1 /* 2 * i386 memory mapping 3 * 4 * Copyright Fujitsu, Corp. 2011, 2012 5 * 6 * Authors: 7 * Wen Congyang <wency@cn.fujitsu.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #include "qemu/osdep.h" 15 #include "cpu.h" 16 #include "exec/cpu-all.h" 17 #include "sysemu/dump.h" 18 #include "elf.h" 19 #include "sysemu/memory_mapping.h" 20 21 #ifdef TARGET_X86_64 22 typedef struct { 23 target_ulong r15, r14, r13, r12, rbp, rbx, r11, r10; 24 target_ulong r9, r8, rax, rcx, rdx, rsi, rdi, orig_rax; 25 target_ulong rip, cs, eflags; 26 target_ulong rsp, ss; 27 target_ulong fs_base, gs_base; 28 target_ulong ds, es, fs, gs; 29 } x86_64_user_regs_struct; 30 31 typedef struct { 32 char pad1[32]; 33 uint32_t pid; 34 char pad2[76]; 35 x86_64_user_regs_struct regs; 36 char pad3[8]; 37 } x86_64_elf_prstatus; 38 39 static int x86_64_write_elf64_note(WriteCoreDumpFunction f, 40 CPUX86State *env, int id, 41 void *opaque) 42 { 43 x86_64_user_regs_struct regs; 44 Elf64_Nhdr *note; 45 char *buf; 46 int descsz, note_size, name_size = 5; 47 const char *name = "CORE"; 48 int ret; 49 50 regs.r15 = env->regs[15]; 51 regs.r14 = env->regs[14]; 52 regs.r13 = env->regs[13]; 53 regs.r12 = env->regs[12]; 54 regs.r11 = env->regs[11]; 55 regs.r10 = env->regs[10]; 56 regs.r9 = env->regs[9]; 57 regs.r8 = env->regs[8]; 58 regs.rbp = env->regs[R_EBP]; 59 regs.rsp = env->regs[R_ESP]; 60 regs.rdi = env->regs[R_EDI]; 61 regs.rsi = env->regs[R_ESI]; 62 regs.rdx = env->regs[R_EDX]; 63 regs.rcx = env->regs[R_ECX]; 64 regs.rbx = env->regs[R_EBX]; 65 regs.rax = env->regs[R_EAX]; 66 regs.rip = env->eip; 67 regs.eflags = env->eflags; 68 69 regs.orig_rax = 0; /* FIXME */ 70 regs.cs = env->segs[R_CS].selector; 71 regs.ss = env->segs[R_SS].selector; 72 regs.fs_base = env->segs[R_FS].base; 73 regs.gs_base = env->segs[R_GS].base; 74 regs.ds = env->segs[R_DS].selector; 75 regs.es = env->segs[R_ES].selector; 76 regs.fs = env->segs[R_FS].selector; 77 regs.gs = env->segs[R_GS].selector; 78 79 descsz = sizeof(x86_64_elf_prstatus); 80 note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 + 81 (descsz + 3) / 4) * 4; 82 note = g_malloc0(note_size); 83 note->n_namesz = cpu_to_le32(name_size); 84 note->n_descsz = cpu_to_le32(descsz); 85 note->n_type = cpu_to_le32(NT_PRSTATUS); 86 buf = (char *)note; 87 buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4; 88 memcpy(buf, name, name_size); 89 buf += ((name_size + 3) / 4) * 4; 90 memcpy(buf + 32, &id, 4); /* pr_pid */ 91 buf += descsz - sizeof(x86_64_user_regs_struct)-sizeof(target_ulong); 92 memcpy(buf, ®s, sizeof(x86_64_user_regs_struct)); 93 94 ret = f(note, note_size, opaque); 95 g_free(note); 96 if (ret < 0) { 97 return -1; 98 } 99 100 return 0; 101 } 102 #endif 103 104 typedef struct { 105 uint32_t ebx, ecx, edx, esi, edi, ebp, eax; 106 unsigned short ds, __ds, es, __es; 107 unsigned short fs, __fs, gs, __gs; 108 uint32_t orig_eax, eip; 109 unsigned short cs, __cs; 110 uint32_t eflags, esp; 111 unsigned short ss, __ss; 112 } x86_user_regs_struct; 113 114 typedef struct { 115 char pad1[24]; 116 uint32_t pid; 