_CS64_SHIFT) 193 #define HF_RF_MASK (1 << HF_RF_SHIFT) 194 #define HF_VM_MASK (1 << HF_VM_SHIFT) 195 #define HF_AC_MASK (1 << HF_AC_SHIFT) 196 #define HF_SMM_MASK (1 << HF_SMM_SHIFT) 197 #define HF_SVME_MASK (1 << HF_SVME_SHIFT) 198 #define HF_SVMI_MASK (1 << HF_SVMI_SHIFT) 199 #define HF_OSFXSR_MASK (1 << HF_OSFXSR_SHIFT) 200 #define HF_SMAP_MASK (1 << HF_SMAP_SHIFT) 201 #define HF_IOBPT_MASK (1 << HF_IOBPT_SHIFT) 202 #define HF_MPX_EN_MASK (1 << HF_MPX_EN_SHIFT) 203 #define HF_MPX_IU_MASK (1 << HF_MPX_IU_SHIFT) 204 205 /* hflags2 */ 206 207 #define HF2_GIF_SHIFT 0 /* if set CPU takes interrupts */ 208 #define HF2_HIF_SHIFT 1 /* value of IF_MASK when entering SVM */ 209 #define HF2_NMI_SHIFT 2 /* CPU serving NMI */ 210 #define HF2_VINTR_SHIFT 3 /* value of V_INTR_MASKING bit */ 211 #define HF2_SMM_INSIDE_NMI_SHIFT 4 /* CPU serving SMI nested inside NMI */ 212 #define HF2_MPX_PR_SHIFT 5 /* BNDCFGx.BNDPRESERVE */ 213 214 #define HF2_GIF_MASK (1 << HF2_GIF_SHIFT) 215 #define HF2_HIF_MASK (1 << HF2_HIF_SHIFT) 216 #define HF2_NMI_MASK (1 << HF2_NMI_SHIFT) 217 #define HF2_VINTR_MASK (1 << HF2_VINTR_SHIFT) 218 #define HF2_SMM_INSIDE_NMI_MASK (1 << HF2_SMM_INSIDE_NMI_SHIFT) 219 #define HF2_MPX_PR_MASK (1 << HF2_MPX_PR_SHIFT) 220 221 #define CR0_PE_SHIFT 0 222 #define CR0_MP_SHIFT 1 223 224 #define CR0_PE_MASK (1U << 0) 225 #define CR0_MP_MASK (1U << 1) 226 #define CR0_EM_MASK (1U << 2) 227 #define CR0_TS_MASK (1U << 3) 228 #define CR0_ET_MASK (1U << 4) 229 #define CR0_NE_MASK (1U << 5) 230 #define CR0_WP_MASK (1U << 16) 231 #define CR0_AM_MASK (1U << 18) 232 #define CR0_PG_MASK (1U << 31) 233 234 #define CR4_VME_MASK (1U << 0) 235 #define CR4_PVI_MASK (1U << 1) 236 #define CR4_TSD_MASK (1U << 2) 237 #define CR4_DE_MASK (1U << 3) 238 #define CR4_PSE_MASK (1U << 4) 239 #define CR4_PAE_MASK (1U << 5) 240 #define CR4_MCE_MASK (1U << 6) 241 #define CR4_PGE_MASK (1U << 7) 242 #define CR4_PCE_MASK (1U << 8) 243 #define CR4_OSFXSR_SHIFT 9 244 #define CR4_OSFXSR_MASK (1U << CR4_OSFXSR_SHIFT) 245 #define CR4_OSXMMEXCPT_MASK (1U << 10) 246 #define CR4_LA57_MASK (1U << 12) 247 #define CR4_VMXE_MASK (1U << 13) 248 #define CR4_SMXE_MASK (1U << 14) 249 #define CR4_FSGSBASE_MASK (1U << 16) 250 #define CR4_PCIDE_MASK (1U << 17) 251 #define CR4_OSXSAVE_MASK (1U << 18) 252 #define CR4_SMEP_MASK (1U << 20) 253 #define CR4_SMAP_MASK (1U << 21) 254 #define CR4_PKE_MASK (1U << 22) 255 256 #define DR6_BD (1 << 13) 257 #define DR6_BS (1 << 14) 258 #define DR6_BT (1 << 15) 259 #define DR6_FIXED_1 0xffff0ff0 260 261 #define DR7_GD (1 << 13) 262 #define DR7_TYPE_SHIFT 16 263 #define DR7_LEN_SHIFT 18 264 #define DR7_FIXED_1 0x00000400 265 #define DR7_GLOBAL_BP_MASK 0xaa 266 #define DR7_LOCAL_BP_MASK 0x55 267 #define DR7_MAX_BP 4 268 #define DR7_TYPE_BP_INST 0x0 269 #define DR7_TYPE_DATA_WR 0x1 270 #define DR7_TYPE_IO_RW 0x2 271 #define DR7_TYPE_DATA_RW 0x3 272 273 #define PG_PRESENT_BIT 0 274 #define PG_RW_BIT 1 275 #define PG_USER_BIT 2 276 #define PG_PWT_BIT 3 277 #define PG_PCD_BIT 4 278 #define PG_ACCESSED_BIT 5 279 #define PG_DIRTY_BIT 6 280 #define PG_PSE_BIT 7 281 #define PG_GLOBAL_BIT 8 282 #define PG_PSE_PAT_BIT 12 283 #define PG_PKRU_BIT 59 284 #define PG_NX_BIT 63 285 286 #define PG_PRESENT_MASK (1 << PG_PRESENT_BIT) 287 #define PG_RW_MASK (1 << PG_RW_BIT) 288 #define PG_USER_MASK (1 << PG_USER_BIT) 289 #define PG_PWT_MASK (1 << PG_PWT_BIT) 290 #define PG_PCD_MASK (1 << PG_PCD_BIT) 291 #define PG_ACCESSED_MASK (1 << PG_ACCESSED_BIT) 292 #define PG_DIRTY_MASK (1 << PG_DIRTY_BIT) 293 #define PG_PSE_MASK (1 << PG_PSE_BIT) 294 #define PG_GLOBAL_MASK (1 << PG_GLOBAL_BIT) 295 #define PG_PSE_PAT_MASK (1 << PG_PSE_PAT_BIT) 296 #define PG_ADDRESS_MASK 0x000ffffffffff000LL 297 #define PG_HI_RSVD_MASK (PG_ADDRESS_MASK & ~PHYS_ADDR_MASK) 298 #define PG_HI_USER_MASK 0x7ff0000000000000LL 299 #define PG_PKRU_MASK (15ULL << PG_PKRU_BIT) 300 #define PG_NX_MASK (1ULL << PG_NX_BIT) 301 302 #define PG_ERROR_W_BIT 1 303 304 #define PG_ERROR_P_MASK 0x01 305 #define PG_ERROR_W_MASK (1 << PG_ERROR_W_BIT) 306 #define PG_ERROR_U_MASK 0x04 307 #define PG_ERROR_RSVD_MASK 0x08 308 #define PG_ERROR_I_D_MASK 0x10 309 #define PG_ERROR_PK_MASK 0x20 310 311 #define MCG_CTL_P (1ULL<<8) /* MCG_CAP register available */ 312 #define MCG_SER_P (1ULL<<24) /* MCA recovery/new status bits */ 313 #define MCG_LMCE_P (1ULL<<27) /* Local Machine Check Supported */ 314 315 #define MCE_CAP_DEF (MCG_CTL_P|MCG_SER_P) 316 #define MCE_BANKS_DEF 10 317 318 #define MCG_CAP_BANKS_MASK 0xff 319 320 #define MCG_STATUS_RIPV (1ULL<<0) /* restart ip valid */ 321 #define MCG_STATUS_EIPV (1ULL<<1) /* ip points to correct instruction */ 322 #define MCG_STATUS_MCIP (1ULL<<2) /* machine check in progress */ 323 #define MCG_STATUS_LMCE (1ULL<<3) /* Local MCE signaled */ 324 325 #define MCG_EXT_CTL_LMCE_EN (1ULL<<0) /* Local MCE enabled */ 326 327 #define MCI_STATUS_VAL (1ULL<<63) /* valid error */ 328 #define MCI_STATUS_OVER (1ULL<<62) /* previous errors lost */ 329 #define MCI_STATUS_UC (1ULL<<61) /* uncorrected error */ 330 #define MCI_STATUS_EN (1ULL<<60) /* error enabled */ 331 #define MCI_STATUS_MISCV (1ULL<<59) /* misc error reg. valid */ 332 #define MCI_STATUS_ADDRV (1ULL<<58) /* addr reg. valid */ 333 #define MCI_STATUS_PCC (1ULL<<57) /* processor context corrupt */ 334 #define MCI_STATUS_S (1ULL<<56) /* Signaled machine check */ 335 #define MCI_STATUS_AR (1ULL<<55) /* Action required */ 336 337 /* MISC register defines */ 338 #define MCM_ADDR_SEGOFF 0 /* segment offset */ 339 #define MCM_ADDR_LINEAR 1 /* linear address */ 340 #define MCM_ADDR_PHYS 2 /* physical address */ 341 #define MCM_ADDR_MEM 3 /* memory address */ 342 #define MCM_ADDR_GENERIC 7 /* generic */ 343 344 #define MSR_IA32_TSC 0x10 345 #define MSR_IA32_APICBASE 0x1b 346 #define MSR_IA32_APICBASE_BSP (1<<8) 347 #define MSR_IA32_APICBASE_ENABLE (1<<11) 348 #define MSR_IA32_APICBASE_EXTD (1 << 10) 349 #define MSR_IA32_APICBASE_BASE (0xfffffU<<12) 350 #define MSR_IA32_FEATURE_CONTROL 0x0000003a 351 #define MSR_TSC_ADJUST 0x0000003b 352 #define MSR_IA32_SPEC_CTRL 0x48 353 #define MSR_IA32_TSCDEADLINE 0x6e0 354 355 #define FEATURE_CONTROL_LOCKED (1<<0) 356 #define FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX (1<<2) 357 #define FEATURE_CONTROL_LMCE (1<<20) 358 359 #define MSR_P6_PERFCTR0 0xc1 360 361 #define MSR_IA32_SMBASE 0x9e 362 #define MSR_MTRRcap 0xfe 363 #define MSR_MTRRcap_VCNT 8 364 #define MSR_MTRRcap_FIXRANGE_SUPPORT (1 << 8) 365 #define MSR_MTRRcap_WC_SUPPORTED (1 << 10) 366 367 #define MSR_IA32_SYSENTER_CS 0x174 368 #define MSR_IA32_SYSENTER_ESP 0x175 369 #define MSR_IA32_SYSENTER_EIP 