1 2 /* 3 * i386 virtual CPU header 4 * 5 * Copyright (c) 2003 Fabrice Bellard 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #ifndef I386_CPU_H 22 #define I386_CPU_H 23 24 #include "qemu-common.h" 25 #include "cpu-qom.h" 26 #include "hyperv-proto.h" 27 28 #ifdef TARGET_X86_64 29 #define TARGET_LONG_BITS 64 30 #else 31 #define TARGET_LONG_BITS 32 32 #endif 33 34 #include "exec/cpu-defs.h" 35 36 /* The x86 has a strong memory model with some store-after-load re-ordering */ 37 #define TCG_GUEST_DEFAULT_MO (TCG_MO_ALL & ~TCG_MO_ST_LD) 38 39 /* Maximum instruction code size */ 40 #define TARGET_MAX_INSN_SIZE 16 41 42 /* support for self modifying code even if the modified instruction is 43 close to the modifying instruction */ 44 #define TARGET_HAS_PRECISE_SMC 45 46 #ifdef TARGET_X86_64 47 #define I386_ELF_MACHINE EM_X86_64 48 #define ELF_MACHINE_UNAME "x86_64" 49 #else 50 #define I386_ELF_MACHINE EM_386 51 #define ELF_MACHINE_UNAME "i686" 52 #endif 53 54 #define CPUArchState struct CPUX86State 55 56 enum { 57 R_EAX = 0, 58 R_ECX = 1, 59 R_EDX = 2, 60 R_EBX = 3, 61 R_ESP = 4, 62 R_EBP = 5, 63 R_ESI = 6, 64 R_EDI = 7, 65 R_R8 = 8, 66 R_R9 = 9, 67 R_R10 = 10, 68 R_R11 = 11, 69 R_R12 = 12, 70 R_R13 = 13, 71 R_R14 = 14, 72 R_R15 = 15, 73 74 R_AL = 0, 75 R_CL = 1, 76 R_DL = 2, 77 R_BL = 3, 78 R_AH = 4, 79 R_CH = 5, 80 R_DH = 6, 81 R_BH = 7, 82 }; 83 84 typedef enum X86Seg { 85 R_ES = 0, 86 R_CS = 1, 87 R_SS = 2, 88 R_DS = 3, 89 R_FS = 4, 90 R_GS = 5, 91 R_LDTR = 6, 92 R_TR = 7, 93 } X86Seg; 94 95 /* segment descriptor fields */ 96 #define DESC_G_SHIFT 23 97 #define DESC_G_MASK (1 << DESC_G_SHIFT) 98 #define DESC_B_SHIFT 22 99 #define DESC_B_MASK (1 << DESC_B_SHIFT) 100 #define DESC_L_SHIFT 21 /* x86_64 only : 64 bit code segment */ 101 #define DESC_L_MASK (1 << DESC_L_SHIFT) 102 #define DESC_AVL_SHIFT 20 103 #define DESC_AVL_MASK (1 << DESC_AVL_SHIFT) 104 #define DESC_P_SHIFT 15 105 #define DESC_P_MASK (1 << DESC_P_SHIFT) 106 #define DESC_DPL_SHIFT 13 107 #define DESC_DPL_MASK (3 << DESC_DPL_SHIFT) 108 #define DESC_S_SHIFT 12 109 #define DESC_S_MASK (1 << DESC_S_SHIFT) 110 #define DESC_TYPE_SHIFT 8 111 #define DESC_TYPE_MASK (15 << DESC_TYPE_SHIFT) 112 #define DESC_A_MASK (1 << 8) 113 114 #define DESC_CS_MASK (1 << 11) /* 1=code segment 0=data segment */ 115 #define DESC_C_MASK (1 << 10) /* code: conforming */ 116 #define DESC_R_MASK (1 << 9) /* code: readable */ 117 118 #define DESC_E_MASK (1 << 10) /* data: expansion direction */ 119 #define DESC_W_MASK (1 << 9) /* data: writable */ 120 121 #define DESC_TSS_BUSY_MASK (1 << 9) 122 123 /* eflags masks */ 124 #define CC_C 0x0001 125 #define CC_P 0x0004 126 #define CC_A 0x0010 127 #define CC_Z 0x0040 128 #define CC_S 0x0080 129 #define CC_O 0x0800 130 131 #define TF_SHIFT 8 132 #define IOPL_SHIFT 12 133 #define VM_SHIFT 17 134 135 #define TF_MASK 0x00000100 136 #define IF_MASK 0x00000200 137 #define DF_MASK 0x00000400 138 #define IOPL_MASK 0x00003000 139 #define NT_MASK 0x00004000 140 #define RF_MASK 0x00010000 141 #define VM_MASK 0x00020000 142 #define AC_MASK 0x00040000 143 #define VIF_MASK 0x00080000 144 #define VIP_MASK 0x00100000 145 #define ID_MASK 0x00200000 146 147 /* hidden flags - used internally by qemu to represent additional cpu 148 states. Only the INHIBIT_IRQ, SMM and SVMI are not redundant. We 149 avoid using the IOPL_MASK, TF_MASK, VM_MASK and AC_MASK bit 150 positions to ease oring with eflags. */ 151 /* current cpl */ 152 #define HF_CPL_SHIFT 0 153 /* true if hardware interrupts must be disabled for next instruction */ 154 #define HF_INHIBIT_IRQ_SHIFT 3 155 /* 16 or 32 segments */ 156 #define HF_CS32_SHIFT 4 157 #define HF_SS32_SHIFT 5 158 /* zero base for DS, ES and SS : can be '0' only in 32 bit CS segment */ 159 #define HF_ADDSEG_SHIFT 6 160 /* copy of CR0.PE (protected mode) */ 161 #define HF_PE_SHIFT 7 162 #define HF_TF_SHIFT 8 /* must be same as eflags */ 163 #define HF_MP_SHIFT 9 /* the order must be MP, EM, TS */ 164 #define HF_EM_SHIFT 10 165 #define HF_TS_SHIFT 11 166 #define HF_IOPL_SHIFT 12 /* must be same as eflags */ 167 #define HF_LMA_SHIFT 14 /* only used on x86_64: long mode active */ 168 #define HF_CS64_SHIFT 15 /* only used on x86_64: 64 bit code segment */ 169 #define HF_RF_SHIFT 16 /* must be same as eflags */ 170 #define HF_VM_SHIFT 17 /* must be same as eflags */ 171 #define HF_AC_SHIFT 18 /* must be same as eflags */ 172 #define HF_SMM_SHIFT 19 /* CPU in SMM mode */ 173 #define HF_SVME_SHIFT 20 /* SVME enabled (copy of EFER.SVME) */ 174 #define HF_GUEST_SHIFT 21 /* SVM intercepts are active */ 175 #define HF_OSFXSR_SHIFT 22 /* CR4.OSFXSR */ 176 #define HF_SMAP_SHIFT 23 /* CR4.SMAP */ 177 #define HF_IOBPT_SHIFT 24 /* an io breakpoint enabled */ 178 #define HF_MPX_EN_SHIFT 25 /* MPX Enabled (CR4+XCR0+BNDCFGx) */ 179 #define HF_MPX_IU_SHIFT 26 /* BND registers in-use */ 180 181 #define HF_CPL_MASK (3 << HF_CPL_SHIFT) 182 #define HF_INHIBIT_IRQ_MASK (1 << HF_INHIBIT_IRQ_SHIFT) 183 #define HF_CS32_MASK (1 << HF_CS32_SHIFT) 184 #define HF_SS32_MASK (1 << HF_SS32_SHIFT) 185 #define HF_ADDSEG_MASK (1 << HF_ADDSEG_SHIFT) 186 #define HF_PE_MASK (1 << HF_PE_SHIFT) 187 #define HF_TF_MASK (1 << HF_TF_SHIFT) 188 #define HF_MP_MASK (1 << HF_MP_SHIFT) 189 #define HF_EM_MASK (1 << HF_EM_SHIFT) 190 #define HF_TS_MASK (1 << HF_TS_SHIFT) 191 #define HF_IOPL_MASK (3 << HF_IOPL_SHIFT) 192 #define HF_LMA_MASK (1 << HF_LMA_SHIFT) 193 #define HF_CS64_MASK (1 << HF_CS64_SHIFT) 194 #define HF_RF_MASK (1 << HF_RF_SHIFT) 195 #define HF_VM_MASK (1 << HF_VM_SHIFT) 196 #define HF_AC_MASK (1 << HF_AC_SHIFT) 197 #define HF_SMM_MASK (1 << HF_SMM_SHIFT) 198 #define HF_SVME_MASK (1 << HF_SVME_SHIFT) 199 #define HF_GUEST_MASK (1 << HF_GUEST_SHIFT) 200 #define HF_OSFXSR_MASK (1 << HF_OSFXSR_SHIFT) 201 #define HF_SMAP_MASK (1 << HF_SMAP_SHIFT) 202 #define HF_IOBPT_MASK (1 << HF_IOBPT_SHIFT) 203 #define HF_MPX_EN_MASK (1 << HF_MPX_EN_SHIFT) 204 #define HF_MPX_IU_MASK (1 << HF_MPX_IU_SHIFT) 205 206 /* hflags2 */ 207 208 #define HF2_GIF_SHIFT 0 /* if set CPU takes interrupts */ 209 #define HF2_HIF_SHIFT 1 /* value of IF_MASK when entering SVM */ 210 #define HF2_NMI_SHIFT 2 /* CPU serving NMI */ 211 #define HF2_VINTR_SHIFT 3 /* value of V_INTR_MASKING bit */ 212 #define HF2_SMM_INSIDE_NMI_SHIFT 4 /* CPU serving SMI nested inside NMI */ 213 #define HF2_MPX_PR_SHIFT 5 /* BNDCFGx.BNDPRESERVE */ 214 #define HF2_NPT_SHIFT 6 /* Nested Paging enabled */ 215 216 #define HF2_GIF_MASK (1 << HF2_GIF_SHIFT) 217 #define HF2_HIF_MASK (1 << HF2_HIF_SHIFT) 218 #define HF2_NMI_MASK (1 << HF2_NMI_SHIFT) 219 #define HF2_VINTR_MASK (1 << HF2_VINTR_SHIFT) 220 #define HF2_SMM_INSIDE_NMI_MASK (1 << HF2_SMM_INSIDE_NMI_SHIFT) 221 #define HF2_MPX_PR_MASK (1 << HF2_MPX_PR_SHIFT) 222 #define HF2_NPT_MASK (1 << HF2_NPT_SHIFT) 223 224 #define CR0_PE_SHIFT 0 225 #define CR0_MP_SHIFT 1 226 227 #define CR0_PE_MASK (1U << 0) 228 #define CR0_MP_MASK (1U << 1) 229 #define CR0_EM_MASK (1U << 2) 230 #define CR0_TS_MASK (1U << 3) 231 #define CR0_ET_MASK (1U << 4) 232 #define CR0_NE_MASK (1U << 5) 233 #define CR0_WP_MASK (1U << 16) 234 #define CR0_AM_MASK (1U << 18) 235 #define CR0_PG_MASK (1U << 31) 236 237 #define CR4_VME_MASK (1U << 0) 238 #define CR4_PVI_MASK (1U << 1) 239 #define CR4_TSD_MASK (1U << 2) 240 #define CR4_DE_MASK (1U << 3) 241 #define CR4_PSE_MASK (1U << 4) 242 #define CR4_PAE_MASK (1U << 5) 243 #define CR4_MCE_MASK (1U << 6) 244 #define CR4_PGE_MASK (1U << 7) 245 #define CR4_PCE_MASK (1U << 8) 246 #define CR4_OSFXSR_SHIFT 9 247 #define CR4_OSFXSR_MASK (1U << CR4_OSFXSR_SHIFT) 248 #define CR4_OSXMMEXCPT_MASK (1U << 10) 249 #define CR4_LA57_MASK (1U << 12) 250 #define CR4_VMXE_MASK (1U << 13) 251 #define CR4_SMXE_MASK (1U << 14) 252 #define CR4_FSGSBASE_MASK (1U << 16) 253 #define CR4_PCIDE_MASK (1U << 17) 254 #define CR4_OSXSAVE_MASK (1U << 18) 255 #define CR4_SMEP_MASK (1U << 