xref: /openbmc/qemu/target/i386/arch_dump.c (revision 795c40b8)
1 /*
2  * i386 memory mapping
3  *
4  * Copyright Fujitsu, Corp. 2011, 2012
5  *
6  * Authors:
7  *     Wen Congyang <wency@cn.fujitsu.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #include "qemu/osdep.h"
15 #include "cpu.h"
16 #include "exec/cpu-all.h"
17 #include "sysemu/dump.h"
18 #include "elf.h"
19 #include "sysemu/memory_mapping.h"
20 
21 #ifdef TARGET_X86_64
22 typedef struct {
23     target_ulong r15, r14, r13, r12, rbp, rbx, r11, r10;
24     target_ulong r9, r8, rax, rcx, rdx, rsi, rdi, orig_rax;
25     target_ulong rip, cs, eflags;
26     target_ulong rsp, ss;
27     target_ulong fs_base, gs_base;
28     target_ulong ds, es, fs, gs;
29 } x86_64_user_regs_struct;
30 
31 typedef struct {
32     char pad1[32];
33     uint32_t pid;
34     char pad2[76];
35     x86_64_user_regs_struct regs;
36     char pad3[8];
37 } x86_64_elf_prstatus;
38 
39 static int x86_64_write_elf64_note(WriteCoreDumpFunction f,
40                                    CPUX86State *env, int id,
41                                    void *opaque)
42 {
43     x86_64_user_regs_struct regs;
44     Elf64_Nhdr *note;
45     char *buf;
46     int descsz, note_size, name_size = 5;
47     const char *name = "CORE";
48     int ret;
49 
50     regs.r15 = env->regs[15];
51     regs.r14 = env->regs[14];
52     regs.r13 = env->regs[13];
53     regs.r12 = env->regs[12];
54     regs.r11 = env->regs[11];
55     regs.r10 = env->regs[10];
56     regs.r9  = env->regs[9];
57     regs.r8  = env->regs[8];
58     regs.rbp = env->regs[R_EBP];
59     regs.rsp = env->regs[R_ESP];
60     regs.rdi = env->regs[R_EDI];
61     regs.rsi = env->regs[R_ESI];
62     regs.rdx = env->regs[R_EDX];
63     regs.rcx = env->regs[R_ECX];
64     regs.rbx = env->regs[R_EBX];
65     regs.rax = env->regs[R_EAX];
66     regs.rip = env->eip;
67     regs.eflags = env->eflags;
68 
69     regs.orig_rax = 0; /* FIXME */
70     regs.cs = env->segs[R_CS].selector;
71     regs.ss = env->segs[R_SS].selector;
72     regs.fs_base = env->segs[R_FS].base;
73     regs.gs_base = env->segs[R_GS].base;
74     regs.ds = env->segs[R_DS].selector;
75     regs.es = env->segs[R_ES].selector;
76     regs.fs = env->segs[R_FS].selector;
77     regs.gs = env->segs[R_GS].selector;
78 
79     descsz = sizeof(x86_64_elf_prstatus);
80     note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
81                 (descsz + 3) / 4) * 4;
82     note = g_malloc0(note_size);
83     note->n_namesz = cpu_to_le32(name_size);
84     note->n_descsz = cpu_to_le32(descsz);
85     note->n_type = cpu_to_le32(NT_PRSTATUS);
86     buf = (char *)note;
87     buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4;
88     memcpy(buf, name, name_size);
89     buf += ((name_size + 3) / 4) * 4;
90     memcpy(buf + 32, &id, 4); /* pr_pid */
91     buf += descsz - sizeof(x86_64_user_regs_struct)-sizeof(target_ulong);
92     memcpy(buf, &regs, sizeof(x86_64_user_regs_struct));
93 
94     ret = f(note, note_size, opaque);
95     g_free(note);
96     if (ret < 0) {
97         return -1;
98     }
99 
100     return 0;
101 }
102 #endif
103 
104 typedef struct {
105     uint32_t ebx, ecx, edx, esi, edi, ebp, eax;
106     unsigned short ds, __ds, es, __es;
107     unsigned short fs, __fs, gs, __gs;
108     uint32_t orig_eax, eip;
109     unsigned short cs, __cs;
110     uint32_t eflags, esp;
111     unsigned short ss, __ss;
112 } x86_user_regs_struct;
113 
114 typedef struct {
115     char pad1[24];
116     uint32_t pid;
117     char pad2[44];
118     x86_user_regs_struct regs;
119     char pad3[4];
120 } x86_elf_prstatus;
121 
122 static void x86_fill_elf_prstatus(x86_elf_prstatus *prstatus, CPUX86State *env,
123                                   int id)
124 {
125     memset(prstatus, 0, sizeof(x86_elf_prstatus));
126     prstatus->regs.ebp = env->regs[R_EBP] & 0xffffffff;
