1 /* 2 * HPPA emulation cpu translation for qemu. 3 * 4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "disas/disas.h" 23 #include "qemu/host-utils.h" 24 #include "exec/exec-all.h" 25 #include "tcg-op.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/helper-proto.h" 28 #include "exec/helper-gen.h" 29 #include "exec/translator.h" 30 #include "trace-tcg.h" 31 #include "exec/log.h" 32 33 /* Since we have a distinction between register size and address size, 34 we need to redefine all of these. */ 35 36 #undef TCGv 37 #undef tcg_temp_new 38 #undef tcg_global_reg_new 39 #undef tcg_global_mem_new 40 #undef tcg_temp_local_new 41 #undef tcg_temp_free 42 43 #if TARGET_LONG_BITS == 64 44 #define TCGv_tl TCGv_i64 45 #define tcg_temp_new_tl tcg_temp_new_i64 46 #define tcg_temp_free_tl tcg_temp_free_i64 47 #if TARGET_REGISTER_BITS == 64 48 #define tcg_gen_extu_reg_tl tcg_gen_mov_i64 49 #else 50 #define tcg_gen_extu_reg_tl tcg_gen_extu_i32_i64 51 #endif 52 #else 53 #define TCGv_tl TCGv_i32 54 #define tcg_temp_new_tl tcg_temp_new_i32 55 #define tcg_temp_free_tl tcg_temp_free_i32 56 #define tcg_gen_extu_reg_tl tcg_gen_mov_i32 57 #endif 58 59 #if TARGET_REGISTER_BITS == 64 60 #define TCGv_reg TCGv_i64 61 62 #define tcg_temp_new tcg_temp_new_i64 63 #define tcg_global_reg_new tcg_global_reg_new_i64 64 #define tcg_global_mem_new tcg_global_mem_new_i64 65 #define tcg_temp_local_new tcg_temp_local_new_i64 66 #define tcg_temp_free tcg_temp_free_i64 67 68 #define tcg_gen_movi_reg tcg_gen_movi_i64 69 #define tcg_gen_mov_reg tcg_gen_mov_i64 70 #define tcg_gen_ld8u_reg tcg_gen_ld8u_i64 71 #define tcg_gen_ld8s_reg tcg_gen_ld8s_i64 72 #define tcg_gen_ld16u_reg tcg_gen_ld16u_i64 73 #define tcg_gen_ld16s_reg tcg_gen_ld16s_i64 74 #define tcg_gen_ld32u_reg tcg_gen_ld32u_i64 75 #define tcg_gen_ld32s_reg tcg_gen_ld32s_i64 76 #define tcg_gen_ld_reg tcg_gen_ld_i64 77 #define tcg_gen_st8_reg tcg_gen_st8_i64 78 #define tcg_gen_st16_reg tcg_gen_st16_i64 79 #define tcg_gen_st32_reg tcg_gen_st32_i64 80 #define tcg_gen_st_reg tcg_gen_st_i64 81 #define tcg_gen_add_reg tcg_gen_add_i64 82 #define tcg_gen_addi_reg tcg_gen_addi_i64 83 #define tcg_gen_sub_reg tcg_gen_sub_i64 84 #define tcg_gen_neg_reg tcg_gen_neg_i64 85 #define tcg_gen_subfi_reg tcg_gen_subfi_i64 86 #define tcg_gen_subi_reg tcg_gen_subi_i64 87 #define tcg_gen_and_reg tcg_gen_and_i64 88 #define tcg_gen_andi_reg tcg_gen_andi_i64 89 #define tcg_gen_or_reg tcg_gen_or_i64 90 #define tcg_gen_ori_reg tcg_gen_ori_i64 91 #define tcg_gen_xor_reg tcg_gen_xor_i64 92 #define tcg_gen_xori_reg tcg_gen_xori_i64 93 #define tcg_gen_not_reg tcg_gen_not_i64 94 #define tcg_gen_shl_reg tcg_gen_shl_i64 95 #define tcg_gen_shli_reg tcg_gen_shli_i64 96 #define tcg_gen_shr_reg tcg_gen_shr_i64 97 #define tcg_gen_shri_reg tcg_gen_shri_i64 98 #define tcg_gen_sar_reg tcg_gen_sar_i64 99 #define tcg_gen_sari_reg tcg_gen_sari_i64 100 #define tcg_gen_brcond_reg tcg_gen_brcond_i64 101 #define tcg_gen_brcondi_reg tcg_gen_brcondi_i64 102 #define tcg_gen_setcond_reg tcg_gen_setcond_i64 103 #define tcg_gen_setcondi_reg tcg_gen_setcondi_i64 104 #define tcg_gen_mul_reg tcg_gen_mul_i64 105 #define tcg_gen_muli_reg tcg_gen_muli_i64 106 #define tcg_gen_div_reg tcg_gen_div_i64 107 #define tcg_gen_rem_reg