0x176 370 371 #define MSR_MCG_CAP 0x179 372 #define MSR_MCG_STATUS 0x17a 373 #define MSR_MCG_CTL 0x17b 374 #define MSR_MCG_EXT_CTL 0x4d0 375 376 #define MSR_P6_EVNTSEL0 0x186 377 378 #define MSR_IA32_PERF_STATUS 0x198 379 380 #define MSR_IA32_MISC_ENABLE 0x1a0 381 /* Indicates good rep/movs microcode on some processors: */ 382 #define MSR_IA32_MISC_ENABLE_DEFAULT 1 383 384 #define MSR_MTRRphysBase(reg) (0x200 + 2 * (reg)) 385 #define MSR_MTRRphysMask(reg) (0x200 + 2 * (reg) + 1) 386 387 #define MSR_MTRRphysIndex(addr) ((((addr) & ~1u) - 0x200) / 2) 388 389 #define MSR_MTRRfix64K_00000 0x250 390 #define MSR_MTRRfix16K_80000 0x258 391 #define MSR_MTRRfix16K_A0000 0x259 392 #define MSR_MTRRfix4K_C0000 0x268 393 #define MSR_MTRRfix4K_C8000 0x269 394 #define MSR_MTRRfix4K_D0000 0x26a 395 #define MSR_MTRRfix4K_D8000 0x26b 396 #define MSR_MTRRfix4K_E0000 0x26c 397 #define MSR_MTRRfix4K_E8000 0x26d 398 #define MSR_MTRRfix4K_F0000 0x26e 399 #define MSR_MTRRfix4K_F8000 0x26f 400 401 #define MSR_PAT 0x277 402 403 #define MSR_MTRRdefType 0x2ff 404 405 #define MSR_CORE_PERF_FIXED_CTR0 0x309 406 #define MSR_CORE_PERF_FIXED_CTR1 0x30a 407 #define MSR_CORE_PERF_FIXED_CTR2 0x30b 408 #define MSR_CORE_PERF_FIXED_CTR_CTRL 0x38d 409 #define MSR_CORE_PERF_GLOBAL_STATUS 0x38e 410 #define MSR_CORE_PERF_GLOBAL_CTRL 0x38f 411 #define MSR_CORE_PERF_GLOBAL_OVF_CTRL 0x390 412 413 #define MSR_MC0_CTL 0x400 414 #define MSR_MC0_STATUS 0x401 415 #define MSR_MC0_ADDR 0x402 416 #define MSR_MC0_MISC 0x403 417 418 #define MSR_EFER 0xc0000080 419 420 #define MSR_EFER_SCE (1 << 0) 421 #define MSR_EFER_LME (1 << 8) 422 #define MSR_EFER_LMA (1 << 10) 423 #define MSR_EFER_NXE (1 << 11) 424 #define MSR_EFER_SVME (1 << 12) 425 #define MSR_EFER_FFXSR (1 << 14) 426 427 #define MSR_STAR 0xc0000081 428 #define MSR_LSTAR 0xc0000082 429 #define MSR_CSTAR 0xc0000083 430 #define MSR_FMASK 0xc0000084 431 #define MSR_FSBASE 0xc0000100 432 #define MSR_GSBASE 0xc0000101 433 #define MSR_KERNELGSBASE 0xc0000102 434 #define MSR_TSC_AUX 0xc0000103 435 436 #define MSR_VM_HSAVE_PA 0xc0010117 437 438 #define MSR_IA32_BNDCFGS 0x00000d90 439 #define MSR_IA32_XSS 0x00000da0 440 441 #define XSTATE_FP_BIT 0 442 #define XSTATE_SSE_BIT 1 443 #define XSTATE_YMM_BIT 2 444 #define XSTATE_BNDREGS_BIT 3 445 #define XSTATE_BNDCSR_BIT 4 446 #define XSTATE_OPMASK_BIT 5 447 #define XSTATE_ZMM_Hi256_BIT 6 448 #define XSTATE_Hi16_ZMM_BIT 7 449 #define XSTATE_PKRU_BIT 9 450 451 #define XSTATE_FP_MASK (1ULL << XSTATE_FP_BIT) 452 #define XSTATE_SSE_MASK (1ULL << XSTATE_SSE_BIT) 453 #define XSTATE_YMM_MASK (1ULL << XSTATE_YMM_BIT) 454 #define XSTATE_BNDREGS_MASK (1ULL << XSTATE_BNDREGS_BIT) 455 #define XSTATE_BNDCSR_MASK (1ULL << XSTATE_BNDCSR_BIT) 456 #define XSTATE_OPMASK_MASK (1ULL << XSTATE_OPMASK_BIT) 457 #define XSTATE_ZMM_Hi256_MASK (1ULL << XSTATE_ZMM_Hi256_BIT) 458 #define XSTATE_Hi16_ZMM_MASK (1ULL << XSTATE_Hi16_ZMM_BIT) 459 #define XSTATE_PKRU_MASK (1ULL << XSTATE_PKRU_BIT) 460 461 /* CPUID feature words */ 462 typedef enum FeatureWord { 463 FEAT_1_EDX, /* CPUID[1].EDX */ 464 FEAT_1_ECX, /* CPUID[1].ECX */ 465 FEAT_7_0_EBX, /* CPUID[EAX=7,ECX=0].EBX */ 466 FEAT_7_0_ECX, /* CPUID[EAX=7,ECX=0].ECX */ 467 FEAT_7_0_EDX, /* CPUID[EAX=7,ECX=0].EDX */ 468 FEAT_8000_0001_EDX, /* CPUID[8000_0001].EDX */ 469 FEAT_8000_0001_ECX, /* CPUID[8000_0001].ECX */ 470 FEAT_8000_0007_EDX, /* CPUID[8000_0007].EDX */ 471 FEAT_8000_0008_EBX, /* CPUID[8000_0008].EBX */ 472 FEAT_C000_0001_EDX, /* CPUID[C000_0001].EDX */ 473 FEAT_KVM, /* CPUID[4000_0001].EAX (KVM_CPUID_FEATURES) */ 474 FEAT_HYPERV_EAX, /* CPUID[4000_0003].EAX */ 475 FEAT_HYPERV_EBX, /* CPUID[4000_0003].EBX */ 476 FEAT_HYPERV_EDX, /* CPUID[4000_0003].EDX */ 477 FEAT_SVM, /* CPUID[8000_000A].EDX */ 478 FEAT_XSAVE, /* CPUID[EAX=0xd,ECX=1].EAX */ 479 FEAT_6_EAX, /* CPUID[6].EAX */ 480 FEAT_XSAVE_COMP_LO, /* CPUID[EAX=0xd,ECX=0].EAX */ 481 FEAT_XSAVE_COMP_HI, /* CPUID[EAX=0xd,ECX=0].EDX */ 482 FEATURE_WORDS, 483 } FeatureWord; 484 485 typedef uint32_t FeatureWordArray[FEATURE_WORDS]; 486 487 /* cpuid_features bits */ 488 #define CPUID_FP87 (1U << 0) 489 #define CPUID_VME (1U << 1) 490 #define CPUID_DE (1U << 2) 491 #define CPUID_PSE (1U << 3) 492 #define CPUID_TSC (1U << 4) 493 #define CPUID_MSR (1U << 5) 494 #define CPUID_PAE (1U << 6) 495 #define CPUID_MCE (1U << 7) 496 #define CPUID_CX8 (1U << 8) 497 #define CPUID_APIC (1U << 9) 498 #define CPUID_SEP (1U << 11) /* sysenter/sysexit */ 499 #define CPUID_MTRR (1U << 12) 500 #define CPUID_PGE (1U << 13) 501 #define CPUID_MCA (1U << 14) 502 #define CPUID_CMOV (1U << 15) 503 #define CPUID_PAT (1U << 16) 504 #define CPUID_PSE36 (1U << 17) 505 #define CPUID_PN (1U << 18) 506 #define CPUID_CLFLUSH (1U << 19) 507 #define CPUID_DTS (1U << 21) 508 #define CPUID_ACPI (1U << 22) 509 #define CPUID_MMX (1U << 23) 510 #define CPUID_FXSR (1U << 24) 511 #define CPUID_SSE (1U << 25) 512 #define CPUID_SSE2 (1U << 26) 513 #define CPUID_SS (1U << 27) 514 #define CPUID_HT (1U << 28) 515 #define CPUID_TM (1U << 29) 516 #define CPUID_IA64 (1U << 30) 517 #define CPUID_PBE (1U << 31) 518 519 #define CPUID_EXT_SSE3 (1U << 0) 520 #define CPUID_EXT_PCLMULQDQ (1U << 1) 521 #define CPUID_EXT_DTES64 (1U << 2) 522 #define CPUID_EXT_MONITOR (1U << 3) 523 #define CPUID_EXT_DSCPL (1U << 4) 524 #define CPUID_EXT_VMX (1U << 5) 525 #define CPUID_EXT_SMX (1U << 6) 526 #define CPUID_EXT_EST (1U << 7) 527 #define CPUID_EXT_TM2 (1U << 8) 528 #define CPUID_EXT_SSSE3 (1U << 9) 529 #define CPUID_EXT_CID (1U << 10) 530 #define CPUID_EXT_FMA (1U << 12) 531 #define CPUID_EXT_CX16 (1U << 13) 532 #define CPUID_EXT_XTPR (1U << 14) 533 #define CPUID_EXT_PDCM (1U << 15) 534 #define CPUID_EXT_PCID (1U << 17) 535 #define CPUID_EXT_DCA (1U << 18) 536 #define CPUID_EXT_SSE41 (1U << 19) 537 #define CPUID_EXT_SSE42 (1U << 20) 538 #define CPUID_EXT_X2APIC (1U << 21) 539 #define CPUID_EXT_MOVBE (1U << 22) 540 #define CPUID_EXT_POPCNT (1U << 23) 541 #define CPUID_EXT_TSC_DEADLINE_TIMER (1U << 24) 542 #define CPUID_EXT_AES (1U << 25) 543 #define CPUID_EXT_XSAVE (1U << 26) 544 #define CPUID_EXT_OSXSAVE (1U << 27) 545 #define CPUID_EXT_AVX (1U << 28) 546 #define CPUID_EXT_F16C (1U << 29) 547 #define CPUID_EXT_RDRAND (1U << 30) 548 #define CPUID_EXT_HYPERVISOR (1U << 31) 549 550 #define CPUID_EXT2_FPU (1U << 0) 551 #define CPUID_EXT2_VME (1U << 1) 552 #define CPUID_EXT2_DE (1U << 2) 553 #define CPUID_EXT2_PSE (1U << 3) 554 #define CPUID_EXT2_TSC (1U << 4) 555 #define CPUID_EXT2_MSR (1U << 5) 556 #define CPUID_EXT2_PAE (1U << 6) 557 #define CPUID_EXT2_MCE (1U << 7) 558 #define CPUID_EXT2_CX8 (1U << 8) 559 #define CPUID_EXT2_APIC (1U << 9) 560 #define CPUID_EXT2_SYSCALL (1U << 11) 561 #define CPUID_EXT2_MTRR (1U << 12) 562 #define CPUID_EXT2_PGE (1U << 13) 563 #define CPUID_EXT2_MCA (1U << 14) 564 #define CPUID_EXT2_CMOV (1U << 15) 565 #define CPUID_EXT2_PAT (1U << 16) 566 #define CPUID_EXT2_PSE36 (1U << 17) 567 #define CPUID_EXT2_MP (1U << 19) 568 #define CPUID_EXT2_NX (1U << 20) 569 #define CPUID_EXT2_MMXEXT (1U << 22) 570 #define CPUID_EXT2_MMX (1U << 23) 571 #define CPUID_EXT2_FXSR (1U << 24) 572 #define CPUID_EXT2_FFXSR (1U << 25) 573 #define CPUID_EXT2_PDPE1GB (1U << 26) 574 #define CPUID_EXT2_RDTSCP (1U << 27) 575 #define CPUID_EXT2_LM (1U << 29) 576 #define CPUID_EXT2_3DNOWEXT (1U << 30) 577 #define CPUID_EXT2_3DNOW (1U << 31) 578 579 /* CPUID[8000_0001].EDX bits that are aliase of CPUID[1].EDX bits on AMD CPUs */ 580 #define CPUID_EXT2_AMD_ALIASES (CPUID_EXT2_FPU | CPUID_EXT2_VME | \ 581 CPUID_EXT2_DE | CPUID_EXT2_PSE | \ 582 CPUID_EXT2_TSC | CPUID_EXT2_MSR | \ 583 CPUID_EXT2_PAE | CPUID_EXT2_MCE | \ 584 CPUID_EXT2_CX8 | CPUID_EXT2_APIC | \ 585 CPUID_EXT2_MTRR | CPUID_EXT2_PGE | \ 586 CPUID_EXT2_MCA | CPUID_EXT2_CMOV | \ 587 CPUID_EXT2_PAT | CPUID_EXT2_PSE36 | \ 588 CPUID_EXT2_MMX | CPUID_EXT2_FXSR) 589 590 #define CPUID_EXT3_LAHF_LM (1U << 0) 591 #define CPUID_EXT3_CMP_LEG (1U << 1) 592 #define CPUID_EXT3_SVM (1U << 2) 593 #define CPUID_EXT3_EXTAPIC (1U << 3) 594 #define CPUID_EXT3_CR8LEG (1U << 4) 595 #define CPUID_EXT3_ABM (1U << 5) 596 #define CPUID_EXT3_SSE4A (1U << 6) 597 #define CPUID_EXT3_MISALIGNSSE (1U << 7) 598 #define CPUID_EXT3_3DNOWPREFETCH (1U << 8) 599 #define CPUID_EXT3_OSVW (1U << 9) 600 #define CPUID_EXT3_IBS (1U << 10) 601 #define CPUID_EXT3_XOP (1U << 11) 602 #define CPUID_EXT3_SKINIT (1U << 12) 603 #define CPUID_EXT3_WDT (1U << 13) 604 #define CPUID_EXT3_LWP (1U << 15) 605 #define CPUID_EXT3_FMA4 (1U << 16) 606 #define CPUID_EXT3_TCE (1U << 17) 607 #define CPUID_EXT3_NODEID (1U << 19) 608 #define CPUID_EXT3_TBM (1U << 21) 609 #define CPUID_EXT3_TOPOEXT (1U << 22) 610 #define CPUID_EXT3_PERFCORE (1U << 23) 611 #define CPUID_EXT3_PERFNB (1U << 24) 612 613 #define CPUID_SVM_NPT (1U << 0) 614 #define CPUID_SVM_LBRV (1U << 1) 615 #define CPUID_SVM_SVMLOCK (1U << 2) 616 #define CPUID_SVM_NRIPSAVE (1U << 3) 617 #define CPUID_SVM_TSCSCALE (1U << 4) 618 #define CPUID_SVM_VMCBCLEAN (1U << 5) 619 #define CPUID_SVM_FLUSHASID (1U << 6) 620 #define CPUID_SVM_DECODEASSIST (1U << 7) 621 #define CPUID_SVM_PAUSEFILTER (1U << 10) 622 #define CPUID_SVM_PFTHRESHOLD (1U << 12) 623 624 #define CPUID_7_0_EBX_FSGSBASE (1U << 0) 625 #define CPUID_7_0_EBX_BMI1 (1U << 3) 626 #define CPUID_7_0_EBX_HLE (1U << 4) 627 #define CPUID_7_0_EBX_AVX2 (1U << 5) 628 #define CPUID_7_0_EBX_SMEP (1U << 7) 629 #define CPUID_7_0_EBX_BMI2 (1U << 8) 630 #define CPUID_7_0_EBX_ERMS (1U << 9) 631 #define CPUID_7_0_EBX_INVPCID (1U << 10) 632 #define CPUID_7_0_EBX_RTM (1U << 11) 633 #define CPUID_7_0_EBX_MPX (1U << 14) 634 #define CPUID_7_0_EBX_AVX512F (1U << 16) /* AVX-512 Foundation */ 635 #define CPUID_7_0_EBX_AVX512DQ (1U << 17) /* AVX-512 Doubleword & Quadword Instrs */ 636 #define CPUID_7_0_EBX_RDSEED (1U << 18) 637 #define CPUID_7_0_EBX_ADX (1U << 19) 638 #define CPUID_7_0_EBX_SMAP (1U << 20) 639 #define CPUID_7_0_EBX_AVX512IFMA (1U << 21) /* AVX-512 Integer Fused Multiply Add */ 640 #define CPUID_7_0_EBX_PCOMMIT (1U << 22) /* Persistent Commit */ 641 #define CPUID_7_0_EBX_CLFLUSHOPT (1U << 23) /* Flush a Cache Line Optimized */ 642 #define CPUID_7_0_EBX_CLWB (1U << 24) /* Cache Line Write Back */ 643 #define CPUID_7_0_EBX_AVX512PF (1U << 26) /* AVX-512 Prefetch */ 644 #define CPUID_7_0_EBX_AVX512ER (1U << 27) /* AVX-512 Exponential and Reciprocal */ 645 #define CPUID_7_0_EBX_AVX512CD (1U << 28) /* AVX-512 Conflict Detection */ 646 #define CPUID_7_0_EBX_SHA_NI (1U << 29) /* SHA1/SHA256 Instruction Extensions */ 647 #define CPUID_7_0_EBX_AVX512BW (1U << 30) /* AVX-512 Byte and Word Instructions */ 648 #define CPUID_7_0_EBX_AVX512VL (1U << 31) /* AVX-512 Vector Length Extensions */ 649 650 #define CPUID_7_0_ECX_AVX512BMI (1U << 1) 651 #define CPUID_7_0_ECX_VBMI (1U << 1) /* AVX-512 Vector Byte Manipulation Instrs */ 652 #define CPUID_7_0_ECX_UMIP (1U << 2) 653 #define CPUID_7_0_ECX_PKU (1U << 3) 654 #define CPUID_7_0_ECX_OSPKE (1U << 4) 655 #define CPUID_7_0_ECX_VBMI2 (1U << 6) /* Additional VBMI Instrs */ 656 #define CPUID_7_0_ECX_GFNI (1U << 8) 657 #define CPUID_7_0_ECX_VAES (1U << 9) 658 #define CPUID_7_0_ECX_VPCLMULQDQ (1U << 10) 659 #define CPUID_7_0_ECX_AVX512VNNI (1U << 11) 660 #define CPUID_7_0_ECX_AVX512BITALG (1U << 12) 661 #define CPUID_7_0_ECX_AVX512_VPOPCNTDQ (1U << 14) /* POPCNT for vectors of DW/QW */ 662 #define CPUID_7_0_ECX_LA57 (1U << 16) 663 #define CPUID_7_0_ECX_RDPID (1U << 22) 664 665 #define CPUID_7_0_EDX_AVX512_4VNNIW (1U << 2) /* AVX512 Neural Network Instructions */ 666 #define CPUID_7_0_EDX_AVX512_4FMAPS (1U << 3) /* AVX512 Multiply Accumulation Single Precision */ 667 #define CPUID_7_0_EDX_SPEC_CTRL (1U << 26) /* Speculation Control */ 668 669 #define CPUID_8000_0008_EBX_IBPB (1U << 12) /* Indirect Branch Prediction Barrier */ 670 671 #define CPUID_XSAVE_XSAVEOPT (1U << 0) 672 #define CPUID_XSAVE_XSAVEC (1U << 1) 673 #define CPUID_XSAVE_XGETBV1 (1U << 2) 674 #define CPUID_XSAVE_XSAVES (1U << 3) 675 676 #define CPUID_6_EAX_ARAT (1U << 2) 677 678 /* CPUID[0x80000007].EDX flags: */ 679 #define CPUID_APM_INVTSC (1U << 8) 680 681 #define CPUID_VENDOR_SZ 12 682 683 #define CPUID_VENDOR_INTEL_1 0x756e6547 /* "Genu" */ 684 #define CPUID_VENDOR_INTEL_2 0x49656e69 /* "ineI" */ 685 #define CPUID_VENDOR_INTEL_3 0x6c65746e /* "ntel" */ 686 #define CPUID_VENDOR_INTEL "GenuineIntel" 687 688 #define CPUID_VENDOR_AMD_1 0x68747541 /* "Auth" */ 689 #define CPUID_VENDOR_AMD_2 0x69746e65 /* "enti" */ 690 #define CPUID_VENDOR_AMD_3 0x444d4163 /* "cAMD" */ 691 #define CPUID_VENDOR_AMD "AuthenticAMD" 692 693 #define CPUID_VENDOR_VIA "CentaurHauls" 694 695 #define CPUID_MWAIT_IBE (1U << 1) /* Interrupts can exit capability */ 696 #define CPUID_MWAIT_EMX (1U << 0) /* enumeration supported */ 697 698 /* CPUID[0xB].ECX level types */ 699 #define CPUID_TOPOLOGY_LEVEL_INVALID (0U << 8) 700 #define CPUID_TOPOLOGY_LEVEL_SMT (1U << 8) 701 #define CPUID_TOPOLOGY_LEVEL_CORE (2U << 8) 702 703 #ifndef HYPERV_SPINLOCK_NEVER_RETRY 704 #define HYPERV_SPINLOCK_NEVER_RETRY 0xFFFFFFFF 705 #endif 706 707 #define EXCP00_DIVZ 0 708 #define EXCP01_DB 1 709 #define EXCP02_NMI 2 710 #define EXCP03_INT3 3 711 #define EXCP04_INTO 4 712 #define EXCP05_BOUND 5 713 #define EXCP06_ILLOP 6 714 #define EXCP07_PREX 7 715 #define EXCP08_DBLE 8 716 #define EXCP09_XERR 9 717 #define EXCP0A_TSS 10 718 #define EXCP0B_NOSEG 11 719 #define EXCP0C_STACK 12 720 #define EXCP0D_GPF 13 721 #define EXCP0E_PAGE 14 722 #define EXCP10_COPR 16 723 #define EXCP11_ALGN 17 724 #define EXCP12_MCHK 18 725 726 #define EXCP_SYSCALL 0x100 /* only happens in user only emulation 727 for syscall instruction */ 728 #define EXCP_VMEXIT 0x100 729 730 /* i386-specific interrupt pending bits. */ 731 #define CPU_INTERRUPT_POLL CPU_INTERRUPT_TGT_EXT_1 732 #define CPU_INTERRUPT_SMI CPU_INTERRUPT_TGT_EXT_2 733 #define CPU_INTERRUPT_NMI CPU_INTERRUPT_TGT_EXT_3 734 #define CPU_INTERRUPT_MCE CPU_INTERRUPT_TGT_EXT_4 735 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_INT_0 736 #define CPU_INTERRUPT_SIPI CPU_INTERRUPT_TGT_INT_1 737 #define CPU_INTERRUPT_TPR CPU_INTERRUPT_TGT_INT_2 738 739 /* Use a clearer name for this. */ 740 #define CPU_INTERRUPT_INIT CPU_INTERRUPT_RESET 741 742 /* Instead of computing the condition codes after each x86 instruction, 743 * QEMU just stores one operand (called CC_SRC), the result 744 * (called CC_DST) and the type of operation (called CC_OP). When the 745 * condition codes are needed, the condition codes can be calculated 746 * using this information. Condition codes are not generated if they 747 * are only needed for conditional branches. 748 */ 749 typedef enum { 750 CC_OP_DYNAMIC, /* must use dynamic code to get cc_op */ 751 CC_OP_EFLAGS, /* all cc are explicitly computed, CC_SRC = flags */ 752 753 CC_OP_MULB, /* modify all flags, C, O = (CC_SRC != 0) */ 754 CC_OP_MULW, 755 CC_OP_MULL, 756 CC_OP_MULQ, 757 758 CC_OP_ADDB, /* modify all flags, CC_DST = res, CC_SRC = src1 */ 759 CC_OP_ADDW, 760 CC_OP_ADDL, 761 CC_OP_ADDQ, 762 763 CC_OP_ADCB, /* modify all flags, CC_DST = res, CC_SRC = src1 */ 764 CC_OP_ADCW, 765 CC_OP_ADCL, 766 CC_OP_ADCQ, 767 768 CC_OP_SUBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */ 769 CC_OP_SUBW, 770 CC_OP_SUBL, 771 CC_OP_SUBQ, 772 773 CC_OP_SBBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */ 774 CC_OP_SBBW, 775 CC_OP_SBBL, 776 CC_OP_SBBQ, 777 778 CC_OP_LOGICB, /* modify all flags, CC_DST = res */ 779 CC_OP_LOGICW, 780 CC_OP_LOGICL, 781 CC_OP_LOGICQ, 782 783 CC_OP_INCB, /* modify all flags except, CC_DST = res, CC_SRC = C */ 784 CC_OP_INCW, 785 CC_OP_INCL, 786 CC_OP_INCQ, 787 788 CC_OP_DECB, /* modify all flags except, CC_DST = res, CC_SRC = C */ 789 CC_OP_DECW, 790 CC_OP_DECL, 791 CC_OP_DECQ, 792 793 CC_OP_SHLB, /* modify all flags, CC_DST = res, CC_SRC.msb = C */ 794 CC_OP_SHLW, 795 CC_OP_SHLL, 796 CC_OP_SHLQ, 797 798 CC_OP_SARB, /* modify all flags, CC_DST = res, CC_SRC.lsb = C */ 799 CC_OP_SARW, 800 CC_OP_SARL, 801 CC_OP_SARQ, 802 803 CC_OP_BMILGB, /* Z,S via CC_DST, C = SRC==0; O=0; P,A undefined */ 804 CC_OP_BMILGW, 805 CC_OP_BMILGL, 806 CC_OP_BMILGQ, 807 808 CC_OP_ADCX, /* CC_DST = C, CC_SRC = rest. */ 809 CC_OP_ADOX, /* CC_DST = O, CC_SRC = rest. */ 810 CC_OP_ADCOX, /* CC_DST = C, CC_SRC2 = O, CC_SRC = rest. */ 811 812 CC_OP_CLR, /* Z set, all other flags clear. */ 813 CC_OP_POPCNT, /* Z via CC_SRC, all other flags clear. */ 814 815 CC_OP_NB, 816 } CCOp; 817 818 typedef struct SegmentCache { 819 uint32_t selector; 820 target_ulong base; 821 uint32_t limit; 822 uint32_t flags; 823 } SegmentCache; 824 825 #define MMREG_UNION(n, bits) \ 826 union n { \ 827 uint8_t _b_##n[(bits)/8]; \ 828 uint16_t _w_##n[(bits)/16]; \ 829 uint32_t _l_##n[(bits)/32]; \ 830 uint64_t _q_##n[(bits)/64]; \ 831 float32 _s_##n[(bits)/32]; \ 832 float64 _d_##n[(bits)/64]; \ 833 } 834 835 typedef union { 836 uint8_t _b[16]; 837 uint16_t _w[8]; 838 uint32_t _l[4]; 839 uint64_t _q[2]; 840 } XMMReg; 841 842 typedef union { 843 uint8_t _b[32]; 844 uint16_t _w[16]; 845 uint32_t _l[8]; 846 uint64_t _q[4]; 847 } YMMReg; 848 849 typedef MMREG_UNION(ZMMReg, 512) ZMMReg; 850 typedef MMREG_UNION(MMXReg, 64) MMXReg; 851 852 typedef struct BNDReg { 853 uint64_t lb; 854 uint64_t ub; 855 } BNDReg; 856 857 typedef struct BNDCSReg { 858 uint64_t cfgu; 859 uint64_t sts; 860 } BNDCSReg; 861 862 #define BNDCFG_ENABLE 1ULL 863 #define BNDCFG_BNDPRESERVE 2ULL 864 #define BNDCFG_BDIR_MASK TARGET_PAGE_MASK 865 866 #ifdef HOST_WORDS_BIGENDIAN 867 #define ZMM_B(n) _b_ZMMReg[63 - (n)] 868 #define ZMM_W(n) _w_ZMMReg[31 - (n)] 869 #define ZMM_L(n) _l_ZMMReg[15 - (n)] 870 #define ZMM_S(n) _s_ZMMReg[15 - (n)] 871 #define ZMM_Q(n) _q_ZMMReg[7 - (n)] 872 #define ZMM_D(n) _d_ZMMReg[7 - (n)] 873 874 #define MMX_B(n) _b_MMXReg[7 - (n)] 875 #define MMX_W(n) _w_MMXReg[3 - (n)] 876 #define MMX_L(n) _l_MMXReg[1 - (n)] 877 #define MMX_S(n) _s_MMXReg[1 - (n)] 878 #else 879 #define ZMM_B(n) _b_ZMMReg[n] 880 #define ZMM_W(n) _w_ZMMReg[n] 881 #define ZMM_L(n) _l_ZMMReg[n] 882 #define ZMM_S(n) _s_ZMMReg[n] 883 #define ZMM_Q(n) _q_ZMMReg[n] 884 #define ZMM_D(n) _d_ZMMReg[n] 885 886 #define MMX_B(n) _b_MMXReg[n] 887 #define MMX_W(n) _w_MMXReg[n] 888 #define MMX_L(n) _l_MMXReg[n] 889 #define MMX_S(n) _s_MMXReg[n] 890 #endif 891 #define MMX_Q(n) _q_MMXReg[n] 892 893 typedef union { 894 floatx80 d __attribute__((aligned(16))); 895 MMXReg mmx; 896 } FPReg; 897 898 typedef struct { 899 uint64_t base; 900 uint64_t mask; 901 } MTRRVar; 902 903 #define CPU_NB_REGS64 16 904 #define CPU_NB_REGS32 8 905 906 #ifdef TARGET_X86_64 907 #define CPU_NB_REGS CPU_NB_REGS64 908 #else 909 #define CPU_NB_REGS CPU_NB_REGS32 910 #endif 911 912 #define MAX_FIXED_COUNTERS 3 913 #define MAX_GP_COUNTERS (MSR_IA32_PERF_STATUS - MSR_P6_EVNTSEL0) 914 915 #define NB_MMU_MODES 3 916 #define TARGET_INSN_START_EXTRA_WORDS 1 917 918 #define NB_OPMASK_REGS 8 919 920 /* CPU can't have 0xFFFFFFFF APIC ID, use that value to distinguish 921 * that APIC ID hasn't been set yet 922 */ 923 #define UNASSIGNED_APIC_ID 0xFFFFFFFF 924 925 typedef union X86LegacyXSaveArea { 926 struct { 927 uint16_t fcw; 928 uint16_t fsw; 929 uint8_t ftw; 930 uint8_t reserved; 931 uint16_t fpop; 932 uint64_t fpip; 933 uint64_t fpdp; 934 uint32_t mxcsr; 935 uint32_t mxcsr_mask; 936 FPReg fpregs[8]; 937 uint8_t xmm_regs[16][16]; 938 }; 939 uint8_t data[512]; 940 } X86LegacyXSaveArea; 941 942 typedef struct X86XSaveHeader { 943 uint64_t xstate_bv; 944 uint64_t xcomp_bv; 945 uint64_t reserve0; 946 uint8_t reserved[40]; 947 } X86XSaveHeader; 948 949 /* Ext. save area 2: AVX State */ 950 typedef struct XSaveAVX { 951 uint8_t ymmh[16][16]; 952 } XSaveAVX; 953 954 /* Ext. save area 3: BNDREG */ 955 typedef struct XSaveBNDREG { 956 BNDReg bnd_regs[4]; 957 } XSaveBNDREG; 958 959 /* Ext. save area 4: BNDCSR */ 960 typedef union XSaveBNDCSR { 961 BNDCSReg bndcsr; 962 uint8_t data[64]; 963 } XSaveBNDCSR; 964 965 /* Ext. save area 5: Opmask */ 966 typedef struct