127     prstatus->regs.esp = env->regs[R_ESP] & 0xffffffff;
128     prstatus->regs.edi = env->regs[R_EDI] & 0xffffffff;
129     prstatus->regs.esi = env->regs[R_ESI] & 0xffffffff;
130     prstatus->regs.edx = env->regs[R_EDX] & 0xffffffff;
131     prstatus->regs.ecx = env->regs[R_ECX] & 0xffffffff;
132     prstatus->regs.ebx = env->regs[R_EBX] & 0xffffffff;
133     prstatus->regs.eax = env->regs[R_EAX] & 0xffffffff;
134     prstatus->regs.eip = env->eip & 0xffffffff;
135     prstatus->regs.eflags = env->eflags & 0xffffffff;
136 
137     prstatus->regs.cs = env->segs[R_CS].selector;
138     prstatus->regs.ss = env->segs[R_SS].selector;
139     prstatus->regs.ds = env->segs[R_DS].selector;
140     prstatus->regs.es = env->segs[R_ES].selector;
141     prstatus->regs.fs = env->segs[R_FS].selector;
142     prstatus->regs.gs = env->segs[R_GS].selector;
143 
144     prstatus->pid = id;
145 }
146 
147 static int x86_write_elf64_note(WriteCoreDumpFunction f, CPUX86State *env,
148                                 int id, void *opaque)
149 {
150     x86_elf_prstatus prstatus;
151     Elf64_Nhdr *note;
152     char *buf;
153     int descsz, note_size, name_size = 5;
154     const char *name = "CORE";
155     int ret;
156 
157     x86_fill_elf_prstatus(&prstatus, env, id);
158     descsz = sizeof(x86_elf_prstatus);
159     note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
160                 (descsz + 3) / 4) * 4;
161     note = g_malloc0(note_size);
162     note->n_namesz = cpu_to_le32(name_size);
163     note->n_descsz = cpu_to_le32(descsz);
164     note->n_type = cpu_to_le32(NT_PRSTATUS);
165     buf = (char *)note;
166     buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4;
167     memcpy(buf, name, name_size);
168     buf += ((name_size + 3) / 4) * 4;
169     memcpy(buf, &prstatus, sizeof(prstatus));
170 
171     ret = f(note, note_size, opaque);
172     g_free(note);
173     if (ret < 0) {
174         return -1;
175     }
176 
177     return 0;
178 }
179 
180 int x86_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
181                              int cpuid, void *opaque)
182 {
183     X86CPU *cpu = X86_CPU(cs);
184     int ret;
185 #ifdef TARGET_X86_64
186     X86CPU *first_x86_cpu = X86_CPU(first_cpu);
187     bool lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK);
188 
189     if (lma) {
190         ret = x86_64_write_elf64_note(f, &cpu->env, cpuid, opaque);
191     } else {
192 #endif
193         ret = x86_write_elf64_note(f, &cpu->env, cpuid, opaque);
194 #ifdef TARGET_X86_64
195     }
196 #endif
197 
198     return ret;
199 }
200 
201 int x86_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
202                              int cpuid, void *opaque)
203 {
204     X86CPU *cpu = X86_CPU(cs);
205     x86_elf_prstatus prstatus;
206     Elf32_Nhdr *note;
207     char *buf;
208     int descsz, note_size, name_size = 5;
209     const char *name = "CORE";
210     int ret;
211 
212     x86_fill_elf_prstatus(&prstatus, &cpu->env, cpuid);
213     descsz = sizeof(x86_elf_prstatus);
214     note_size = ((sizeof(Elf32_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
215                 (descsz + 3) / 4) * 4;
216     note = g_malloc0(note_size);
217     note->n_namesz = cpu_to_le32(name_size);
218     note->n_descsz = cpu_to_le32(descsz);
219     note->n_type = cpu_to_le32(NT_PRSTATUS);
220     buf = (char *)note;
221     buf += ((sizeof(Elf32_Nhdr) + 3) / 4) * 4;
222     memcpy(buf, name, name_size);
223     buf += ((name_size + 3) / 4) * 4;
224     memcpy(buf, &prstatus, sizeof(prstatus));
225 
226     ret = f(note, note_size, opaque);
227     g_free(note);
228     if (ret < 0) {
229         return -1;
230     }
231 
232     return 0;
233 }
234 
235 /*
236  * please count up QEMUCPUSTATE_VERSION if you have changed definition of
237  * QEMUCPUState, and modify the tools using this information accordingly.