20) 256 #define CR4_SMAP_MASK (1U << 21) 257 #define CR4_PKE_MASK (1U << 22) 258 259 #define DR6_BD (1 << 13) 260 #define DR6_BS (1 << 14) 261 #define DR6_BT (1 << 15) 262 #define DR6_FIXED_1 0xffff0ff0 263 264 #define DR7_GD (1 << 13) 265 #define DR7_TYPE_SHIFT 16 266 #define DR7_LEN_SHIFT 18 267 #define DR7_FIXED_1 0x00000400 268 #define DR7_GLOBAL_BP_MASK 0xaa 269 #define DR7_LOCAL_BP_MASK 0x55 270 #define DR7_MAX_BP 4 271 #define DR7_TYPE_BP_INST 0x0 272 #define DR7_TYPE_DATA_WR 0x1 273 #define DR7_TYPE_IO_RW 0x2 274 #define DR7_TYPE_DATA_RW 0x3 275 276 #define PG_PRESENT_BIT 0 277 #define PG_RW_BIT 1 278 #define PG_USER_BIT 2 279 #define PG_PWT_BIT 3 280 #define PG_PCD_BIT 4 281 #define PG_ACCESSED_BIT 5 282 #define PG_DIRTY_BIT 6 283 #define PG_PSE_BIT 7 284 #define PG_GLOBAL_BIT 8 285 #define PG_PSE_PAT_BIT 12 286 #define PG_PKRU_BIT 59 287 #define PG_NX_BIT 63 288 289 #define PG_PRESENT_MASK (1 << PG_PRESENT_BIT) 290 #define PG_RW_MASK (1 << PG_RW_BIT) 291 #define PG_USER_MASK (1 << PG_USER_BIT) 292 #define PG_PWT_MASK (1 << PG_PWT_BIT) 293 #define PG_PCD_MASK (1 << PG_PCD_BIT) 294 #define PG_ACCESSED_MASK (1 << PG_ACCESSED_BIT) 295 #define PG_DIRTY_MASK (1 << PG_DIRTY_BIT) 296 #define PG_PSE_MASK (1 << PG_PSE_BIT) 297 #define PG_GLOBAL_MASK (1 << PG_GLOBAL_BIT) 298 #define PG_PSE_PAT_MASK (1 << PG_PSE_PAT_BIT) 299 #define PG_ADDRESS_MASK 0x000ffffffffff000LL 300 #define PG_HI_RSVD_MASK (PG_ADDRESS_MASK & ~PHYS_ADDR_MASK) 301 #define PG_HI_USER_MASK 0x7ff0000000000000LL 302 #define PG_PKRU_MASK (15ULL << PG_PKRU_BIT) 303 #define PG_NX_MASK (1ULL << PG_NX_BIT) 304 305 #define PG_ERROR_W_BIT 1 306 307 #define PG_ERROR_P_MASK 0x01 308 #define PG_ERROR_W_MASK (1 << PG_ERROR_W_BIT) 309 #define PG_ERROR_U_MASK 0x04 310 #define PG_ERROR_RSVD_MASK 0x08 311 #define PG_ERROR_I_D_MASK 0x10 312 #define PG_ERROR_PK_MASK 0x20 313 314 #define MCG_CTL_P (1ULL<<8) /* MCG_CAP register available */ 315 #define MCG_SER_P (1ULL<<24) /* MCA recovery/new status bits */ 316 #define MCG_LMCE_P (1ULL<<27) /* Local Machine Check Supported */ 317 318 #define MCE_CAP_DEF (MCG_CTL_P|MCG_SER_P) 319 #define MCE_BANKS_DEF 10 320 321 #define MCG_CAP_BANKS_MASK 0xff 322 323 #define MCG_STATUS_RIPV (1ULL<<0) /* restart ip valid */ 324 #define MCG_STATUS_EIPV (1ULL<<1) /* ip points to correct instruction */ 325 #define MCG_STATUS_MCIP (1ULL<<2) /* machine check in progress */ 326 #define MCG_STATUS_LMCE (1ULL<<3) /* Local MCE signaled */ 327 328 #define MCG_EXT_CTL_LMCE_EN (1ULL<<0) /* Local MCE enabled */ 329 330 #define MCI_STATUS_VAL (1ULL<<63) /* valid error */ 331 #define MCI_STATUS_OVER (1ULL<<62) /* previous errors lost */ 332 #define MCI_STATUS_UC (1ULL<<61) /* uncorrected error */ 333 #define MCI_STATUS_EN (1ULL<<60) /* error enabled */ 334 #define MCI_STATUS_MISCV (1ULL<<59) /* misc error reg. valid */ 335 #define MCI_STATUS_ADDRV (1ULL<<58) /* addr reg. valid */ 336 #define MCI_STATUS_PCC (1ULL<<57) /* processor context corrupt */ 337 #define MCI_STATUS_S (1ULL<<56) /* Signaled machine check */ 338 #define MCI_STATUS_AR (1ULL<<55) /* Action required */ 339 340 /* MISC register defines */ 341 #define MCM_ADDR_SEGOFF 0 /* segment offset */ 342 #define MCM_ADDR_LINEAR 1 /* linear address */ 343 #define MCM_ADDR_PHYS 2 /* physical address */ 344 #define MCM_ADDR_MEM 3 /* memory address */ 345 #define MCM_ADDR_GENERIC 7 /* generic */ 346 347 #define MSR_IA32_TSC 0x10 348 #define MSR_IA32_APICBASE 0x1b 349 #define MSR_IA32_APICBASE_BSP (1<<8) 350 #define MSR_IA32_APICBASE_ENABLE (1<<11) 351 #define MSR_IA32_APICBASE_EXTD (1 << 10) 352 #define MSR_IA32_APICBASE_BASE (0xfffffU<<12) 353 #define MSR_IA32_FEATURE_CONTROL 0x0000003a 354 #define MSR_TSC_ADJUST 0x0000003b 355 #define MSR_IA32_SPEC_CTRL 0x48 356 #define MSR_VIRT_SSBD 0xc001011f 357 #define MSR_IA32_PRED_CMD 0x49 358 #define MSR_IA32_ARCH_CAPABILITIES 0x10a 359 #define MSR_IA32_TSCDEADLINE 0x6e0 360 361 #define FEATURE_CONTROL_LOCKED (1<<0) 362 #define FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX (1<<2) 363 #define FEATURE_CONTROL_LMCE (1<<20) 364 365 #define MSR_P6_PERFCTR0 0xc1 366 367 #define MSR_IA32_SMBASE 0x9e 368 #define MSR_SMI_COUNT 0x34 369 #define MSR_MTRRcap 0xfe 370 #define MSR_MTRRcap_VCNT 8 371 #define MSR_MTRRcap_FIXRANGE_SUPPORT (1 << 8) 372 #define MSR_MTRRcap_WC_SUPPORTED (1 << 10) 373 374 #define MSR_IA32_SYSENTER_CS 0x174 375 #define MSR_IA32_SYSENTER_ESP 0x175 376 #define MSR_IA32_SYSENTER_EIP 0x176 377 378 #define MSR_MCG_CAP 0x179 379 #define MSR_MCG_STATUS 0x17a 380 #define MSR_MCG_CTL 0x17b 381 #define MSR_MCG_EXT_CTL 0x4d0 382 383 #define MSR_P6_EVNTSEL0 0x186 384 385 #define MSR_IA32_PERF_STATUS 0x198 386 387 #define MSR_IA32_MISC_ENABLE 0x1a0 388 /* Indicates good rep/movs microcode on some processors: */ 389 #define MSR_IA32_MISC_ENABLE_DEFAULT 1 390 391 #define MSR_MTRRphysBase(reg) (0x200 + 2 * (reg)) 392 #define MSR_MTRRphysMask(reg) (0x200 + 2 * (reg) + 1) 393 394 #define MSR_MTRRphysIndex(addr) ((((addr) & ~1u) - 0x200) / 2) 395 396 #define MSR_MTRRfix64K_00000 0x250 397 #define MSR_MTRRfix16K_80000 0x258 398 #define MSR_MTRRfix16K_A0000 0x259 399 #define MSR_MTRRfix4K_C0000 0x268 400 #define MSR_MTRRfix4K_C8000 0x269 401 #define MSR_MTRRfix4K_D0000 0x26a 402 #define MSR_MTRRfix4K_D8000 0x26b 403 #define MSR_MTRRfix4K_E0000 0x26c 404 #define MSR_MTRRfix4K_E8000 0x26d 405 #define MSR_MTRRfix4K_F0000 0x26e 406 #define MSR_MTRRfix4K_F8000 0x26f 407 408 #define MSR_PAT 0x277 409 410 #define MSR_MTRRdefType 0x2ff 411 412 #define MSR_CORE_PERF_FIXED_CTR0 0x309 413 #define MSR_CORE_PERF_FIXED_CTR1 0x30a 414 #define MSR_CORE_PERF_FIXED_CTR2 0x30b 415 #define MSR_CORE_PERF_FIXED_CTR_CTRL 0x38d 416 #define MSR_CORE_PERF_GLOBAL_STATUS 0x38e 417 #define MSR_CORE_PERF_GLOBAL_CTRL 0x38f 418 #define MSR_CORE_PERF_GLOBAL_OVF_CTRL 0x390 419 420 #define MSR_MC0_CTL 0x400 421 #define MSR_MC0_STATUS 0x401 422 #define MSR_MC0_ADDR 0x402 423 #define MSR_MC0_MISC 0x403 424 425 #define MSR_IA32_RTIT_OUTPUT_BASE 0x560 426 #define MSR_IA32_RTIT_OUTPUT_MASK 0x561 427 #define MSR_IA32_RTIT_CTL 0x570 428 #define MSR_IA32_RTIT_STATUS 0x571 429 #define MSR_IA32_RTIT_CR3_MATCH 0x572 430 #define MSR_IA32_RTIT_ADDR0_A 0x580 431 #define MSR_IA32_RTIT_ADDR0_B 0x581 432 #define MSR_IA32_RTIT_ADDR1_A 0x582 433 #define MSR_IA32_RTIT_ADDR1_B 0x583 434 #define MSR_IA32_RTIT_ADDR2_A 0x584 435 #define MSR_IA32_RTIT_ADDR2_B 0x585 436 #define MSR_IA32_RTIT_ADDR3_A 0x586 437 #define MSR_IA32_RTIT_ADDR3_B 0x587 438 #define MAX_RTIT_ADDRS 8 439 440 #define MSR_EFER 0xc0000080 441 442 #define MSR_EFER_SCE (1 << 0) 443 #define MSR_EFER_LME (1 << 8) 444 #define MSR_EFER_LMA (1 << 10) 445 #define MSR_EFER_NXE (1 << 11) 446 #define MSR_EFER_SVME (1 << 12) 447 #define MSR_EFER_FFXSR (1 << 14) 448 449 #define MSR_STAR 0xc0000081 450 #define MSR_LSTAR 0xc0000082 451 #define MSR_CSTAR 0xc0000083 452 #define MSR_FMASK 0xc0000084 453 #define MSR_FSBASE 0xc0000100 454 #define MSR_GSBASE 0xc0000101 455 #define MSR_KERNELGSBASE 0xc0000102 456 #define MSR_TSC_AUX 0xc0000103 457 458 #define MSR_VM_HSAVE_PA 0xc0010117 459 460 #define MSR_IA32_BNDCFGS 0x00000d90 461 #define MSR_IA32_XSS 0x00000da0 462 463 #define XSTATE_FP_BIT 0 464 #define XSTATE_SSE_BIT 1 465 #define XSTATE_YMM_BIT 2 466 #define XSTATE_BNDREGS_BIT 3 467 #define XSTATE_BNDCSR_BIT 4 468 #define XSTATE_OPMASK_BIT 5 469 #define XSTATE_ZMM_Hi256_BIT 6 470 #define XSTATE_Hi16_ZMM_BIT 7 471 #define XSTATE_PKRU_BIT 9 472 473 #define XSTATE_FP_MASK (1ULL << XSTATE_FP_BIT) 474 #define XSTATE_SSE_MASK (1ULL << XSTATE_SSE_BIT) 475 #define XSTATE_YMM_MASK (1ULL << XSTATE_YMM_BIT) 476 #define XSTATE_BNDREGS_MASK (1ULL << XSTATE_BNDREGS_BIT) 477 #define XSTATE_BNDCSR_MASK (1ULL << XSTATE_BNDCSR_BIT) 478 #define XSTATE_OPMASK_MASK (1ULL << XSTATE_OPMASK_BIT) 479 #define XSTATE_ZMM_Hi256_MASK (1ULL << XSTATE_ZMM_Hi256_BIT) 480 #define