XSaveOpmask { 967 uint64_t opmask_regs[NB_OPMASK_REGS]; 968 } XSaveOpmask; 969 970 /* Ext. save area 6: ZMM_Hi256 */ 971 typedef struct XSaveZMM_Hi256 { 972 uint8_t zmm_hi256[16][32]; 973 } XSaveZMM_Hi256; 974 975 /* Ext. save area 7: Hi16_ZMM */ 976 typedef struct XSaveHi16_ZMM { 977 uint8_t hi16_zmm[16][64]; 978 } XSaveHi16_ZMM; 979 980 /* Ext. save area 9: PKRU state */ 981 typedef struct XSavePKRU { 982 uint32_t pkru; 983 uint32_t padding; 984 } XSavePKRU; 985 986 typedef struct X86XSaveArea { 987 X86LegacyXSaveArea legacy; 988 X86XSaveHeader header; 989 990 /* Extended save areas: */ 991 992 /* AVX State: */ 993 XSaveAVX avx_state; 994 uint8_t padding[960 - 576 - sizeof(XSaveAVX)]; 995 /* MPX State: */ 996 XSaveBNDREG bndreg_state; 997 XSaveBNDCSR bndcsr_state; 998 /* AVX-512 State: */ 999 XSaveOpmask opmask_state; 1000 XSaveZMM_Hi256 zmm_hi256_state; 1001 XSaveHi16_ZMM hi16_zmm_state; 1002 /* PKRU State: */ 1003 XSavePKRU pkru_state; 1004 } X86XSaveArea; 1005 1006 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, avx_state) != 0x240); 1007 QEMU_BUILD_BUG_ON(sizeof(XSaveAVX) != 0x100); 1008 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, bndreg_state) != 0x3c0); 1009 QEMU_BUILD_BUG_ON(sizeof(XSaveBNDREG) != 0x40); 1010 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, bndcsr_state) != 0x400); 1011 QEMU_BUILD_BUG_ON(sizeof(XSaveBNDCSR) != 0x40); 1012 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, opmask_state) != 0x440); 1013 QEMU_BUILD_BUG_ON(sizeof(XSaveOpmask) != 0x40); 1014 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, zmm_hi256_state) != 0x480); 1015 QEMU_BUILD_BUG_ON(sizeof(XSaveZMM_Hi256) != 0x200); 1016 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, hi16_zmm_state) != 0x680); 1017 QEMU_BUILD_BUG_ON(sizeof(XSaveHi16_ZMM) != 0x400); 1018 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, pkru_state) != 0xA80); 1019 QEMU_BUILD_BUG_ON(sizeof(XSavePKRU) != 0x8); 1020 1021 typedef enum TPRAccess { 1022 TPR_ACCESS_READ, 1023 TPR_ACCESS_WRITE, 1024 } TPRAccess; 1025 1026 typedef struct CPUX86State { 1027 /* standard registers */ 1028 target_ulong regs[CPU_NB_REGS]; 1029 target_ulong eip; 1030 target_ulong eflags; /* eflags register. During CPU emulation, CC 1031 flags and DF are set to zero because they are 1032 stored elsewhere */ 1033 1034 /* emulator internal eflags handling */ 1035 target_ulong cc_dst; 1036 target_ulong cc_src; 1037 target_ulong cc_src2; 1038 uint32_t cc_op; 1039 int32_t df; /* D flag : 1 if D = 0, -1 if D = 1 */ 1040 uint32_t hflags; /* TB flags, see HF_xxx constants. These flags 1041 are known at translation time. */ 1042 uint32_t hflags2; /* various other flags, see HF2_xxx constants. */ 1043 1044 /* segments */ 1045 SegmentCache segs[6]; /* selector values */ 1046 SegmentCache ldt; 1047 SegmentCache tr; 1048 SegmentCache gdt; /* only base and limit are used */ 1049 SegmentCache idt; /* only base and limit are used */ 1050 1051 target_ulong cr[5]; /* NOTE: cr1 is unused */ 1052 int32_t a20_mask; 1053 1054 BNDReg bnd_regs[4]; 1055 BNDCSReg bndcs_regs; 1056 uint64_t msr_bndcfgs; 1057 uint64_t efer; 1058 1059 /* Beginning of state preserved by INIT (dummy marker). */ 1060 struct {} start_init_save; 1061 1062 /* FPU state */ 1063 unsigned int fpstt; /* top of stack index */ 1064 uint16_t fpus; 1065 uint16_t fpuc; 1066 uint8_t fptags[8]; /* 0 = valid, 1 = empty */ 1067 FPReg fpregs[8]; 1068 /* KVM-only so far */ 1069 uint16_t fpop; 1070 uint64_t fpip; 1071 uint64_t fpdp; 1072 1073 /* emulator internal variables */ 1074 float_status fp_status; 1075 floatx80 ft0; 1076 1077 float_status mmx_status; /* for 3DNow! float ops */ 1078 float_status sse_status; 1079 uint32_t mxcsr; 1080 ZMMReg xmm_regs[CPU_NB_REGS == 8 ? 8 : 32]; 1081 ZMMReg xmm_t0; 1082 MMXReg mmx_t0; 1083 1084 XMMReg ymmh_regs[CPU_NB_REGS]; 1085 1086 uint64_t opmask_regs[NB_OPMASK_REGS]; 1087 YMMReg zmmh_regs[CPU_NB_REGS]; 1088 ZMMReg hi16_zmm_regs[CPU_NB_REGS]; 1089 1090 /* sysenter registers */ 1091 uint32_t sysenter_cs; 1092 target_ulong sysenter_esp; 1093 target_ulong sysenter_eip; 1094 uint64_t star; 1095 1096 uint64_t vm_hsave; 1097 1098 #ifdef TARGET_X86_64 1099 target_ulong lstar; 1100 target_ulong cstar; 1101 target_ulong fmask; 1102 target_ulong kernelgsbase; 1103 #endif 1104 1105 uint64_t tsc; 1106 uint64_t tsc_adjust; 1107 uint64_t tsc_deadline; 1108 uint64_t tsc_aux; 1109 1110 uint64_t xcr0; 1111 1112 uint64_t mcg_status; 1113 uint64_t msr_ia32_misc_enable; 1114 uint64_t msr_ia32_feature_control; 1115 1116 uint64_t msr_fixed_ctr_ctrl; 1117 uint64_t msr_global_ctrl; 1118 uint64_t msr_global_status; 1119 uint64_t msr_global_ovf_ctrl; 1120 uint64_t msr_fixed_counters[MAX_FIXED_COUNTERS]; 1121 uint64_t msr_gp_counters[MAX_GP_COUNTERS]; 1122 uint64_t msr_gp_evtsel[MAX_GP_COUNTERS]; 1123 1124 uint64_t pat; 1125 uint32_t smbase; 1126 1127 uint32_t pkru; 1128 1129 uint64_t spec_ctrl; 1130 1131 /* End of state preserved by INIT (dummy marker). */ 1132 struct {} end_init_save; 1133 1134 uint64_t system_time_msr; 1135 uint64_t wall_clock_msr; 1136 uint64_t steal_time_msr; 1137 uint64_t async_pf_en_msr; 1138 uint64_t pv_eoi_en_msr; 1139 1140 /* Partition-wide HV MSRs, will be updated only on the first vcpu */ 1141 uint64_t msr_hv_hypercall; 1142 uint64_t msr_hv_guest_os_id; 1143 uint64_t msr_hv_tsc; 1144 1145 /* Per-VCPU HV MSRs */ 1146 uint64_t msr_hv_vapic; 1147 uint64_t msr_hv_crash_params[HV_CRASH_PARAMS]; 1148 uint64_t msr_hv_runtime; 1149 uint64_t msr_hv_synic_control; 1150 uint64_t msr_hv_synic_evt_page; 1151 uint64_t msr_hv_synic_msg_page; 1152 uint64_t msr_hv_synic_sint[HV_SINT_COUNT]; 1153 uint64_t msr_hv_stimer_config[HV_STIMER_COUNT]; 1154 uint64_t msr_hv_stimer_count[HV_STIMER_COUNT]; 1155 1156 /* exception/interrupt handling */ 1157 int error_code; 1158 int exception_is_int; 1159 target_ulong exception_next_eip; 1160 target_ulong dr[8]; /* debug registers; note dr4 and dr5 are unused */ 1161 union { 1162 struct CPUBreakpoint *cpu_breakpoint[4]; 1163 struct CPUWatchpoint *cpu_watchpoint[4]; 1164 }; /* break/watchpoints for dr[0..3] */ 1165 int old_exception; /* exception in flight */ 1166 1167 uint64_t vm_vmcb; 1168 uint64_t tsc_offset; 1169 uint64_t intercept; 1170 uint16_t intercept_cr_read; 1171 uint16_t intercept_cr_write; 1172 uint16_t intercept_dr_read; 1173 uint16_t intercept_dr_write; 1174 uint32_t intercept_exceptions; 1175 uint8_t v_tpr; 1176 1177 /* KVM states, automatically cleared on reset */ 1178 uint8_t nmi_injected; 1179 uint8_t nmi_pending; 1180 1181 /* Fields up to this point are cleared by a CPU reset */ 1182 struct {} end_reset_fields; 