117 char pad2[44]; 118 x86_user_regs_struct regs; 119 char pad3[4]; 120 } x86_elf_prstatus; 121 122 static void x86_fill_elf_prstatus(x86_elf_prstatus *prstatus, CPUX86State *env, 123 int id) 124 { 125 memset(prstatus, 0, sizeof(x86_elf_prstatus)); 126 prstatus->regs.ebp = env->regs[R_EBP] & 0xffffffff; 127 prstatus->regs.esp = env->regs[R_ESP] & 0xffffffff; 128 prstatus->regs.edi = env->regs[R_EDI] & 0xffffffff; 129 prstatus->regs.esi = env->regs[R_ESI] & 0xffffffff; 130 prstatus->regs.edx = env->regs[R_EDX] & 0xffffffff; 131 prstatus->regs.ecx = env->regs[R_ECX] & 0xffffffff; 132 prstatus->regs.ebx = env->regs[R_EBX] & 0xffffffff; 133 prstatus->regs.eax = env->regs[R_EAX] & 0xffffffff; 134 prstatus->regs.eip = env->eip & 0xffffffff; 135 prstatus->regs.eflags = env->eflags & 0xffffffff; 136 137 prstatus->regs.cs = env->segs[R_CS].selector; 138 prstatus->regs.ss = env->segs[R_SS].selector; 139 prstatus->regs.ds = env->segs[R_DS].selector; 140 prstatus->regs.es = env->segs[R_ES].selector; 141 prstatus->regs.fs = env->segs[R_FS].selector; 142 prstatus->regs.gs = env->segs[R_GS].selector; 143 144 prstatus->pid = id; 145 } 146 147 static int x86_write_elf64_note(WriteCoreDumpFunction f, CPUX86State *env, 148 int id, void *opaque) 149 { 150 x86_elf_prstatus prstatus; 151 Elf64_Nhdr *note; 152 char *buf; 153 int descsz, note_size, name_size = 5; 154 const char *name = "CORE"; 155 int ret; 156 157 x86_fill_elf_prstatus(&prstatus, env, id); 158 descsz = sizeof(x86_elf_prstatus); 159 note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 + 160 (descsz + 3) / 4) * 4; 161 note = g_malloc0(note_size); 162 note->n_namesz = cpu_to_le32(name_size); 163 note->n_descsz = cpu_to_le32(descsz); 164 note->n_type = cpu_to_le32(NT_PRSTATUS); 165 buf = (char *)note; 166 buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4; 167 memcpy(buf, name, name_size); 168 buf += ((name_size + 3) / 4) * 4; 169 memcpy(buf, &prstatus, sizeof(prstatus)); 170 171 ret = f(note, note_size, opaque); 172 g_free(note); 173 if (ret < 0) { 174 return -1; 175 } 176 177 return 0; 178 } 179 180 int x86_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 181 int cpuid, void *opaque) 182 { 183 X86CPU *cpu = X86_CPU(cs); 184 int ret; 185 #ifdef TARGET_X86_64 186 X86CPU *first_x86_cpu = X86_CPU(first_cpu); 187 bool lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK); 188 189 if (lma) { 190 ret = x86_64_write_elf64_note(f, &cpu->env, cpuid, opaque); 191 } else { 192 #endif 193 ret = x86_write_elf64_note(f, &cpu->env, cpuid, opaque); 194 #ifdef TARGET_X86_64 195 } 196 #endif 197 198 return ret; 199 } 200 201 int x86_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 202 int cpuid, void *opaque) 203 { 204 X86CPU *cpu = X86_CPU(cs); 205 x86_elf_prstatus prstatus; 206 Elf32_Nhdr *note; 207 char *buf; 208 int descsz, note_size, name_size = 5; 209 const char *name = "CORE"; 210 int ret; 211 212 x86_fill_elf_prstatus(&prstatus, &cpu->env, cpuid); 213 descsz = sizeof(x86_elf_prstatus); 214 note_size = ((sizeof(Elf32_Nhdr) + 3) / 4 + (name_size + 3) / 4 + 