XSTATE_Hi16_ZMM_MASK (1ULL << XSTATE_Hi16_ZMM_BIT) 481 #define XSTATE_PKRU_MASK (1ULL << XSTATE_PKRU_BIT) 482 483 /* CPUID feature words */ 484 typedef enum FeatureWord { 485 FEAT_1_EDX, /* CPUID[1].EDX */ 486 FEAT_1_ECX, /* CPUID[1].ECX */ 487 FEAT_7_0_EBX, /* CPUID[EAX=7,ECX=0].EBX */ 488 FEAT_7_0_ECX, /* CPUID[EAX=7,ECX=0].ECX */ 489 FEAT_7_0_EDX, /* CPUID[EAX=7,ECX=0].EDX */ 490 FEAT_8000_0001_EDX, /* CPUID[8000_0001].EDX */ 491 FEAT_8000_0001_ECX, /* CPUID[8000_0001].ECX */ 492 FEAT_8000_0007_EDX, /* CPUID[8000_0007].EDX */ 493 FEAT_8000_0008_EBX, /* CPUID[8000_0008].EBX */ 494 FEAT_C000_0001_EDX, /* CPUID[C000_0001].EDX */ 495 FEAT_KVM, /* CPUID[4000_0001].EAX (KVM_CPUID_FEATURES) */ 496 FEAT_KVM_HINTS, /* CPUID[4000_0001].EDX */ 497 FEAT_HYPERV_EAX, /* CPUID[4000_0003].EAX */ 498 FEAT_HYPERV_EBX, /* CPUID[4000_0003].EBX */ 499 FEAT_HYPERV_EDX, /* CPUID[4000_0003].EDX */ 500 FEAT_SVM, /* CPUID[8000_000A].EDX */ 501 FEAT_XSAVE, /* CPUID[EAX=0xd,ECX=1].EAX */ 502 FEAT_6_EAX, /* CPUID[6].EAX */ 503 FEAT_XSAVE_COMP_LO, /* CPUID[EAX=0xd,ECX=0].EAX */ 504 FEAT_XSAVE_COMP_HI, /* CPUID[EAX=0xd,ECX=0].EDX */ 505 FEATURE_WORDS, 506 } FeatureWord; 507 508 typedef uint32_t FeatureWordArray[FEATURE_WORDS]; 509 510 /* cpuid_features bits */ 511 #define CPUID_FP87 (1U << 0) 512 #define CPUID_VME (1U << 1) 513 #define CPUID_DE (1U << 2) 514 #define CPUID_PSE (1U << 3) 515 #define CPUID_TSC (1U << 4) 516 #define CPUID_MSR (1U << 5) 517 #define CPUID_PAE (1U << 6) 518 #define CPUID_MCE (1U << 7) 519 #define CPUID_CX8 (1U << 8) 520 #define CPUID_APIC (1U << 9) 521 #define CPUID_SEP (1U << 11) /* sysenter/sysexit */ 522 #define CPUID_MTRR (1U << 12) 523 #define CPUID_PGE (1U << 13) 524 #define CPUID_MCA (1U << 14) 525 #define CPUID_CMOV (1U << 15) 526 #define CPUID_PAT (1U << 16) 527 #define CPUID_PSE36 (1U << 17) 528 #define CPUID_PN (1U << 18) 529 #define CPUID_CLFLUSH (1U << 19) 530 #define CPUID_DTS (1U << 21) 531 #define CPUID_ACPI (1U << 22) 532 #define CPUID_MMX (1U << 23) 533 #define CPUID_FXSR (1U << 24) 534 #define CPUID_SSE (1U << 25) 535 #define CPUID_SSE2 (1U << 26) 536 #define CPUID_SS (1U << 27) 537 #define CPUID_HT (1U << 28) 538 #define CPUID_TM (1U << 29) 539 #define CPUID_IA64 (1U << 30) 540 #define CPUID_PBE (1U << 31) 541 542 #define CPUID_EXT_SSE3 (1U << 0) 543 #define CPUID_EXT_PCLMULQDQ (1U << 1) 544 #define CPUID_EXT_DTES64 (1U << 2) 545 #define CPUID_EXT_MONITOR (1U << 3) 546 #define CPUID_EXT_DSCPL (1U << 4) 547 #define CPUID_EXT_VMX (1U << 5) 548 #define CPUID_EXT_SMX (1U << 6) 549 #define CPUID_EXT_EST (1U << 7) 550 #define CPUID_EXT_TM2 (1U << 8) 551 #define CPUID_EXT_SSSE3 (1U << 9) 552 #define CPUID_EXT_CID (1U << 10) 553 #define CPUID_EXT_FMA (1U << 12) 554 #define CPUID_EXT_CX16 (1U << 13) 555 #define CPUID_EXT_XTPR (1U << 14) 556 #define CPUID_EXT_PDCM (1U << 15) 557 #define CPUID_EXT_PCID (1U << 17) 558 #define CPUID_EXT_DCA (1U << 18) 559 #define CPUID_EXT_SSE41 (1U << 19) 560 #define CPUID_EXT_SSE42 (1U << 20) 561 #define CPUID_EXT_X2APIC (1U << 21) 562 #define CPUID_EXT_MOVBE (1U << 22) 563 #define CPUID_EXT_POPCNT (1U << 23) 564 #define CPUID_EXT_TSC_DEADLINE_TIMER (1U << 24) 565 #define CPUID_EXT_AES (1U << 25) 566 #define CPUID_EXT_XSAVE (1U << 26) 567 #define CPUID_EXT_OSXSAVE (1U << 27) 568 #define CPUID_EXT_AVX (1U << 28) 569 #define CPUID_EXT_F16C (1U << 29) 570 #define CPUID_EXT_RDRAND (1U << 30) 571 #define CPUID_EXT_HYPERVISOR (1U << 31) 572 573 #define CPUID_EXT2_FPU (1U << 0) 574 #define CPUID_EXT2_VME (1U << 1) 575 #define CPUID_EXT2_DE (1U << 2) 576 #define CPUID_EXT2_PSE (1U << 3) 577 #define CPUID_EXT2_TSC (1U << 4) 578 #define CPUID_EXT2_MSR (1U << 5) 579 #define CPUID_EXT2_PAE (1U << 6) 580 #define CPUID_EXT2_MCE (1U << 7) 581 #define CPUID_EXT2_CX8 (1U << 8) 582 #define CPUID_EXT2_APIC (1U << 9) 583 #define CPUID_EXT2_SYSCALL (1U << 11) 584 #define CPUID_EXT2_MTRR (1U << 12) 585 #define CPUID_EXT2_PGE (1U << 13) 586 #define CPUID_EXT2_MCA (1U << 14) 587 #define CPUID_EXT2_CMOV (1U << 15) 588 #define CPUID_EXT2_PAT (1U << 16) 589 #define CPUID_EXT2_PSE36 (1U << 17) 590 #define CPUID_EXT2_MP (1U << 19) 591 #define CPUID_EXT2_NX (1U << 20) 592 #define CPUID_EXT2_MMXEXT (1U << 22) 593 #define CPUID_EXT2_MMX (1U << 23) 594 #define CPUID_EXT2_FXSR (1U << 24) 595 #define CPUID_EXT2_FFXSR (1U << 25) 596 #define CPUID_EXT2_PDPE1GB (1U << 26) 597 #define CPUID_EXT2_RDTSCP (1U << 27) 598 #define CPUID_EXT2_LM (1U << 29) 599 #define CPUID_EXT2_3DNOWEXT (1U << 30) 600 #define CPUID_EXT2_3DNOW (1U << 31) 601 602 /* CPUID[8000_0001].EDX bits that are aliase of CPUID[1].EDX bits on AMD CPUs */ 603 #define CPUID_EXT2_AMD_ALIASES (CPUID_EXT2_FPU | CPUID_EXT2_VME | \ 604 CPUID_EXT2_DE | CPUID_EXT2_PSE | \ 605 CPUID_EXT2_TSC | CPUID_EXT2_MSR | \ 606 CPUID_EXT2_PAE | CPUID_EXT2_MCE | \ 607 CPUID_EXT2_CX8 | CPUID_EXT2_APIC | \ 608 CPUID_EXT2_MTRR | CPUID_EXT2_PGE | \ 609 CPUID_EXT2_MCA | CPUID_EXT2_CMOV | \ 610 CPUID_EXT2_PAT | CPUID_EXT2_PSE36 | \ 611 CPUID_EXT2_MMX | CPUID_EXT2_FXSR) 612 613 #define CPUID_EXT3_LAHF_LM (1U << 0) 614 #define CPUID_EXT3_CMP_LEG (1U << 1) 615 #define CPUID_EXT3_SVM (1U << 2) 616 #define CPUID_EXT3_EXTAPIC (1U << 3) 617 #define CPUID_EXT3_CR8LEG (1U << 4) 618 #define CPUID_EXT3_ABM (1U << 5) 619 #define CPUID_EXT3_SSE4A (1U << 6) 620 #define CPUID_EXT3_MISALIGNSSE (1U << 7) 621 #define CPUID_EXT3_3DNOWPREFETCH (1U << 8) 622 #define CPUID_EXT3_OSVW (1U << 9) 623 #define CPUID_EXT3_IBS (1U << 10) 624 #define CPUID_EXT3_XOP (1U << 11) 625 #define CPUID_EXT3_SKINIT (1U << 12) 626 #define CPUID_EXT3_WDT (1U << 13) 627 #define CPUID_EXT3_LWP (1U << 15) 628 #define CPUID_EXT3_FMA4 (1U << 16) 629 #define CPUID_EXT3_TCE (1U << 17) 630 #define CPUID_EXT3_NODEID (1U << 19) 631 #define CPUID_EXT3_TBM (1U << 21) 632 #define CPUID_EXT3_TOPOEXT (1U << 22) 633 #define CPUID_EXT3_PERFCORE (1U << 23) 634 #define CPUID_EXT3_PERFNB (1U << 24) 635 636 #define CPUID_SVM_NPT (1U << 0) 637 #define CPUID_SVM_LBRV (1U << 1) 638 #define CPUID_SVM_SVMLOCK (1U << 2) 639 #define CPUID_SVM_NRIPSAVE (1U << 3) 640 #define CPUID_SVM_TSCSCALE (1U << 4) 641 #define CPUID_SVM_VMCBCLEAN (1U << 5) 642 #define CPUID_SVM_FLUSHASID (1U << 6) 643 #define CPUID_SVM_DECODEASSIST (1U << 7) 644 #define CPUID_SVM_PAUSEFILTER (1U << 10) 645 #define CPUID_SVM_PFTHRESHOLD (1U << 12) 646 647 #define CPUID_7_0_EBX_FSGSBASE (1U << 0) 648 #define CPUID_7_0_EBX_BMI1 (1U << 3) 649 #define CPUID_7_0_EBX_HLE (1U << 4) 650 #define CPUID_7_0_EBX_AVX2 (1U << 5) 651 #define CPUID_7_0_EBX_SMEP (1U << 7) 652 #define CPUID_7_0_EBX_BMI2 (1U << 8) 653 #define CPUID_7_0_EBX_ERMS (1U << 9) 654 #define CPUID_7_0_EBX_INVPCID (1U << 10) 655 #define CPUID_7_0_EBX_RTM (1U << 11) 656 #define CPUID_7_0_EBX_MPX (1U << 14) 657 #define CPUID_7_0_EBX_AVX512F (1U << 16) /* AVX-512 Foundation */ 658 #define CPUID_7_0_EBX_AVX512DQ (1U << 17) /* AVX-512 Doubleword & Quadword Instrs */ 659 #define CPUID_7_0_EBX_RDSEED (1U << 18) 660 #define CPUID_7_0_EBX_ADX (1U << 19) 661 #define CPUID_7_0_EBX_SMAP (1U << 20) 662 #define CPUID_7_0_EBX_AVX512IFMA (1U << 21) /* AVX-512 Integer Fused Multiply Add */ 663 #define CPUID_7_0_EBX_PCOMMIT (1U << 22) /* Persistent Commit */ 664 #define CPUID_7_0_EBX_CLFLUSHOPT (1U << 23) /* Flush a Cache Line Optimized */ 665 #define CPUID_7_0_EBX_CLWB (1U << 24) /* Cache Line Write Back */ 666 #define CPUID_7_0_EBX_INTEL_PT (1U << 25) /* Intel Processor Trace */ 667 #define CPUID_7_0_EBX_AVX512PF (1U << 26) /* AVX-512 Prefetch */ 668 #define CPUID_7_0_EBX_AVX512ER (1U << 27) /* AVX-512 Exponential and Reciprocal */ 669 #define CPUID_7_0_EBX_AVX512CD (1U << 28) /* AVX-512 Conflict Detection */ 670 #define CPUID_7_0_EBX_SHA_NI (1U << 29) /* SHA1/SHA256 Instruction Extensions */ 671 #define CPUID_7_0_EBX_AVX512BW (1U << 30) /* AVX-512 Byte and Word Instructions */ 672 #define CPUID_7_0_EBX_AVX512VL (1U << 