1183 1184 CPU_COMMON 1185 1186 /* Fields after CPU_COMMON are preserved across CPU reset. */ 1187 1188 /* processor features (e.g. for CPUID insn) */ 1189 /* Minimum level/xlevel/xlevel2, based on CPU model + features */ 1190 uint32_t cpuid_min_level, cpuid_min_xlevel, cpuid_min_xlevel2; 1191 /* Maximum level/xlevel/xlevel2 value for auto-assignment: */ 1192 uint32_t cpuid_max_level, cpuid_max_xlevel, cpuid_max_xlevel2; 1193 /* Actual level/xlevel/xlevel2 value: */ 1194 uint32_t cpuid_level, cpuid_xlevel, cpuid_xlevel2; 1195 uint32_t cpuid_vendor1; 1196 uint32_t cpuid_vendor2; 1197 uint32_t cpuid_vendor3; 1198 uint32_t cpuid_version; 1199 FeatureWordArray features; 1200 /* Features that were explicitly enabled/disabled */ 1201 FeatureWordArray user_features; 1202 uint32_t cpuid_model[12]; 1203 1204 /* MTRRs */ 1205 uint64_t mtrr_fixed[11]; 1206 uint64_t mtrr_deftype; 1207 MTRRVar mtrr_var[MSR_MTRRcap_VCNT]; 1208 1209 /* For KVM */ 1210 uint32_t mp_state; 1211 int32_t exception_injected; 1212 int32_t interrupt_injected; 1213 uint8_t soft_interrupt; 1214 uint8_t has_error_code; 1215 uint32_t ins_len; 1216 uint32_t sipi_vector; 1217 bool tsc_valid; 1218 int64_t tsc_khz; 1219 int64_t user_tsc_khz; /* for sanity check only */ 1220 void *kvm_xsave_buf; 1221 #if defined(CONFIG_HVF) 1222 HVFX86EmulatorState *hvf_emul; 1223 #endif 1224 1225 uint64_t mcg_cap; 1226 uint64_t mcg_ctl; 1227 uint64_t mcg_ext_ctl; 1228 uint64_t mce_banks[MCE_BANKS_DEF*4]; 1229 uint64_t xstate_bv; 1230 1231 /* vmstate */ 1232 uint16_t fpus_vmstate; 1233 uint16_t fptag_vmstate; 1234 uint16_t fpregs_format_vmstate; 1235 1236 uint64_t xss; 1237 1238 TPRAccess tpr_access_type; 1239 } CPUX86State; 1240 1241 struct kvm_msrs; 1242 1243 /** 1244 * X86CPU: 1245 * @env: #CPUX86State 1246 * @migratable: If set, only migratable flags will be accepted when "enforce" 1247 * mode is used, and only migratable flags will be included in the "host" 1248 * CPU model. 1249 * 1250 * An x86 CPU. 1251 */ 1252 struct X86CPU { 1253 /*< private >*/ 1254 CPUState parent_obj; 1255 /*< public >*/ 1256 1257 CPUX86State env; 1258 1259 bool hyperv_vapic; 1260 bool hyperv_relaxed_timing; 1261 int hyperv_spinlock_attempts; 1262 char *hyperv_vendor_id; 1263 bool hyperv_time; 1264 bool hyperv_crash; 1265 bool hyperv_reset; 1266 bool hyperv_vpindex; 1267 bool hyperv_runtime; 1268 bool hyperv_synic; 1269 bool hyperv_stimer; 1270 bool check_cpuid; 1271 bool enforce_cpuid; 1272 bool expose_kvm; 1273 bool expose_tcg; 1274 bool migratable; 1275 bool max_features; /* Enable all supported features automatically */ 1276 uint32_t apic_id; 1277 1278 /* Enables publishing of TSC increment and Local APIC bus frequencies to 1279 * the guest OS in CPUID page 0x40000010, the same way that VMWare does. */ 1280 bool vmware_cpuid_freq; 1281 1282 /* if true the CPUID code directly forward host cache leaves to the guest */ 1283 bool cache_info_passthrough; 1284 1285 /* Features that were filtered out because of missing host capabilities */ 1286 uint32_t filtered_features[FEATURE_WORDS]; 1287 1288 /* Enable PMU CPUID bits. This can't be enabled by default yet because 1289 * it doesn't have ABI stability guarantees, as it passes all PMU CPUID 1290 * bits returned by GET_SUPPORTED_CPUID (that depend on host CPU and kernel 1291 * capabilities) directly to the guest. 1292 */ 1293 bool enable_pmu; 1294 1295 /* LMCE support can be enabled/disabled via cpu option 'lmce=on/off'. It is 1296 * disabled by default to avoid breaking migration between QEMU with 1297 * different LMCE configurations. 1298 */ 1299 bool enable_lmce; 1300 1301 /* Compatibility bits for old machine types. 1302 * If true present virtual l3 cache for VM, the vcpus in the same virtual 1303 * socket share an virtual l3 cache. 1304 */ 1305 bool enable_l3_cache; 1306 1307 /* Compatibility bits for old machine types: */ 1308 bool enable_cpuid_0xb; 1309 1310 /* Enable auto level-increase for all CPUID leaves */ 1311 bool full_cpuid_auto_level; 1312 1313 /* if true fill the top bits of the MTRR_PHYSMASKn variable range */ 1314 bool fill_mtrr_mask; 1315 1316 /* if true override the phys_bits value with a value read from the host */ 1317 bool host_phys_bits; 1318 1319 /* Stop SMI delivery for migration compatibility with old machines */ 1320 bool kvm_no_smi_migration; 1321 1322 /* Number of physical address bits supported */ 1323 uint32_t phys_bits; 1324 1325 /* in order to simplify APIC support, we leave this pointer to the 1326 user */ 1327 struct DeviceState *apic_state; 1328 struct MemoryRegion *cpu_as_root, *cpu_as_mem, *smram; 1329 Notifier machine_done; 1330 1331 struct kvm_msrs *kvm_msr_buf; 1332 1333 int32_t node_id; /* NUMA node this CPU belongs to */ 1334 int32_t socket_id; 1335 int32_t core_id; 1336 int32_t thread_id; 1337 1338 int32_t hv_max_vps; 1339 }; 1340 1341 static inline X86CPU *x86_env_get_cpu(CPUX86State *env) 1342 { 1343 return container_of(env, X86CPU, env); 1344 } 1345 1346 #define ENV_GET_CPU(e) CPU(x86_env_get_cpu(e)) 1347 1348 #define ENV_OFFSET offsetof(X86CPU, env) 1349 1350 #ifndef CONFIG_USER_ONLY 1351 extern struct VMStateDescription vmstate_x86_cpu; 1352 #endif 1353 1354 /** 1355 * x86_cpu_do_interrupt: 1356 * @cpu: vCPU the interrupt is to be handled by. 1357 */ 1358 void x86_cpu_do_interrupt(CPUState *cpu); 1359 bool x86_cpu_exec_interrupt(CPUState *cpu, int int_req); 1360 1361 int x86_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 1362 int cpuid, void *opaque); 1363 int x86_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 1364 int cpuid, void *opaque); 1365 int x86_cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 1366 void *opaque); 1367 int x86_cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 1368 void *opaque); 1369 1370 void x86_cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 1371 Error **errp); 1372 1373 void x86_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, 1374 int flags); 1375 1376 hwaddr x86_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 1377 1378 int x86_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 1379 int x86_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1380 1381 void x86_cpu_exec_enter(CPUState *cpu); 1382 void x86_cpu_exec_exit(CPUState *cpu); 1383 1384 void x86_cpu_list(FILE *f, fprintf_function cpu_fprintf); 1385 int cpu_x86_support_mca_broadcast(CPUX86State *env); 1386 1387 int cpu_get_pic_interrupt(CPUX86State *s); 1388 /* MSDOS compatibility mode FPU exception support */ 1389 void cpu_set_ferr(CPUX86State *s); 1390 1391 /* this function must always be used to load data in the segment 1392 cache: it synchronizes