215 (descsz + 3) / 4) * 4; 216 note = g_malloc0(note_size); 217 note->n_namesz = cpu_to_le32(name_size); 218 note->n_descsz = cpu_to_le32(descsz); 219 note->n_type = cpu_to_le32(NT_PRSTATUS); 220 buf = (char *)note; 221 buf += ((sizeof(Elf32_Nhdr) + 3) / 4) * 4; 222 memcpy(buf, name, name_size); 223 buf += ((name_size + 3) / 4) * 4; 224 memcpy(buf, &prstatus, sizeof(prstatus)); 225 226 ret = f(note, note_size, opaque); 227 g_free(note); 228 if (ret < 0) { 229 return -1; 230 } 231 232 return 0; 233 } 234 235 /* 236 * please count up QEMUCPUSTATE_VERSION if you have changed definition of 237 * QEMUCPUState, and modify the tools using this information accordingly. 238 */ 239 #define QEMUCPUSTATE_VERSION (1) 240 241 struct QEMUCPUSegment { 242 uint32_t selector; 243 uint32_t limit; 244 uint32_t flags; 245 uint32_t pad; 246 uint64_t base; 247 }; 248 249 typedef struct QEMUCPUSegment QEMUCPUSegment; 250 251 struct QEMUCPUState { 252 uint32_t version; 253 uint32_t size; 254 uint64_t rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp; 255 uint64_t r8, r9, r10, r11, r12, r13, r14, r15; 256 uint64_t rip, rflags; 257 QEMUCPUSegment cs, ds, es, fs, gs, ss; 258 QEMUCPUSegment ldt, tr, gdt, idt; 259 uint64_t cr[5]; 260 }; 261 262 typedef struct QEMUCPUState QEMUCPUState; 263 264 static void copy_segment(QEMUCPUSegment *d, SegmentCache *s) 265 { 266 d->pad = 0; 267 d->selector = s->selector; 268 d->limit = s->limit; 269 d->flags = s->flags; 270 d->base = s->base; 271 } 272 273 static void qemu_get_cpustate(QEMUCPUState *s, CPUX86State *env) 274 { 275 memset(s, 0, sizeof(QEMUCPUState)); 276 277 s->version = QEMUCPUSTATE_VERSION; 278 s->size = sizeof(QEMUCPUState); 279 280 s->rax = env->regs[R_EAX]; 281 s->rbx = env->regs[R_EBX]; 282 s->rcx = env->regs[R_ECX]; 283 s->rdx = env->regs[R_EDX]; 284 s->rsi = env->regs[R_ESI]; 285 s->rdi = env->regs[R_EDI]; 286 s->rsp = env->regs[R_ESP]; 287 s->rbp = env->regs[R_EBP]; 288 #ifdef TARGET_X86_64 289 s->r8 = env->regs[8]; 290 s->r9 = env->regs[9]; 291 s->r10 = env->regs[10]; 292 s->r11 = env->regs[11]; 293 s->r12 = env->regs[12]; 294 s->r13 = env->regs[13]; 295 s->r14 = env->regs[14]; 296 s->r15 = env->regs[15]; 297 #endif 298 s->rip = env->eip; 299 s->rflags = env->eflags; 300 301 copy_segment(&s->cs, &env->segs[R_CS]); 302 copy_segment(&s->ds, &env->segs[R_DS]); 303 copy_segment(&s->es, &env->segs[R_ES]); 304 copy_segment(&s->fs, &env->segs[R_FS]); 305 copy_segment(&s->gs, &env->segs[R_GS]); 306 copy_segment(&s->ss, &env->segs[R_SS]); 307 copy_segment(&s->ldt, &env->ldt); 308 copy_segment(&s->tr, &env->tr); 309 copy_segment(&s->gdt, &env->gdt); 310 copy_segment(&s->idt, &env->idt); 311 312 s->cr[0] = env->cr[0]; 313 s->cr[1] = env->cr[1]; 314 s->cr[2] = env->cr[2]; 315 s->cr[3] = env->cr[3]; 316 s->cr[4] = env->cr[4]; 317 } 318 319 static inline int cpu_write_qemu_note(WriteCoreDumpFunction f, 320 CPUX86State *env, 321 void *opaque, 322 int type) 323 { 324 QEMUCPUState state; 325 Elf64_Nhdr *note64; 326 Elf32_Nhdr *note32; 327 void *note; 328 char *buf; 329 int descsz, note_size, name_size = 5, note_head_size; 330 const char *name = "QEMU"; 331 int ret; 332 333 qemu_get_cpustate(&state, env); 334 335 descsz = sizeof(state); 336 if (type == 0) { 337 note_head_size = sizeof(Elf32_Nhdr); 338 } else { 339 note_head_size = sizeof(Elf64_Nhdr); 340 } 341 note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 + 342 (descsz + 3) / 4) * 4; 343 note = g_malloc0(note_size); 344 if (type == 0) { 345 note32 = note; 346 note32->n_namesz = cpu_to_le32(name_size); 347 note32->n_descsz = cpu_to_le32(descsz); 348 note32->n_type = 0; 349 } else { 350 note64 = note; 351 note64->n_namesz = cpu_to_le32(name_size); 352 note64->n_descsz = cpu_to_le32(descsz); 353 note64->n_type = 0; 354 } 355 buf = note; 356 buf += ((note_head_size + 3) / 4) * 4; 357 memcpy(buf, name, name_size); 358 buf += ((name_size + 3) / 4) * 4; 359 memcpy(buf, &state, sizeof(state)); 360 361 ret = f(note, note_size, opaque); 362 g_free(note); 363 if (ret < 0) { 364 return -1; 365 } 366 367 return 0; 368 } 369 370 int x86_cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cs, 371 void *opaque) 372 { 373 X86CPU *cpu = X86_CPU(cs); 374 375 return cpu_write_qemu_note(f, &cpu->env, opaque, 1); 376 } 377 378 int x86_cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cs, 379 void *opaque) 380 { 381 X86CPU *cpu = X86_CPU(cs); 382 383 return cpu_write_qemu_note(f, &cpu->env, opaque, 0); 384 } 385 386 int cpu_get_dump_info(ArchDumpInfo *info, 387 const GuestPhysBlockList *guest_phys_blocks) 388 { 389 bool lma = false; 390 GuestPhysBlock *block; 391 392 #ifdef TARGET_X86_64 393 X86CPU *first_x86_cpu = X86_CPU(first_cpu); 394 lma = first_cpu && (first_x86_cpu->env.hflags & HF_LMA_MASK); 395 #endif 396 397 if (lma) { 398 info->d_machine = EM_X86_64; 399 } else { 400 info->d_machine = EM_386; 401 } 402 info->d_endian = ELFDATA2LSB; 403 404 if (lma) { 405 info->d_class = ELFCLASS64; 406 } else { 407 info->d_class = ELFCLASS32; 408 409 QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) { 410 if (block->target_end > UINT_MAX) { 411 /* The memory size is greater than 4G */ 412 info->d_class = ELFCLASS64; 413 break; 414 } 415 } 416 } 417 418 return 0; 419 } 420 421 ssize_t cpu_get_note_size(int class, int machine, int nr_cpus) 422 { 423 int name_size = 5; /* "CORE" or "QEMU" */ 424 size_t elf_note_size = 0; 425 size_t qemu_note_size = 0; 426 int elf_desc_size = 0; 427 int qemu_desc_size = 0; 428 int note_head_size; 429 430 if (class == ELFCLASS32) { 431 note_head_size = sizeof(Elf32_Nhdr); 432 } else { 433 note_head_size = sizeof(Elf64_Nhdr); 434 } 435 436 if (machine == EM_386) { 437 elf_desc_size = sizeof(x86_elf_prstatus); 438 } 439 #ifdef TARGET_X86_64 440 else { 441 elf_desc_size = sizeof(x86_64_elf_prstatus); 442 } 443 #endif 444 qemu_desc_size = sizeof(QEMUCPUState); 445 446 elf_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 + 447 (elf_desc_size + 3) / 4) * 4; 448 qemu_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 + 449 (qemu_desc_size + 3) / 4) * 4; 450 451 return (elf_note_size + qemu_note_size) * nr_cpus; 452 } 453