31) /* AVX-512 Vector Length Extensions */ 673 674 #define CPUID_7_0_ECX_AVX512BMI (1U << 1) 675 #define CPUID_7_0_ECX_VBMI (1U << 1) /* AVX-512 Vector Byte Manipulation Instrs */ 676 #define CPUID_7_0_ECX_UMIP (1U << 2) 677 #define CPUID_7_0_ECX_PKU (1U << 3) 678 #define CPUID_7_0_ECX_OSPKE (1U << 4) 679 #define CPUID_7_0_ECX_VBMI2 (1U << 6) /* Additional VBMI Instrs */ 680 #define CPUID_7_0_ECX_GFNI (1U << 8) 681 #define CPUID_7_0_ECX_VAES (1U << 9) 682 #define CPUID_7_0_ECX_VPCLMULQDQ (1U << 10) 683 #define CPUID_7_0_ECX_AVX512VNNI (1U << 11) 684 #define CPUID_7_0_ECX_AVX512BITALG (1U << 12) 685 #define CPUID_7_0_ECX_AVX512_VPOPCNTDQ (1U << 14) /* POPCNT for vectors of DW/QW */ 686 #define CPUID_7_0_ECX_LA57 (1U << 16) 687 #define CPUID_7_0_ECX_RDPID (1U << 22) 688 #define CPUID_7_0_ECX_CLDEMOTE (1U << 25) /* CLDEMOTE Instruction */ 689 690 #define CPUID_7_0_EDX_AVX512_4VNNIW (1U << 2) /* AVX512 Neural Network Instructions */ 691 #define CPUID_7_0_EDX_AVX512_4FMAPS (1U << 3) /* AVX512 Multiply Accumulation Single Precision */ 692 #define CPUID_7_0_EDX_PCONFIG (1U << 18) /* Platform Configuration */ 693 #define CPUID_7_0_EDX_SPEC_CTRL (1U << 26) /* Speculation Control */ 694 #define CPUID_7_0_EDX_ARCH_CAPABILITIES (1U << 29) /*Arch Capabilities*/ 695 #define CPUID_7_0_EDX_SPEC_CTRL_SSBD (1U << 31) /* Speculative Store Bypass Disable */ 696 697 #define CPUID_8000_0008_EBX_WBNOINVD (1U << 9) /* Write back and 698 do not invalidate cache */ 699 #define CPUID_8000_0008_EBX_IBPB (1U << 12) /* Indirect Branch Prediction Barrier */ 700 701 #define CPUID_XSAVE_XSAVEOPT (1U << 0) 702 #define CPUID_XSAVE_XSAVEC (1U << 1) 703 #define CPUID_XSAVE_XGETBV1 (1U << 2) 704 #define CPUID_XSAVE_XSAVES (1U << 3) 705 706 #define CPUID_6_EAX_ARAT (1U << 2) 707 708 /* CPUID[0x80000007].EDX flags: */ 709 #define CPUID_APM_INVTSC (1U << 8) 710 711 #define CPUID_VENDOR_SZ 12 712 713 #define CPUID_VENDOR_INTEL_1 0x756e6547 /* "Genu" */ 714 #define CPUID_VENDOR_INTEL_2 0x49656e69 /* "ineI" */ 715 #define CPUID_VENDOR_INTEL_3 0x6c65746e /* "ntel" */ 716 #define CPUID_VENDOR_INTEL "GenuineIntel" 717 718 #define CPUID_VENDOR_AMD_1 0x68747541 /* "Auth" */ 719 #define CPUID_VENDOR_AMD_2 0x69746e65 /* "enti" */ 720 #define CPUID_VENDOR_AMD_3 0x444d4163 /* "cAMD" */ 721 #define CPUID_VENDOR_AMD "AuthenticAMD" 722 723 #define CPUID_VENDOR_VIA "CentaurHauls" 724 725 #define CPUID_MWAIT_IBE (1U << 1) /* Interrupts can exit capability */ 726 #define CPUID_MWAIT_EMX (1U << 0) /* enumeration supported */ 727 728 /* CPUID[0xB].ECX level types */ 729 #define CPUID_TOPOLOGY_LEVEL_INVALID (0U << 8) 730 #define CPUID_TOPOLOGY_LEVEL_SMT (1U << 8) 731 #define CPUID_TOPOLOGY_LEVEL_CORE (2U << 8) 732 733 #ifndef HYPERV_SPINLOCK_NEVER_RETRY 734 #define HYPERV_SPINLOCK_NEVER_RETRY 0xFFFFFFFF 735 #endif 736 737 #define EXCP00_DIVZ 0 738 #define EXCP01_DB 1 739 #define EXCP02_NMI 2 740 #define EXCP03_INT3 3 741 #define EXCP04_INTO 4 742 #define EXCP05_BOUND 5 743 #define EXCP06_ILLOP 6 744 #define EXCP07_PREX 7 745 #define EXCP08_DBLE 8 746 #define EXCP09_XERR 9 747 #define EXCP0A_TSS 10 748 #define EXCP0B_NOSEG 11 749 #define EXCP0C_STACK 12 750 #define EXCP0D_GPF 13 751 #define EXCP0E_PAGE 14 752 #define EXCP10_COPR 16 753 #define EXCP11_ALGN 17 754 #define EXCP12_MCHK 18 755 756 #define EXCP_SYSCALL 0x100 /* only happens in user only emulation 757 for syscall instruction */ 758 #define EXCP_VMEXIT 0x100 759 760 /* i386-specific interrupt pending bits. */ 761 #define CPU_INTERRUPT_POLL CPU_INTERRUPT_TGT_EXT_1 762 #define CPU_INTERRUPT_SMI CPU_INTERRUPT_TGT_EXT_2 763 #define CPU_INTERRUPT_NMI CPU_INTERRUPT_TGT_EXT_3 764 #define CPU_INTERRUPT_MCE CPU_INTERRUPT_TGT_EXT_4 765 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_INT_0 766 #define CPU_INTERRUPT_SIPI CPU_INTERRUPT_TGT_INT_1 767 #define CPU_INTERRUPT_TPR CPU_INTERRUPT_TGT_INT_2 768 769 /* Use a clearer name for this. */ 770 #define CPU_INTERRUPT_INIT CPU_INTERRUPT_RESET 771 772 /* Instead of computing the condition codes after each x86 instruction, 773 * QEMU just stores one operand (called CC_SRC), the result 774 * (called CC_DST) and the type of operation (called CC_OP). When the 775 * condition codes are needed, the condition codes can be calculated 776 * using this information. Condition codes are not generated if they 777 * are only needed for conditional branches. 778 */ 779 typedef enum { 780 CC_OP_DYNAMIC, /* must use dynamic code to get cc_op */ 781 CC_OP_EFLAGS, /* all cc are explicitly computed, CC_SRC = flags */ 782 783 CC_OP_MULB, /* modify all flags, C, O = (CC_SRC != 0) */ 784 CC_OP_MULW, 785 CC_OP_MULL, 786 CC_OP_MULQ, 787 788 CC_OP_ADDB, /* modify all flags, CC_DST = res, CC_SRC = src1 */ 789 CC_OP_ADDW, 790 CC_OP_ADDL, 791 CC_OP_ADDQ, 792 793 CC_OP_ADCB, /* modify all flags, CC_DST = res, CC_SRC = src1 */ 794 CC_OP_ADCW, 795 CC_OP_ADCL, 796 CC_OP_ADCQ, 797 798 CC_OP_SUBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */ 799 CC_OP_SUBW, 800 CC_OP_SUBL, 801 CC_OP_SUBQ, 802 803 CC_OP_SBBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */ 804 CC_OP_SBBW, 805 CC_OP_SBBL, 806 CC_OP_SBBQ, 807 808 CC_OP_LOGICB, /* modify all flags, CC_DST = res */ 809 CC_OP_LOGICW, 810 CC_OP_LOGICL, 811 CC_OP_LOGICQ, 812 813 CC_OP_INCB, /* modify all flags except, CC_DST = res, CC_SRC = C */ 814 CC_OP_INCW, 815 CC_OP_INCL, 816 CC_OP_INCQ, 817 818 CC_OP_DECB, /* modify all flags except, CC_DST = res, CC_SRC = C */ 819 CC_OP_DECW, 820 CC_OP_DECL, 821 CC_OP_DECQ, 822 823 CC_OP_SHLB, /* modify all flags, CC_DST = res, CC_SRC.msb = C */ 824 CC_OP_SHLW, 825 CC_OP_SHLL, 826 CC_OP_SHLQ, 827 828 CC_OP_SARB, /* modify all flags, CC_DST = res, CC_SRC.lsb = C */ 829 CC_OP_SARW, 830 CC_OP_SARL, 831 CC_OP_SARQ, 832 833 CC_OP_BMILGB, /* Z,S via CC_DST, C = SRC==0; O=0; P,A undefined */ 834 CC_OP_BMILGW, 835 CC_OP_BMILGL, 836 CC_OP_BMILGQ, 837 838 CC_OP_ADCX, /* CC_DST = C, CC_SRC = rest. */ 839 CC_OP_ADOX, /* CC_DST = O, CC_SRC = rest. */ 840 CC_OP_ADCOX, /* CC_DST = C, CC_SRC2 = O, CC_SRC = rest. */ 841 842 CC_OP_CLR, /* Z set, all other flags clear. */ 843 CC_OP_POPCNT, /* Z via CC_SRC, all other flags clear. */ 844 845 CC_OP_NB, 846 } CCOp; 847 848 typedef struct SegmentCache { 849 uint32_t selector; 850 target_ulong base; 851 uint32_t limit; 852 uint32_t flags; 853 } SegmentCache; 854 855 #define MMREG_UNION(n, bits) \ 856 union n { \ 857 uint8_t _b_##n[(bits)/8]; \ 858 uint16_t _w_##n[(bits)/16]; \ 859 uint32_t _l_##n[(bits)/32]; \ 860 uint64_t _q_##n[(bits)/64]; \ 861 float32 _s_##n[(bits)/32]; \ 862 float64 _d_##n[(bits)/64]; \ 863 } 864 865 typedef union { 866 uint8_t _b[16]; 867 uint16_t _w[8]; 868 uint32_t _l[4]; 869 uint64_t _q[2]; 870 } XMMReg; 871 872 typedef union { 873 uint8_t _b[32]; 874 uint16_t _w[16]; 875 uint32_t _l[8]; 876 uint64_t _q[4]; 877 } YMMReg; 878 879 typedef MMREG_UNION(ZMMReg, 512) ZMMReg; 880 typedef MMREG_UNION(MMXReg, 64) MMXReg; 881 882 typedef struct BNDReg { 883 uint64_t lb; 884 uint64_t ub; 885 } BNDReg; 886 887 typedef struct BNDCSReg { 888 uint64_t cfgu; 889 uint64_t sts; 890 } BNDCSReg; 891 892 #define BNDCFG_ENABLE 1ULL 893 #define BNDCFG_BNDPRESERVE 2ULL 894 #define BNDCFG_BDIR_MASK TARGET_PAGE_MASK 895 896 #ifdef HOST_WORDS_BIGENDIAN 897 #define ZMM_B(n) _b_ZMMReg[63 - (n)] 898 #define ZMM_W(n) _w_ZMMReg[31 - (n)] 899 #define ZMM_L(n) _l_ZMMReg[15 - (n)] 900 #define ZMM_S(n) _s_ZMMReg[15 - (n)] 901 #define ZMM_Q(n) _q_ZMMReg[7 - (n)] 902 #define ZMM_D(n) _d_ZMMReg[7 - (n)] 903 904 #define MMX_B(n) _b_MMXReg[7 - (n)] 905 #define MMX_W(n) _w_MMXReg[3 - (n)] 906 #define MMX_L(n) _l_MMXReg[1 - (n)] 907 #define MMX_S(n) _s_MMXReg[1 - (n)] 908 #else 909 #define ZMM_B(n) _b_ZMMReg[n] 910 #define ZMM_W(n) _w_ZMMReg[n] 911 #define ZMM_L(n) _l_ZMMReg[n] 912 #define ZMM_S(n) _s_ZMMReg[n] 913 #define ZMM_Q(n) _q_ZMMReg[n] 914 #define ZMM_D(n) _d_ZMMReg[n] 915 916 #define