238  */
239 #define QEMUCPUSTATE_VERSION (1)
240 
241 struct QEMUCPUSegment {
242     uint32_t selector;
243     uint32_t limit;
244     uint32_t flags;
245     uint32_t pad;
246     uint64_t base;
247 };
248 
249 typedef struct QEMUCPUSegment QEMUCPUSegment;
250 
251 struct QEMUCPUState {
252     uint32_t version;
253     uint32_t size;
254     uint64_t rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp;
255     uint64_t r8, r9, r10, r11, r12, r13, r14, r15;
256     uint64_t rip, rflags;
257     QEMUCPUSegment cs, ds, es, fs, gs, ss;
258     QEMUCPUSegment ldt, tr, gdt, idt;
259     uint64_t cr[5];
260 };
261 
262 typedef struct QEMUCPUState QEMUCPUState;
263 
264 static void copy_segment(QEMUCPUSegment *d, SegmentCache *s)
265 {
266     d->pad = 0;
267     d->selector = s->selector;
268     d->limit = s->limit;
269     d->flags = s->flags;
270     d->base = s->base;
271 }
272 
273 static void qemu_get_cpustate(QEMUCPUState *s, CPUX86State *env)
274 {
275     memset(s, 0, sizeof(QEMUCPUState));
276 
277     s->version = QEMUCPUSTATE_VERSION;
278     s->size = sizeof(QEMUCPUState);
279 
280     s->rax = env->regs[R_EAX];
281     s->rbx = env->regs[R_EBX];
282     s->rcx = env->regs[R_ECX];
283     s->rdx = env->regs[R_EDX];
284     s->rsi = env->regs[R_ESI];
285     s->rdi = env->regs[R_EDI];
286     s->rsp = env->regs[R_ESP];
287     s->rbp = env->regs[R_EBP];
288 #ifdef TARGET_X86_64
289     s->r8  = env->regs[8];
290     s->r9  = env->regs[9];
291     s->r10 = env->regs[10];
292     s->r11 = env->regs[11];
293     s->r12 = env->regs[12];
294     s->r13 = env->regs[13];
295     s->r14 = env->regs[14];
296     s->r15 = env->regs[15];
297 #endif
298     s->rip = env->eip;
299     s->rflags = env->eflags;
300 
301     copy_segment(&s->cs, &env->segs[R_CS]);
302     copy_segment(&s->ds, &env->segs[R_DS]);
303     copy_segment(&s->es, &env->segs[R_ES]);
304     copy_segment(&s->fs, &env->segs[R_FS]);
305     copy_segment(&s->gs, &env->segs[R_GS]);
306     copy_segment(&s->ss, &env->segs[R_SS]);
307     copy_segment(&s->ldt, &env->ldt);
308     copy_segment(&s->tr, &env->tr);
309     copy_segment(&s->gdt, &env->gdt);
310     copy_segment(&s->idt, &env->idt);
311 
312     s->cr[0] = env->cr[0];
313     s->cr[1] = env->cr[1];
314     s->cr[2] = env->cr[2];
315     s->cr[3] = env->cr[3];
316     s->cr[4] = env->cr[4];
317 }
318 
319 static inline int cpu_write_qemu_note(WriteCoreDumpFunction f,
320                                       CPUX86State *env,
321                                       void *opaque,
322                                       int type)
323 {
324     QEMUCPUState state;
325     Elf64_Nhdr *note64;
326     Elf32_Nhdr *note32;
327     void *note;
328     char *buf;
329     int descsz, note_size, name_size = 5, note_head_size;
330     const char *name = "QEMU";
331     int ret;
332 
333     qemu_get_cpustate(&state, env);
334 
335     descsz = sizeof(state);
336     if (type == 0) {
337         note_head_size = sizeof(Elf32_Nhdr);
338     } else {
339         note_head_size = sizeof(Elf64_Nhdr);
340     }
341     note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
342                 (descsz + 3) / 4) * 4;
343     note = g_malloc0(note_size);