the hflags with the segment cache values */ 1393 static inline void cpu_x86_load_seg_cache(CPUX86State *env, 1394 int seg_reg, unsigned int selector, 1395 target_ulong base, 1396 unsigned int limit, 1397 unsigned int flags) 1398 { 1399 SegmentCache *sc; 1400 unsigned int new_hflags; 1401 1402 sc = &env->segs[seg_reg]; 1403 sc->selector = selector; 1404 sc->base = base; 1405 sc->limit = limit; 1406 sc->flags = flags; 1407 1408 /* update the hidden flags */ 1409 { 1410 if (seg_reg == R_CS) { 1411 #ifdef TARGET_X86_64 1412 if ((env->hflags & HF_LMA_MASK) && (flags & DESC_L_MASK)) { 1413 /* long mode */ 1414 env->hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; 1415 env->hflags &= ~(HF_ADDSEG_MASK); 1416 } else 1417 #endif 1418 { 1419 /* legacy / compatibility case */ 1420 new_hflags = (env->segs[R_CS].flags & DESC_B_MASK) 1421 >> (DESC_B_SHIFT - HF_CS32_SHIFT); 1422 env->hflags = (env->hflags & ~(HF_CS32_MASK | HF_CS64_MASK)) | 1423 new_hflags; 1424 } 1425 } 1426 if (seg_reg == R_SS) { 1427 int cpl = (flags >> DESC_DPL_SHIFT) & 3; 1428 #if HF_CPL_MASK != 3 1429 #error HF_CPL_MASK is hardcoded 1430 #endif 1431 env->hflags = (env->hflags & ~HF_CPL_MASK) | cpl; 1432 } 1433 new_hflags = (env->segs[R_SS].flags & DESC_B_MASK) 1434 >> (DESC_B_SHIFT - HF_SS32_SHIFT); 1435 if (env->hflags & HF_CS64_MASK) { 1436 /* zero base assumed for DS, ES and SS in long mode */ 1437 } else if (!(env->cr[0] & CR0_PE_MASK) || 1438 (env->eflags & VM_MASK) || 1439 !(env->hflags & HF_CS32_MASK)) { 1440 /* XXX: try to avoid this test. The problem comes from the 1441 fact that is real mode or vm86 mode we only modify the 1442 'base' and 'selector' fields of the segment cache to go 1443 faster. A solution may be to force addseg to one in 1444 translate-i386.c. */ 1445 new_hflags |= HF_ADDSEG_MASK; 1446 } else { 1447 new_hflags |= ((env->segs[R_DS].base | 1448 env->segs[R_ES].base | 1449 env->segs[R_SS].base) != 0) << 1450 HF_ADDSEG_SHIFT; 1451 } 1452 env->hflags = (env->hflags & 1453 ~(HF_SS32_MASK | HF_ADDSEG_MASK)) | new_hflags; 1454 } 1455 } 1456 1457 static inline void cpu_x86_load_seg_cache_sipi(X86CPU *cpu, 1458 uint8_t sipi_vector) 1459 { 1460 CPUState *cs = CPU(cpu); 1461 CPUX86State *env = &cpu->env; 1462 1463 env->eip = 0; 1464 cpu_x86_load_seg_cache(env, R_CS, sipi_vector << 8, 1465 sipi_vector << 12, 1466 env->segs[R_CS].limit, 1467 env->segs[R_CS].flags); 1468 cs->halted = 0; 1469 } 1470 1471 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector, 1472 target_ulong *base, unsigned int *limit, 1473 unsigned int *flags); 1474 1475 /* op_helper.c */ 1476 /* used for debug or cpu save/restore */ 1477 1478 /* cpu-exec.c */ 1479 /* the following helpers are only usable in user mode simulation as 1480 they can trigger unexpected exceptions */ 1481 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector); 1482 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32); 1483 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32); 1484 void cpu_x86_fxsave(CPUX86State *s, target_ulong ptr); 1485 void cpu_x86_fxrstor(CPUX86State *s, target_ulong ptr); 1486 1487 /* you can call this signal handler from your SIGBUS and SIGSEGV 1488 signal handlers to inform the virtual CPU of exceptions. non zero 1489 is returned if the signal was handled by the virtual CPU. */ 1490 int cpu_x86_signal_handler(int host_signum, void *pinfo, 1491 void *puc); 1492 1493 /* cpu.c */ 1494 void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count, 1495 uint32_t *eax, uint32_t *ebx, 1496 uint32_t *ecx, uint32_t *edx); 1497 void cpu_clear_apic_feature(CPUX86State *env); 1498 void host_cpuid(uint32_t function, uint32_t count, 1499 uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx); 1500 void host_vendor_fms(char *vendor, int *family, int *model, int *stepping); 1501 1502 /* helper.c */ 1503 int x86_cpu_handle_mmu_fault(CPUState *cpu, vaddr addr, int size, 1504 int is_write, int mmu_idx); 1505 void x86_cpu_set_a20(X86CPU *cpu, int a20_state); 1506 1507 #ifndef CONFIG_USER_ONLY 1508 static inline int x86_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 1509 { 1510 return !!attrs.secure; 1511 } 1512 1513 static inline AddressSpace *cpu_addressspace(CPUState *cs, MemTxAttrs attrs) 1514 { 1515 return cpu_get_address_space(cs, cpu_asidx_from_attrs(cs, attrs)); 1516 } 1517 1518 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr); 1519 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr); 1520 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr); 1521 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr); 1522 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val); 1523 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val); 1524 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val); 1525 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val); 1526 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val); 1527 #endif 1528 1529 void breakpoint_handler(CPUState *cs); 1530 1531 /* will be suppressed */ 1532 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0); 1533 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3); 1534 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4); 1535 void cpu_x86_update_dr7(CPUX86State *env, uint32_t new_dr7); 1536 1537 /* hw/pc.c */ 1538 uint64_t cpu_get_tsc(CPUX86State *env); 1539 1540 #define TARGET_PAGE_BITS 12 1541 1542 #ifdef TARGET_X86_64 1543 #define TARGET_PHYS_ADDR_SPACE_BITS 52 1544 /* ??? This is really 48 bits, sign-extended, but the only thing 1545 accessible to userland with bit 48 set is the VSYSCALL, and that 1546 is handled via other mechanisms. */ 1547 #define TARGET_VIRT_ADDR_SPACE_BITS 47 1548 #else 1549 #define TARGET_PHYS_ADDR_SPACE_BITS 36 1550 #define TARGET_VIRT_ADDR_SPACE_BITS 32 1551 #endif 1552 1553 /* XXX: This value should match the one returned by CPUID 1554 * and in exec.c */ 1555 # if defined(TARGET_X86_64) 1556 # define TCG_PHYS_ADDR_BITS 40 1557 # else 1558 # define TCG_PHYS_ADDR_BITS 36 1559 # endif 1560 1561 #define PHYS_ADDR_MASK MAKE_64BIT_MASK(0, TCG_PHYS_ADDR_BITS) 1562 1563 #define cpu_init(cpu_model) cpu_generic_init(TYPE_X86_CPU, cpu_model) 1564 1565 #define X86_CPU_TYPE_SUFFIX "-" TYPE_X86_CPU 1566 #define X86_CPU_TYPE_NAME(name) (name X86_CPU_TYPE_SUFFIX) 1567 1568 #ifdef TARGET_X86_64 1569 #define TARGET_DEFAULT_CPU_TYPE X86_CPU_TYPE_NAME("qemu64") 1570 #else 1571 #define TARGET_DEFAULT_CPU_TYPE X86_CPU_TYPE_NAME("qemu32") 1572 #endif 1573 1574 #define cpu_signal_handler cpu_x86_signal_handler 1575 #define cpu_list x86_cpu_list 1576 1577 /* MMU modes definitions */ 1578 #define MMU_MODE0_SUFFIX _ksmap 1579 #define MMU_MODE1_SUFFIX _user 1580 #define MMU_MODE2_SUFFIX _knosmap /* SMAP disabled or CPL<3 && AC=1 */ 1581 #define MMU_KSMAP_IDX 0 1582 #define MMU_USER_IDX 1 1583 #define MMU_KNOSMAP_IDX 2 1584 static inline int cpu_mmu_index(CPUX86State *env, bool ifetch) 1585 { 1586 return (env->hflags & HF_CPL_MASK) == 3 ? MMU_USER_IDX : 1587 (!