MMX_B(n) _b_MMXReg[n] 917 #define MMX_W(n) _w_MMXReg[n] 918 #define MMX_L(n) _l_MMXReg[n] 919 #define MMX_S(n) _s_MMXReg[n] 920 #endif 921 #define MMX_Q(n) _q_MMXReg[n] 922 923 typedef union { 924 floatx80 d __attribute__((aligned(16))); 925 MMXReg mmx; 926 } FPReg; 927 928 typedef struct { 929 uint64_t base; 930 uint64_t mask; 931 } MTRRVar; 932 933 #define CPU_NB_REGS64 16 934 #define CPU_NB_REGS32 8 935 936 #ifdef TARGET_X86_64 937 #define CPU_NB_REGS CPU_NB_REGS64 938 #else 939 #define CPU_NB_REGS CPU_NB_REGS32 940 #endif 941 942 #define MAX_FIXED_COUNTERS 3 943 #define MAX_GP_COUNTERS (MSR_IA32_PERF_STATUS - MSR_P6_EVNTSEL0) 944 945 #define NB_MMU_MODES 3 946 #define TARGET_INSN_START_EXTRA_WORDS 1 947 948 #define NB_OPMASK_REGS 8 949 950 /* CPU can't have 0xFFFFFFFF APIC ID, use that value to distinguish 951 * that APIC ID hasn't been set yet 952 */ 953 #define UNASSIGNED_APIC_ID 0xFFFFFFFF 954 955 typedef union X86LegacyXSaveArea { 956 struct { 957 uint16_t fcw; 958 uint16_t fsw; 959 uint8_t ftw; 960 uint8_t reserved; 961 uint16_t fpop; 962 uint64_t fpip; 963 uint64_t fpdp; 964 uint32_t mxcsr; 965 uint32_t mxcsr_mask; 966 FPReg fpregs[8]; 967 uint8_t xmm_regs[16][16]; 968 }; 969 uint8_t data[512]; 970 } X86LegacyXSaveArea; 971 972 typedef struct X86XSaveHeader { 973 uint64_t xstate_bv; 974 uint64_t xcomp_bv; 975 uint64_t reserve0; 976 uint8_t reserved[40]; 977 } X86XSaveHeader; 978 979 /* Ext. save area 2: AVX State */ 980 typedef struct XSaveAVX { 981 uint8_t ymmh[16][16]; 982 } XSaveAVX; 983 984 /* Ext. save area 3: BNDREG */ 985 typedef struct XSaveBNDREG { 986 BNDReg bnd_regs[4]; 987 } XSaveBNDREG; 988 989 /* Ext. save area 4: BNDCSR */ 990 typedef union XSaveBNDCSR { 991 BNDCSReg bndcsr; 992 uint8_t data[64]; 993 } XSaveBNDCSR; 994 995 /* Ext. save area 5: Opmask */ 996 typedef struct XSaveOpmask { 997 uint64_t opmask_regs[NB_OPMASK_REGS]; 998 } XSaveOpmask; 999 1000 /* Ext. save area 6: ZMM_Hi256 */ 1001 typedef struct XSaveZMM_Hi256 { 1002 uint8_t zmm_hi256[16][32]; 1003 } XSaveZMM_Hi256; 1004 1005 /* Ext. save area 7: Hi16_ZMM */ 1006 typedef struct XSaveHi16_ZMM { 1007 uint8_t hi16_zmm[16][64]; 1008 } XSaveHi16_ZMM; 1009 1010 /* Ext. save area 9: PKRU state */ 1011 typedef struct XSavePKRU { 1012 uint32_t pkru; 1013 uint32_t padding; 1014 } XSavePKRU; 1015 1016 typedef struct X86XSaveArea { 1017 X86LegacyXSaveArea legacy; 1018 X86XSaveHeader header; 1019 1020 /* Extended save areas: */ 1021 1022 /* AVX State: */ 1023 XSaveAVX avx_state; 1024 uint8_t padding[960 - 576 - sizeof(XSaveAVX)]; 1025 /* MPX State: */ 1026 XSaveBNDREG bndreg_state; 1027 XSaveBNDCSR bndcsr_state; 1028 /* AVX-512 State: */ 1029 XSaveOpmask opmask_state; 1030 XSaveZMM_Hi256 zmm_hi256_state; 1031 XSaveHi16_ZMM hi16_zmm_state; 1032 /* PKRU State: */ 1033 XSavePKRU pkru_state; 1034 } X86XSaveArea; 1035 1036 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, avx_state) != 0x240); 1037 QEMU_BUILD_BUG_ON(sizeof(XSaveAVX) != 0x100); 1038 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, bndreg_state) != 0x3c0); 1039 QEMU_BUILD_BUG_ON(sizeof(XSaveBNDREG) != 0x40); 1040 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, bndcsr_state) != 0x400); 1041 QEMU_BUILD_BUG_ON(sizeof(XSaveBNDCSR) != 0x40); 1042 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, opmask_state) != 0x440); 1043 QEMU_BUILD_BUG_ON(sizeof(XSaveOpmask) != 0x40); 1044 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, zmm_hi256_state) != 0x480); 1045 QEMU_BUILD_BUG_ON(sizeof(XSaveZMM_Hi256) != 0x200); 1046 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, hi16_zmm_state) != 0x680); 1047 QEMU_BUILD_BUG_ON(sizeof(XSaveHi16_ZMM) != 0x400); 1048 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, pkru_state) != 0xA80); 1049 QEMU_BUILD_BUG_ON(sizeof(XSavePKRU) != 0x8); 1050 1051 typedef enum TPRAccess { 1052 TPR_ACCESS_READ, 1053 TPR_ACCESS_WRITE, 1054 } TPRAccess; 1055 1056 /* Cache information data structures: */ 1057 1058 enum CacheType { 1059 DATA_CACHE, 1060 INSTRUCTION_CACHE, 1061 UNIFIED_CACHE 1062 }; 1063 1064 typedef struct CPUCacheInfo { 1065 enum CacheType type; 1066 uint8_t level; 1067 /* Size in bytes */ 1068 uint32_t size; 1069 /* Line size, in bytes */ 1070 uint16_t line_size; 1071 /* 1072 * Associativity. 1073 * Note: representation of fully-associative caches is not implemented 1074 */ 1075 uint8_t associativity; 1076 /* Physical line partitions. CPUID[0x8000001D].EBX, CPUID[4].EBX */ 1077 uint8_t partitions; 1078 /* Number of sets. CPUID[0x8000001D].ECX, CPUID[4].ECX */ 1079 uint32_t sets; 1080 /* 1081 * Lines per tag. 1082 * AMD-specific: CPUID[0x80000005], CPUID[0x80000006]. 1083 * (Is this synonym to @partitions?) 1084 */ 1085 uint8_t lines_per_tag; 1086 1087 /* Self-initializing cache */ 1088 bool self_init; 1089 /* 1090 * WBINVD/INVD is not guaranteed to act upon lower level caches of 1091 * non-originating threads sharing this cache. 1092 * CPUID[4].EDX[bit 0], CPUID[0x8000001D].EDX[bit 0] 1093 */ 1094 bool no_invd_sharing; 1095 /* 1096 * Cache is inclusive of lower cache levels. 1097 * CPUID[4].EDX[bit 1], CPUID[0x8000001D].EDX[bit 1]. 1098 */ 1099 bool inclusive; 1100 /* 1101 * A complex function is used to index the cache, potentially using all 1102 * address bits. CPUID[4].EDX[bit 2]. 1103 */ 1104 bool complex_indexing; 1105 } CPUCacheInfo; 1106 1107 1108 typedef struct CPUCaches { 1109 CPUCacheInfo *l1d_cache; 1110 CPUCacheInfo *l1i_cache; 1111 CPUCacheInfo *l2_cache; 1112 CPUCacheInfo *l3_cache; 1113 } CPUCaches; 1114 1115 typedef struct CPUX86State { 1116 /* standard registers */ 1117 target_ulong regs[CPU_NB_REGS]; 1118 target_ulong eip; 1119 target_ulong eflags; /* eflags register. During CPU emulation, CC 1120 flags and DF are set to zero because they are 1121 stored elsewhere */ 1122 1123 /* emulator internal eflags handling */ 1124 target_ulong cc_dst; 1125 target_ulong cc_src; 1126 target_ulong cc_src2; 1127 uint32_t cc_op; 1128 int32_t df; /* D flag : 1 if D = 0, -1 if D = 1 */ 1129 uint32_t hflags; /* TB flags, see HF_xxx constants. These flags 1130 are known at translation time. */ 1131 uint32_t hflags2; /* various other flags, see HF2_xxx constants. */ 1132 1133 /* segments */ 1134 SegmentCache segs[6]; /* selector values */ 1135 SegmentCache ldt; 1136 SegmentCache tr; 1137 SegmentCache gdt; /* only base and limit are used */ 1138 SegmentCache idt; /* only base and limit are used */ 1139 1140 target_ulong cr[5]; /* NOTE: cr1 is unused */ 1141 int32_t a20_mask; 1142 1143 BNDReg bnd_regs[4]; 1144 BNDCSReg bndcs_regs; 1145 uint64_t msr_bndcfgs; 1146 uint64_t efer; 1147 1148 /* Beginning of state preserved by INIT (dummy marker). */ 1149 struct {} start_init_save; 1150 1151 /* FPU state */ 1152 unsigned int fpstt; /* top of stack index */ 1153 uint16_t fpus; 1154 uint16_t fpuc; 1155 uint8_t fptags[8]; /* 0 = valid, 1 = empty */ 1156 FPReg fpregs[8]; 1157 /* KVM-only so far */ 1158 uint16_t fpop; 1159 uint64_t fpip; 1160 uint64_t fpdp; 1161 1162 /* emulator internal variables */ 1163 float_status fp_status; 1164 floatx80 ft0; 1165 1166 float_status mmx_status; /* for 3DNow! float ops */ 1167 float_status sse_status; 1168 uint32_t mxcsr; 1169 ZMMReg xmm_regs[CPU_NB_REGS == 8 ? 