344     if (type == 0) {
345         note32 = note;
346         note32->n_namesz = cpu_to_le32(name_size);
347         note32->n_descsz = cpu_to_le32(descsz);
348         note32->n_type = 0;
349     } else {
350         note64 = note;
351         note64->n_namesz = cpu_to_le32(name_size);
352         note64->n_descsz = cpu_to_le32(descsz);
353         note64->n_type = 0;
354     }
355     buf = note;
356     buf += ((note_head_size + 3) / 4) * 4;
357     memcpy(buf, name, name_size);
358     buf += ((name_size + 3) / 4) * 4;
359     memcpy(buf, &state, sizeof(state));
360 
361     ret = f(note, note_size, opaque);
362     g_free(note);
363     if (ret < 0) {
364         return -1;
365     }
366 
367     return 0;
368 }
369 
370 int x86_cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cs,
371                                  void *opaque)
372 {
373     X86CPU *cpu = X86_CPU(cs);
374 
375     return cpu_write_qemu_note(f, &cpu->env, opaque, 1);
376 }
377 
378 int x86_cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cs,
379                                  void *opaque)
380 {
381     X86CPU *cpu = X86_CPU(cs);
382 
383     return cpu_write_qemu_note(f, &cpu->env, opaque, 0);
384 }
385 
386 int cpu_get_dump_info(ArchDumpInfo *info,
387                       const GuestPhysBlockList *guest_phys_blocks)
388 {
389     bool lma = false;
390     GuestPhysBlock *block;
391 
392 #ifdef TARGET_X86_64
393     X86CPU *first_x86_cpu = X86_CPU(first_cpu);
394     lma = first_cpu && (first_x86_cpu->env.hflags & HF_LMA_MASK);
395 #endif
396 
397     if (lma) {
398         info->d_machine = EM_X86_64;
399     } else {
400         info->d_machine = EM_386;
401     }
402     info->d_endian = ELFDATA2LSB;
403 
404     if (lma) {
405         info->d_class = ELFCLASS64;
406     } else {
407         info->d_class = ELFCLASS32;
408 
409         QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) {
410             if (block->target_end > UINT_MAX) {
411                 /* The memory size is greater than 4G */
412                 info->d_class = ELFCLASS64;
413                 break;
414             }
415         }
416     }
417 
418     return 0;
419 }
420 
421 ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
422 {
423     int name_size = 5; /* "CORE" or "QEMU" */
424     size_t elf_note_size = 0;
425     size_t qemu_note_size = 0;
426     int elf_desc_size = 0;
427     int qemu_desc_size = 0;
428     int note_head_size;
429 
430     if (class == ELFCLASS32) {
431         note_head_size = sizeof(Elf32_Nhdr);
432     } else {
433         note_head_size = sizeof(Elf64_Nhdr);
434     }
435 
436     if (machine == EM_386) {
437         elf_desc_size = sizeof(x86_elf_prstatus);
438     }
439 #ifdef TARGET_X86_64
440     else {
441         elf_desc_size = sizeof(x86_64_elf_prstatus);
442     }
443 #endif
444     qemu_desc_size = sizeof(QEMUCPUState);
445 
446     elf_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
447                      (elf_desc_size + 3) / 4) * 4;
448     qemu_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
449                       (qemu_desc_size + 3) / 4) * 4;
450 
451     return (elf_note_size + qemu_note_size) * nr_cpus;
452 }
453