(env->hflags & HF_SMAP_MASK) || (env->eflags & AC_MASK)) 1588 ? MMU_KNOSMAP_IDX : MMU_KSMAP_IDX; 1589 } 1590 1591 static inline int cpu_mmu_index_kernel(CPUX86State *env) 1592 { 1593 return !(env->hflags & HF_SMAP_MASK) ? MMU_KNOSMAP_IDX : 1594 ((env->hflags & HF_CPL_MASK) < 3 && (env->eflags & AC_MASK)) 1595 ? MMU_KNOSMAP_IDX : MMU_KSMAP_IDX; 1596 } 1597 1598 #define CC_DST (env->cc_dst) 1599 #define CC_SRC (env->cc_src) 1600 #define CC_SRC2 (env->cc_src2) 1601 #define CC_OP (env->cc_op) 1602 1603 /* n must be a constant to be efficient */ 1604 static inline target_long lshift(target_long x, int n) 1605 { 1606 if (n >= 0) { 1607 return x << n; 1608 } else { 1609 return x >> (-n); 1610 } 1611 } 1612 1613 /* float macros */ 1614 #define FT0 (env->ft0) 1615 #define ST0 (env->fpregs[env->fpstt].d) 1616 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d) 1617 #define ST1 ST(1) 1618 1619 /* translate.c */ 1620 void tcg_x86_init(void); 1621 1622 #include "exec/cpu-all.h" 1623 #include "svm.h" 1624 1625 #if !defined(CONFIG_USER_ONLY) 1626 #include "hw/i386/apic.h" 1627 #endif 1628 1629 static inline void cpu_get_tb_cpu_state(CPUX86State *env, target_ulong *pc, 1630 target_ulong *cs_base, uint32_t *flags) 1631 { 1632 *cs_base = env->segs[R_CS].base; 1633 *pc = *cs_base + env->eip; 1634 *flags = env->hflags | 1635 (env->eflags & (IOPL_MASK | TF_MASK | RF_MASK | VM_MASK | AC_MASK)); 1636 } 1637 1638 void do_cpu_init(X86CPU *cpu); 1639 void do_cpu_sipi(X86CPU *cpu); 1640 1641 #define MCE_INJECT_BROADCAST 1 1642 #define MCE_INJECT_UNCOND_AO 2 1643 1644 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank, 1645 uint64_t status, uint64_t mcg_status, uint64_t addr, 1646 uint64_t misc, int flags); 1647 1648 /* excp_helper.c */ 1649 void QEMU_NORETURN raise_exception(CPUX86State *env, int exception_index); 1650 void QEMU_NORETURN raise_exception_ra(CPUX86State *env, int exception_index, 1651 uintptr_t retaddr); 1652 void QEMU_NORETURN raise_exception_err(CPUX86State *env, int exception_index, 1653 int error_code); 1654 void QEMU_NORETURN raise_exception_err_ra(CPUX86State *env, int exception_index, 1655 int error_code, uintptr_t retaddr); 1656 void QEMU_NORETURN raise_interrupt(CPUX86State *nenv, int intno, int is_int, 1657 int error_code, int next_eip_addend); 1658 1659 /* cc_helper.c */ 1660 extern const uint8_t parity_table[256]; 1661 uint32_t cpu_cc_compute_all(CPUX86State *env1, int op); 1662 1663 static inline uint32_t cpu_compute_eflags(CPUX86State *env) 1664 { 1665 uint32_t eflags = env->eflags; 1666 if (tcg_enabled()) { 1667 eflags |= cpu_cc_compute_all(env, CC_OP) | (env->df & DF_MASK); 1668 } 1669 return eflags; 1670 } 1671 1672 /* NOTE: the translator must set DisasContext.cc_op to CC_OP_EFLAGS 1673 * after generating a call to a helper that uses this. 1674 */ 1675 static inline void cpu_load_eflags(CPUX86State *env, int eflags, 1676 int update_mask) 1677 { 1678 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); 1679 CC_OP = CC_OP_EFLAGS; 1680 env->df = 1 - (2 * ((eflags >> 10) & 1)); 1681 env->eflags = (env->eflags & ~update_mask) | 1682 (eflags & update_mask) | 0x2; 1683 } 1684 1685 /* load efer and update the corresponding hflags. XXX: do consistency 1686 checks with cpuid bits? */ 1687 static inline void cpu_load_efer(CPUX86State *env, uint64_t val) 1688 { 1689 env->efer = val; 1690 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK); 1691 if (env->efer & MSR_EFER_LMA) { 1692 env->hflags |= HF_LMA_MASK; 1693 } 1694 if (env->efer & MSR_EFER_SVME) { 1695 env->hflags |= HF_SVME_MASK; 1696 } 1697 } 1698 1699 static inline MemTxAttrs cpu_get_mem_attrs(CPUX86State *env) 1700 { 1701 return ((MemTxAttrs) { .secure = (env->hflags & HF_SMM_MASK) != 0 }); 1702 } 1703 1704 static inline int32_t x86_get_a20_mask(CPUX86State *env) 1705 { 1706 if (env->hflags & HF_SMM_MASK) { 1707 return -1; 1708 } else { 1709 return env->a20_mask; 1710 } 1711 } 1712 1713 /* fpu_helper.c */ 1714 void update_fp_status(CPUX86State *env); 1715 void update_mxcsr_status(CPUX86State *env); 1716 1717 static inline void cpu_set_mxcsr(CPUX86State *env, uint32_t mxcsr) 1718 { 1719 env->mxcsr = mxcsr; 1720 if (tcg_enabled()) { 1721 update_mxcsr_status(env); 1722 } 1723 } 1724 1725 static inline void cpu_set_fpuc(CPUX86State *env, uint16_t fpuc) 1726 { 1727 env->fpuc = fpuc; 1728 if (tcg_enabled()) { 1729 update_fp_status(env); 1730 } 1731 } 1732 1733 /* mem_helper.c */ 1734 void helper_lock_init(void); 1735 1736 /* svm_helper.c */ 1737 void cpu_svm_check_intercept_param(CPUX86State *env1, uint32_t type, 1738 uint64_t param, uintptr_t retaddr); 1739 void cpu_vmexit(CPUX86State *nenv, uint32_t exit_code, uint64_t exit_info_1, 1740 uintptr_t retaddr); 1741 void do_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1); 1742 1743 /* seg_helper.c */ 1744 void do_interrupt_x86_hardirq(CPUX86State *env, int intno, int is_hw); 1745 1746 /* smm_helper.c */ 1747 void do_smm_enter(X86CPU *cpu); 1748 1749 /* apic.c */ 1750 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access); 1751 void apic_handle_tpr_access_report(DeviceState *d, target_ulong ip, 1752 TPRAccess access); 1753 1754 1755 /* Change the value of a KVM-specific default 1756 * 1757 * If value is NULL, no default will be set and the original 1758 * value from the CPU model table will be kept. 1759 * 1760 * It is valid to call this function only for properties that 1761 * are already present in the kvm_default_props table. 1762 */ 1763 void x86_cpu_change_kvm_default(const char *prop, const char *value); 1764 1765 /* mpx_helper.c */ 1766 void cpu_sync_bndcs_hflags(CPUX86State *env); 1767 1768 /* Return name of 32-bit register, from a R_* constant */ 1769 const char *get_register_name_32(unsigned int reg); 1770 1771 void enable_compat_apic_id_mode(void); 1772 1773 #define APIC_DEFAULT_ADDRESS 0xfee00000 1774 #define APIC_SPACE_SIZE 0x100000 1775 1776 void x86_cpu_dump_local_apic_state(CPUState *cs, FILE *f, 1777 fprintf_function cpu_fprintf, int flags); 1778 1779 /* cpu.c */ 1780 bool cpu_is_bsp(X86CPU *cpu); 1781 1782 void x86_cpu_xrstor_all_areas(X86CPU *cpu, const X86XSaveArea *buf); 1783 void x86_cpu_xsave_all_areas(X86CPU *cpu, X86XSaveArea *buf); 1784 void x86_update_hflags(CPUX86State* env); 1785 1786 #endif /* I386_CPU_H */ 1787