8 : 32]; 1170 ZMMReg xmm_t0; 1171 MMXReg mmx_t0; 1172 1173 XMMReg ymmh_regs[CPU_NB_REGS]; 1174 1175 uint64_t opmask_regs[NB_OPMASK_REGS]; 1176 YMMReg zmmh_regs[CPU_NB_REGS]; 1177 ZMMReg hi16_zmm_regs[CPU_NB_REGS]; 1178 1179 /* sysenter registers */ 1180 uint32_t sysenter_cs; 1181 target_ulong sysenter_esp; 1182 target_ulong sysenter_eip; 1183 uint64_t star; 1184 1185 uint64_t vm_hsave; 1186 1187 #ifdef TARGET_X86_64 1188 target_ulong lstar; 1189 target_ulong cstar; 1190 target_ulong fmask; 1191 target_ulong kernelgsbase; 1192 #endif 1193 1194 uint64_t tsc; 1195 uint64_t tsc_adjust; 1196 uint64_t tsc_deadline; 1197 uint64_t tsc_aux; 1198 1199 uint64_t xcr0; 1200 1201 uint64_t mcg_status; 1202 uint64_t msr_ia32_misc_enable; 1203 uint64_t msr_ia32_feature_control; 1204 1205 uint64_t msr_fixed_ctr_ctrl; 1206 uint64_t msr_global_ctrl; 1207 uint64_t msr_global_status; 1208 uint64_t msr_global_ovf_ctrl; 1209 uint64_t msr_fixed_counters[MAX_FIXED_COUNTERS]; 1210 uint64_t msr_gp_counters[MAX_GP_COUNTERS]; 1211 uint64_t msr_gp_evtsel[MAX_GP_COUNTERS]; 1212 1213 uint64_t pat; 1214 uint32_t smbase; 1215 uint64_t msr_smi_count; 1216 1217 uint32_t pkru; 1218 1219 uint64_t spec_ctrl; 1220 uint64_t virt_ssbd; 1221 1222 /* End of state preserved by INIT (dummy marker). */ 1223 struct {} end_init_save; 1224 1225 uint64_t system_time_msr; 1226 uint64_t wall_clock_msr; 1227 uint64_t steal_time_msr; 1228 uint64_t async_pf_en_msr; 1229 uint64_t pv_eoi_en_msr; 1230 1231 /* Partition-wide HV MSRs, will be updated only on the first vcpu */ 1232 uint64_t msr_hv_hypercall; 1233 uint64_t msr_hv_guest_os_id; 1234 uint64_t msr_hv_tsc; 1235 1236 /* Per-VCPU HV MSRs */ 1237 uint64_t msr_hv_vapic; 1238 uint64_t msr_hv_crash_params[HV_CRASH_PARAMS]; 1239 uint64_t msr_hv_runtime; 1240 uint64_t msr_hv_synic_control; 1241 uint64_t msr_hv_synic_evt_page; 1242 uint64_t msr_hv_synic_msg_page; 1243 uint64_t msr_hv_synic_sint[HV_SINT_COUNT]; 1244 uint64_t msr_hv_stimer_config[HV_STIMER_COUNT]; 1245 uint64_t msr_hv_stimer_count[HV_STIMER_COUNT]; 1246 uint64_t msr_hv_reenlightenment_control; 1247 uint64_t msr_hv_tsc_emulation_control; 1248 uint64_t msr_hv_tsc_emulation_status; 1249 1250 uint64_t msr_rtit_ctrl; 1251 uint64_t msr_rtit_status; 1252 uint64_t msr_rtit_output_base; 1253 uint64_t msr_rtit_output_mask; 1254 uint64_t msr_rtit_cr3_match; 1255 uint64_t msr_rtit_addrs[MAX_RTIT_ADDRS]; 1256 1257 /* exception/interrupt handling */ 1258 int error_code; 1259 int exception_is_int; 1260 target_ulong exception_next_eip; 1261 target_ulong dr[8]; /* debug registers; note dr4 and dr5 are unused */ 1262 union { 1263 struct CPUBreakpoint *cpu_breakpoint[4]; 1264 struct CPUWatchpoint *cpu_watchpoint[4]; 1265 }; /* break/watchpoints for dr[0..3] */ 1266 int old_exception; /* exception in flight */ 1267 1268 uint64_t vm_vmcb; 1269 uint64_t tsc_offset; 1270 uint64_t intercept; 1271 uint16_t intercept_cr_read; 1272 uint16_t intercept_cr_write; 1273 uint16_t intercept_dr_read; 1274 uint16_t intercept_dr_write; 1275 uint32_t intercept_exceptions; 1276 uint64_t nested_cr3; 1277 uint32_t nested_pg_mode; 1278 uint8_t v_tpr; 1279 1280 /* KVM states, automatically cleared on reset */ 1281 uint8_t nmi_injected; 1282 uint8_t nmi_pending; 1283 1284 uintptr_t retaddr; 1285 1286 /* Fields up to this point are cleared by a CPU reset */ 1287 struct {} end_reset_fields; 1288 1289 CPU_COMMON 1290 1291 /* Fields after CPU_COMMON are preserved across CPU reset. */ 1292 1293 /* processor features (e.g. for CPUID insn) */ 1294 /* Minimum level/xlevel/xlevel2, based on CPU model + features */ 1295 uint32_t cpuid_min_level, cpuid_min_xlevel, cpuid_min_xlevel2; 1296 /* Maximum level/xlevel/xlevel2 value for auto-assignment: */ 1297 uint32_t cpuid_max_level, cpuid_max_xlevel, cpuid_max_xlevel2; 1298 /* Actual level/xlevel/xlevel2 value: */ 1299 uint32_t cpuid_level, cpuid_xlevel, cpuid_xlevel2; 1300 uint32_t cpuid_vendor1; 1301 uint32_t cpuid_vendor2; 1302 uint32_t cpuid_vendor3; 1303 uint32_t cpuid_version; 1304 FeatureWordArray features; 1305 /* Features that were explicitly enabled/disabled */ 1306 FeatureWordArray user_features; 1307 uint32_t cpuid_model[12]; 1308 /* Cache information for CPUID. When legacy-cache=on, the cache data 1309 * on each CPUID leaf will be different, because we keep compatibility 1310 * with old QEMU versions. 1311 */ 1312 CPUCaches cache_info_cpuid2, cache_info_cpuid4, cache_info_amd; 1313 1314 /* MTRRs */ 1315 uint64_t mtrr_fixed[11]; 1316 uint64_t mtrr_deftype; 1317 MTRRVar mtrr_var[MSR_MTRRcap_VCNT]; 1318 1319 /* For KVM */ 1320 uint32_t mp_state; 1321 int32_t exception_injected; 1322 int32_t interrupt_injected; 1323 uint8_t soft_interrupt; 1324 uint8_t has_error_code; 1325 uint32_t ins_len; 1326 uint32_t sipi_vector; 1327 bool tsc_valid; 1328 int64_t tsc_khz; 1329 int64_t user_tsc_khz; /* for sanity check only */ 1330 #if defined(CONFIG_KVM) || defined(CONFIG_HVF) 1331 void *xsave_buf; 1332 #endif 1333 #if defined(CONFIG_HVF) 1334 HVFX86EmulatorState *hvf_emul; 1335 #endif 1336 1337 uint64_t mcg_cap; 1338 uint64_t mcg_ctl; 1339 uint64_t mcg_ext_ctl; 1340 uint64_t mce_banks[MCE_BANKS_DEF*4]; 1341 uint64_t xstate_bv; 1342 1343 /* vmstate */ 1344 uint16_t fpus_vmstate; 1345 uint16_t fptag_vmstate; 1346 uint16_t fpregs_format_vmstate; 1347 1348 uint64_t xss; 1349 1350 TPRAccess tpr_access_type; 1351 } CPUX86State; 1352 1353 struct kvm_msrs; 1354 1355 /** 1356 * X86CPU: 1357 * @env: #CPUX86State 1358 * @migratable: If set, only migratable flags will be accepted when "enforce" 1359 * mode is used, and only migratable flags will be included in the "host" 1360 * CPU model. 1361 * 1362 * An x86 CPU. 1363 */ 1364 struct X86CPU { 1365 /*< private >*/ 1366 CPUState parent_obj; 1367 /*< public >*/ 1368 1369 CPUX86State env; 1370 1371 bool hyperv_vapic; 1372 bool hyperv_relaxed_timing; 1373 int hyperv_spinlock_attempts; 1374 char *hyperv_vendor_id; 1375 bool hyperv_time; 1376 bool hyperv_crash; 1377 bool hyperv_reset; 1378 bool hyperv_vpindex; 1379 bool hyperv_runtime; 1380 bool hyperv_synic; 1381 bool hyperv_synic_kvm_only; 1382 bool hyperv_stimer; 1383 bool hyperv_frequencies; 1384 bool hyperv_reenlightenment; 1385 bool hyperv_tlbflush; 1386 bool hyperv_ipi; 1387 bool check_cpuid; 1388 bool enforce_cpuid; 1389 bool expose_kvm; 1390 bool expose_tcg; 1391 bool migratable; 1392 bool migrate_smi_count; 1393 bool max_features; /* Enable all supported features automatically */ 1394 uint32_t apic_id; 1395 1396 /* Enables publishing of TSC increment and Local APIC bus frequencies to 1397 * the guest OS in CPUID page 0x40000010, the same way that VMWare does. */ 1398 bool vmware_cpuid_freq; 1399 1400 /* if true the CPUID code directly forward host cache leaves to the guest */ 1401 bool cache_info_passthrough; 1402 1403 /* if true the CPUID code directly forwards 1404 * host monitor/mwait leaves to the guest */ 1405 struct { 1406 uint32_t eax; 1407 uint32_t ebx; 1408 uint32_t ecx; 1409 uint32_t edx; 1410 } mwait; 1411 1412 /* Features that were filtered out because of missing host capabilities */ 1413 uint32_t filtered_features[FEATURE_WORDS]; 1414 1415 /* Enable PMU CPUID bits. This can't be enabled by default yet because 1416 * it doesn't have ABI stability guarantees, as it passes all PMU CPUID 1417 * bits returned by GET_SUPPORTED_CPUID (that depend on host CPU and kernel 1418 * capabilities) directly to the guest. 1419 */ 1420 bool enable_pmu; 1421 1422 /* LMCE support can be enabled/disabled via cpu option 'lmce=on/off'. It is 1423 * disabled by default to avoid breaking migration between QEMU with 1424 * different LMCE configurations. 1425 */ 1426 bool enable_lmce; 1427 1428 /* Compatibility bits for old machine types. 1429 * If true present virtual l3 cache for VM, the vcpus in the same virtual 1430 * socket share an virtual l3 cache. 1431 */ 1432 bool enable_l3_cache; 1433 1434 /* Compatibility bits for old machine types. 1435 * If true present the old cache topology information 1436 */ 1437 bool legacy_cache; 1438 1439 /* Compatibility bits for old machine types: */ 1440 bool enable_cpuid_0xb; 1441 1442 /* Enable auto level-increase for all CPUID leaves */ 1443 bool full_cpuid_auto_level; 1444 1445 /* if true fill the top bits of the MTRR_PHYSMASKn variable range */ 1446 bool fill_mtrr_mask; 1447 1448 /* if true override the phys_bits value with a value read from the host */ 1449 bool host_phys_bits; 1450 1451 /* Stop SMI delivery for migration compatibility with old machines */ 1452 bool kvm_no_smi_migration; 1453 1454 /* Number of physical address bits supported */ 1455 uint32_t phys_bits; 1456 1457 /* in order to simplify APIC support, we leave this pointer to the 1458 user */ 1459 struct DeviceState *apic_state; 1460 struct MemoryRegion *cpu_as_root, *cpu_as_mem, *smram; 1461 Notifier machine_done; 1462 1463 struct kvm_msrs *kvm_msr_buf; 1464 1465 int32_t node_id; /* NUMA node this CPU belongs to */ 1466 int32_t socket_id; 1467 int32_t core_id; 1468 int32_t thread_id; 1469 1470 int32_t hv_max_vps; 1471 }; 1472 1473 static inline X86CPU *x86_env_get_cpu(CPUX86State *env) 1474 { 1475 return container_of(env, X86CPU, env); 1476 } 1477 1478 #define ENV_GET_CPU(e) CPU(x86_env_get_cpu(e)) 1479 1480 #define ENV_OFFSET offsetof(X86CPU, env) 1481 1482 #ifndef CONFIG_USER_ONLY 1483 extern struct VMStateDescription vmstate_x86_cpu; 1484 #endif 1485 1486 /** 1487 * x86_cpu_do_interrupt: 1488 * @cpu: vCPU the interrupt is to be handled by. 1489 */ 1490 void x86_cpu_do_interrupt(CPUState *cpu); 1491 bool x86_cpu_exec_interrupt(CPUState *cpu, int int_req); 1492 int x86_cpu_pending_interrupt(CPUState *cs, int interrupt_request); 1493 1494 int x86_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 1495 int cpuid, void *opaque); 1496 int x86_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 1497 int cpuid, void *opaque); 1498 int x86_cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 1499 void *opaque); 1500 int x86_cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 1501 void *opaque); 1502 1503 void x86_cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 1504 Error **errp); 1505 1506 void x86_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, 1507 int flags); 1508 1509 hwaddr x86_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 1510 1511 int x86_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 1512 int x86_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1513 1514 void x86_cpu_exec_enter(CPUState *cpu); 1515 void x86_cpu_exec_exit(CPUState *cpu); 1516 1517 void x86_cpu_list(FILE *f, fprintf_function cpu_fprintf); 1518 int cpu_x86_support_mca_broadcast(CPUX86State *env); 1519 1520 int cpu_get_pic_interrupt(CPUX86State *s); 1521 /* MSDOS compatibility mode FPU exception support */ 1522 void cpu_set_ferr(CPUX86State *s); 1523 /* mpx_helper.c */ 1524 void cpu_sync_bndcs_hflags(CPUX86State *env); 1525 1526 /* this function must always be used to load data in the segment 1527 cache: it synchronizes the hflags with the segment cache values */ 1528 static inline void cpu_x86_load_seg_cache(CPUX86State *env, 1529 int seg_reg, unsigned int selector, 1530 target_ulong base, 1531 unsigned int limit, 1532 unsigned int flags) 1533 { 1534 SegmentCache *sc; 1535 unsigned int new_hflags; 1536 1537 sc = &env->segs[seg_reg]; 1538 sc->selector = selector; 1539 sc->base = base; 1540 sc->limit = limit; 1541 sc->flags = flags; 1542 1543 /* update the hidden flags */ 1544 { 1545 if (seg_reg == R_CS) { 1546 #ifdef TARGET_X86_64 1547 if ((env->hflags & HF_LMA_MASK) && (flags & DESC_L_MASK)) { 1548 /* long mode */ 1549 env->hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; 1550 env->hflags &= ~(HF_ADDSEG_MASK); 1551 } else 1552 #endif 1553 { 1554 /* legacy / compatibility case */ 1555 new_hflags = (env->segs[R_CS].flags & DESC_B_MASK) 1556 >> (DESC_B_SHIFT - HF_CS32_SHIFT); 1557 env->hflags = (env->hflags & ~(HF_CS32_MASK | HF_CS64_MASK)) | 1558 new_hflags; 1559 } 1560 } 1561 if (seg_reg == R_SS) { 1562 int cpl = (flags >> DESC_DPL_SHIFT) & 3; 1563 #if HF_CPL_MASK != 3 1564 #error HF_CPL_MASK is hardcoded 1565 #endif 1566 env->hflags = (env->hflags & ~HF_CPL_MASK) | cpl; 1567 /* Possibly switch between BNDCFGS and BNDCFGU */ 1568 cpu_sync_bndcs_hflags(env); 1569 } 1570 new_hflags = (env->segs[R_SS].flags & DESC_B_MASK) 1571 >> (DESC_B_SHIFT - HF_SS32_SHIFT); 1572 if (env->hflags & HF_CS64_MASK) { 1573 /* zero base assumed for DS, ES and SS in long mode */ 1574 } else if (!(env->cr[0] & CR0_PE_MASK) || 1575 (env->eflags & VM_MASK) || 1576 !(env->hflags & HF_CS32_MASK)) { 1577 /* XXX: try to avoid this test. The problem comes from the 1578 fact that is real mode or vm86 mode we only modify the 1579 'base' and 'selector' fields of the segment cache to go 1580 faster. A solution may be to force addseg to one in 1581 translate-i386.c. */ 1582 new_hflags |= HF_ADDSEG_MASK; 1583 } else { 1584 new_hflags |= ((env->segs[R_DS].base | 1585 env->segs[R_ES].base | 1586 env->segs[R_SS].base) != 0) << 1587 HF_ADDSEG_SHIFT; 1588 } 1589 env->hflags = (env->hflags & 1590 ~(HF_SS32_MASK | HF_ADDSEG_MASK)) | new_hflags; 1591 } 1592 } 1593 1594 static inline void cpu_x86_load_seg_cache_sipi(X86CPU *cpu, 1595 uint8_t sipi_vector) 1596 { 1597 CPUState *cs = CPU(cpu); 1598 CPUX86State *env = &cpu->env; 1599 1600 env->eip = 0; 1601 cpu_x86_load_seg_cache(env, R_CS, sipi_vector << 8, 1602 sipi_vector << 12, 1603 env->segs[R_CS].limit, 1604 env->segs[R_CS].flags); 1605 cs->halted = 0; 1606 } 1607 1608 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector, 1609 target_ulong *base, unsigned int *limit, 1610 unsigned int *flags); 1611 1612 /* op_helper.c */ 1613 /* used for debug or cpu save/restore */ 1614 1615 /* cpu-exec.c */ 1616 /* the following helpers are only usable in user mode simulation as 1617 they can trigger unexpected exceptions */ 1618 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector); 1619 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32); 1620 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32); 1621 void cpu_x86_fxsave(CPUX86State *s, target_ulong ptr); 1622 void cpu_x86_fxrstor(CPUX86State *s, target_ulong ptr); 1623 1624 /* you can call this signal handler from your SIGBUS and SIGSEGV 1625 signal handlers to inform the virtual CPU of exceptions. non zero 1626 is returned if the signal was handled by the virtual CPU. */ 1627 int cpu_x86_signal_handler(int host_signum, void *pinfo, 1628 void *puc); 1629 1630 /* cpu.c */ 1631 void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count, 1632 uint32_t *eax, uint32_t *ebx, 1633 uint32_t *ecx, uint32_t *edx); 1634 void cpu_clear_apic_feature(CPUX86State *env); 1635 void host_cpuid(uint32_t function, uint32_t count, 1636 uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx); 1637 void host_vendor_fms(char *vendor, int *family, int *model, int *stepping); 1638 1639 /* helper.c */ 1640 int x86_cpu_handle_mmu_fault(CPUState *cpu, vaddr addr, int size, 1641 int is_write, int mmu_idx); 1642 void x86_cpu_set_a20(X86CPU *cpu, int a20_state); 1643 1644 #ifndef CONFIG_USER_ONLY 1645 static inline int x86_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 1646 { 1647 return !!attrs.secure; 1648 } 1649 1650 static inline AddressSpace *cpu_addressspace(CPUState *cs, MemTxAttrs attrs) 1651 { 1652 return cpu_get_address_space(cs, cpu_asidx_from_attrs(cs, attrs)); 1653 } 1654 1655 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr); 1656 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr); 1657 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr); 1658 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr); 1659 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val); 1660 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val); 1661 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val); 1662 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val); 1663 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val); 1664 #endif 1665 1666 void breakpoint_handler(CPUState *cs); 1667 1668 /* will be suppressed */ 1669 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0); 1670 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3); 1671 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4); 1672 void cpu_x86_update_dr7(CPUX86State *env, uint32_t new_dr7); 1673 1674 /* hw/pc.c */ 1675 uint64_t cpu_get_tsc(CPUX86State *env); 1676 1677 #define TARGET_PAGE_BITS 12 1678 1679 #ifdef TARGET_X86_64 1680 #define TARGET_PHYS_ADDR_SPACE_BITS 52 1681 /* ??? This is really 48 bits, sign-extended, but the only thing 1682 accessible to userland with bit 48 set is the VSYSCALL, and that 1683 is handled via other mechanisms. */ 1684 #define TARGET_VIRT_ADDR_SPACE_BITS 47 1685 #else 1686 #define TARGET_PHYS_ADDR_SPACE_BITS 36 1687 #define TARGET_VIRT_ADDR_SPACE_BITS 32 1688 #endif 1689 1690 /* XXX: This value should match the one returned by CPUID 1691 * and in exec.c */ 1692 # if defined(TARGET_X86_64) 1693 # define TCG_PHYS_ADDR_BITS 40 1694 # else 1695 # define TCG_PHYS_ADDR_BITS 36 1696 # endif 1697 1698 #define PHYS_ADDR_MASK MAKE_64BIT_MASK(0, TCG_PHYS_ADDR_BITS) 1699 1700 #define X86_CPU_TYPE_SUFFIX "-" TYPE_X86_CPU 1701 #define X86_CPU_TYPE_NAME(name) (name X86_CPU_TYPE_SUFFIX) 1702 #define CPU_RESOLVING_TYPE TYPE_X86_CPU 1703 1704 #ifdef TARGET_X86_64 1705 #define TARGET_DEFAULT_CPU_TYPE X86_CPU_TYPE_NAME("qemu64") 1706 #else 1707 #define TARGET_DEFAULT_CPU_TYPE X86_CPU_TYPE_NAME("qemu32") 1708 #endif 1709 1710 #define cpu_signal_handler cpu_x86_signal_handler 1711 #define cpu_list x86_cpu_list 1712 1713 /* MMU modes definitions */ 1714 #define MMU_MODE0_SUFFIX _ksmap 1715 #define MMU_MODE1_SUFFIX _user 1716 #define MMU_MODE2_SUFFIX _knosmap /* SMAP disabled or CPL<3 && AC=1 */ 1717 #define MMU_KSMAP_IDX 0 1718 #define MMU_USER_IDX 1 1719 #define MMU_KNOSMAP_IDX 2 1720 static inline int cpu_mmu_index(CPUX86State *env, bool ifetch) 1721 { 1722 return (env->hflags & HF_CPL_MASK) == 3 ? MMU_USER_IDX : 1723 (!(env->hflags & HF_SMAP_MASK) || (env->eflags & AC_MASK)) 1724 ? MMU_KNOSMAP_IDX : MMU_KSMAP_IDX; 1725 } 1726 1727 static inline int cpu_mmu_index_kernel(CPUX86State *env) 1728 { 1729 return !(env->hflags & HF_SMAP_MASK) ? MMU_KNOSMAP_IDX : 1730 ((env->hflags & HF_CPL_MASK) < 3 && (env->eflags & AC_MASK)) 1731 ? MMU_KNOSMAP_IDX : MMU_KSMAP_IDX; 1732 } 1733 1734 #define CC_DST (env->cc_dst) 1735 #define CC_SRC (env->cc_src) 1736 #define CC_SRC2 (env->cc_src2) 1737 #define CC_OP (env->cc_op) 1738 1739 /* n must be a constant to be efficient */ 1740 static inline target_long lshift(target_long x, int n) 1741 { 1742 if (n >= 0) { 1743 return x << n; 1744 } else { 1745 return x >> (-n); 1746 } 1747 } 1748 1749 /* float macros */ 1750 #define FT0 (env->ft0) 1751 #define ST0 (env->fpregs[env->fpstt].d) 1752 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d) 1753 #define ST1 ST(1) 1754 1755 /* translate.c */ 1756 void tcg_x86_init(void); 1757 1758 #include "exec/cpu-all.h" 1759 #include "svm.h" 1760 1761 #if !defined(CONFIG_USER_ONLY) 1762 #include "hw/i386/apic.h" 1763 #endif 1764 1765 static inline void cpu_get_tb_cpu_state(CPUX86State *env, target_ulong *pc, 1766 target_ulong *cs_base, uint32_t *flags) 1767 { 1768 *cs_base = env->segs[R_CS].base; 1769 *pc = *cs_base + env->eip; 1770 *flags = env->hflags | 1771 (env->eflags & (IOPL_MASK | TF_MASK | RF_MASK | VM_MASK | AC_MASK)); 1772 } 1773 1774 void do_cpu_init(X86CPU *cpu); 1775 void do_cpu_sipi(X86CPU *cpu); 1776 1777 #define MCE_INJECT_BROADCAST 1 1778 #define MCE_INJECT_UNCOND_AO 2 1779 1780 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank, 1781 uint64_t status, uint64_t mcg_status, uint64_t addr, 1782 uint64_t misc, int flags); 1783 1784 /* excp_helper.c */ 1785 void QEMU_NORETURN raise_exception(CPUX86State *env, int exception_index); 1786 void QEMU_NORETURN raise_exception_ra(CPUX86State *env, int exception_index, 1787 uintptr_t retaddr); 1788 void QEMU_NORETURN raise_exception_err(CPUX86State *env, int exception_index, 1789 int error_code); 1790 void QEMU_NORETURN raise_exception_err_ra(CPUX86State *env, int exception_index, 1791 int error_code, uintptr_t retaddr); 1792 void QEMU_NORETURN raise_interrupt(CPUX86State *nenv, int intno, int is_int, 1793 int error_code, int next_eip_addend); 1794 1795 /* cc_helper.c */ 1796 extern const uint8_t parity_table[256]; 1797 uint32_t cpu_cc_compute_all(CPUX86State *env1, int op); 1798 1799 static inline uint32_t cpu_compute_eflags(CPUX86State *env) 1800 { 1801 uint32_t eflags = env->eflags; 1802 if (tcg_enabled()) { 1803 eflags |= cpu_cc_compute_all(env, CC_OP) | (env->df & DF_MASK); 1804 } 1805 return eflags; 1806 } 1807 1808 /* NOTE: the translator must set DisasContext.cc_op to CC_OP_EFLAGS 1809 * after generating a call to a helper that uses this. 1810 */ 1811 static inline void cpu_load_eflags(CPUX86State *env, int eflags, 1812 int update_mask) 1813 { 1814 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); 1815 CC_OP = CC_OP_EFLAGS; 1816 env->df = 1 - (2 * ((eflags >> 10) & 1)); 1817 env->eflags = (env->eflags & ~update_mask) | 1818 (eflags & update_mask) | 0x2; 1819 } 1820 1821 /* load efer and update the corresponding hflags. XXX: do consistency 1822 checks with cpuid bits? */ 1823 static inline void cpu_load_efer(CPUX86State *env, uint64_t val) 1824 { 1825 env->efer = val; 1826 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK); 1827 if (env->efer & MSR_EFER_LMA) { 1828 env->hflags |= HF_LMA_MASK; 1829 } 1830 if (env->efer & MSR_EFER_SVME) { 1831 env->hflags |= HF_SVME_MASK; 1832 } 1833 } 1834 1835 static inline MemTxAttrs cpu_get_mem_attrs(CPUX86State *env) 1836 { 1837 return ((MemTxAttrs) { .secure = (env->hflags & HF_SMM_MASK) != 0 }); 1838 } 1839 1840 static inline int32_t x86_get_a20_mask(CPUX86State *env) 1841 { 1842 if (env->hflags & HF_SMM_MASK) { 1843 return -1; 1844 } else { 1845 return env->a20_mask; 1846 } 1847 } 1848 1849 /* fpu_helper.c */ 1850 void update_fp_status(CPUX86State *env); 1851 void update_mxcsr_status(CPUX86State *env); 1852 1853 static inline void cpu_set_mxcsr(CPUX86State *env, uint32_t mxcsr) 1854 { 1855 env->mxcsr = mxcsr; 1856 if (tcg_enabled()) { 1857 update_mxcsr_status(env); 1858 } 1859 } 1860 1861 static inline void cpu_set_fpuc(CPUX86State *env, uint16_t fpuc) 1862 { 1863 env->fpuc = fpuc; 1864 if (tcg_enabled()) { 1865 update_fp_status(env); 1866 } 1867 } 1868 1869 /* mem_helper.c */ 1870 void helper_lock_init(void); 1871 1872 /* svm_helper.c */ 1873 void cpu_svm_check_intercept_param(CPUX86State *env1, uint32_t type, 1874 uint64_t param, uintptr_t retaddr); 1875 void QEMU_NORETURN cpu_vmexit(CPUX86State *nenv, uint32_t exit_code, 1876 uint64_t exit_info_1, uintptr_t retaddr); 1877 void do_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1); 1878 1879 /* seg_helper.c */ 1880 void do_interrupt_x86_hardirq(CPUX86State *env, int intno, int is_hw); 1881 1882 /* smm_helper.c */ 1883 void do_smm_enter(X86CPU *cpu); 1884 1885 /* apic.c */ 1886 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access); 1887 void apic_handle_tpr_access_report(DeviceState *d, target_ulong ip, 1888 TPRAccess access); 1889 1890 1891 /* Change the value of a KVM-specific default 1892 * 1893 * If value is NULL, no default will be set and the original 1894 * value from the CPU model table will be kept. 1895 * 1896 * It is valid to call this function only for properties that 1897 * are already present in the kvm_default_props table. 1898 */ 1899 void x86_cpu_change_kvm_default(const char *prop, const char *value); 1900 1901 /* Return name of 32-bit register, from a R_* constant */ 1902 const char *get_register_name_32(unsigned int reg); 1903 1904 void enable_compat_apic_id_mode(void); 1905 1906 #define APIC_DEFAULT_ADDRESS 0xfee00000 1907 #define APIC_SPACE_SIZE 0x100000 1908 1909 void x86_cpu_dump_local_apic_state(CPUState *cs, FILE *f, 1910 fprintf_function cpu_fprintf, int flags); 1911 1912 /* cpu.c */ 1913 bool cpu_is_bsp(X86CPU *cpu); 1914 1915 void x86_cpu_xrstor_all_areas(X86CPU *cpu, const X86XSaveArea *buf); 1916 void x86_cpu_xsave_all_areas(X86CPU *cpu, X86XSaveArea *buf); 1917 void x86_update_hflags(CPUX86State* env); 1918 1919 #endif /* I386_CPU_H */ 1920