tcg_gen_rem_i64 108 #define tcg_gen_divu_reg tcg_gen_divu_i64 109 #define tcg_gen_remu_reg tcg_gen_remu_i64 110 #define tcg_gen_discard_reg tcg_gen_discard_i64 111 #define tcg_gen_trunc_reg_i32 tcg_gen_extrl_i64_i32 112 #define tcg_gen_trunc_i64_reg tcg_gen_mov_i64 113 #define tcg_gen_extu_i32_reg tcg_gen_extu_i32_i64 114 #define tcg_gen_ext_i32_reg tcg_gen_ext_i32_i64 115 #define tcg_gen_extu_reg_i64 tcg_gen_mov_i64 116 #define tcg_gen_ext_reg_i64 tcg_gen_mov_i64 117 #define tcg_gen_ext8u_reg tcg_gen_ext8u_i64 118 #define tcg_gen_ext8s_reg tcg_gen_ext8s_i64 119 #define tcg_gen_ext16u_reg tcg_gen_ext16u_i64 120 #define tcg_gen_ext16s_reg tcg_gen_ext16s_i64 121 #define tcg_gen_ext32u_reg tcg_gen_ext32u_i64 122 #define tcg_gen_ext32s_reg tcg_gen_ext32s_i64 123 #define tcg_gen_bswap16_reg tcg_gen_bswap16_i64 124 #define tcg_gen_bswap32_reg tcg_gen_bswap32_i64 125 #define tcg_gen_bswap64_reg tcg_gen_bswap64_i64 126 #define tcg_gen_concat_reg_i64 tcg_gen_concat32_i64 127 #define tcg_gen_andc_reg tcg_gen_andc_i64 128 #define tcg_gen_eqv_reg tcg_gen_eqv_i64 129 #define tcg_gen_nand_reg tcg_gen_nand_i64 130 #define tcg_gen_nor_reg tcg_gen_nor_i64 131 #define tcg_gen_orc_reg tcg_gen_orc_i64 132 #define tcg_gen_clz_reg tcg_gen_clz_i64 133 #define tcg_gen_ctz_reg tcg_gen_ctz_i64 134 #define tcg_gen_clzi_reg tcg_gen_clzi_i64 135 #define tcg_gen_ctzi_reg tcg_gen_ctzi_i64 136 #define tcg_gen_clrsb_reg tcg_gen_clrsb_i64 137 #define tcg_gen_ctpop_reg tcg_gen_ctpop_i64 138 #define tcg_gen_rotl_reg tcg_gen_rotl_i64 139 #define tcg_gen_rotli_reg tcg_gen_rotli_i64 140 #define tcg_gen_rotr_reg tcg_gen_rotr_i64 141 #define tcg_gen_rotri_reg tcg_gen_rotri_i64 142 #define tcg_gen_deposit_reg tcg_gen_deposit_i64 143 #define tcg_gen_deposit_z_reg tcg_gen_deposit_z_i64 144 #define tcg_gen_extract_reg tcg_gen_extract_i64 145 #define tcg_gen_sextract_reg tcg_gen_sextract_i64 146 #define tcg_const_reg tcg_const_i64 147 #define tcg_const_local_reg tcg_const_local_i64 148 #define tcg_gen_movcond_reg tcg_gen_movcond_i64 149 #define tcg_gen_add2_reg tcg_gen_add2_i64 150 #define tcg_gen_sub2_reg tcg_gen_sub2_i64 151 #define tcg_gen_qemu_ld_reg tcg_gen_qemu_ld_i64 152 #define tcg_gen_qemu_st_reg tcg_gen_qemu_st_i64 153 #define tcg_gen_atomic_xchg_reg tcg_gen_atomic_xchg_i64 154 #define tcg_gen_trunc_reg_ptr tcg_gen_trunc_i64_ptr 155 #else 156 #define TCGv_reg TCGv_i32 157 #define tcg_temp_new tcg_temp_new_i32 158 #define tcg_global_reg_new tcg_global_reg_new_i32 159 #define tcg_global_mem_new tcg_global_mem_new_i32 160 #define tcg_temp_local_new tcg_temp_local_new_i32 161 #define tcg_temp_free tcg_temp_free_i32 162 163 #define tcg_gen_movi_reg tcg_gen_movi_i32 164 #define tcg_gen_mov_reg tcg_gen_mov_i32 165 #define tcg_gen_ld8u_reg tcg_gen_ld8u_i32 166 #define tcg_gen_ld8s_reg tcg_gen_ld8s_i32 167 #define tcg_gen_ld16u_reg tcg_gen_ld16u_i32 168 #define tcg_gen_ld16s_reg tcg_gen_ld16s_i32 169 #define tcg_gen_ld32u_reg tcg_gen_ld_i32 170 #define tcg_gen_ld32s_reg tcg_gen_ld_i32 171 #define tcg_gen_ld_reg tcg_gen_ld_i32 172 #define tcg_gen_st8_reg tcg_gen_st8_i32 173 #define tcg_gen_st16_reg tcg_gen_st16_i32 174 #define tcg_gen_st32_reg tcg_gen_st32_i32 175 #define tcg_gen_st_reg tcg_gen_st_i32 176 #define tcg_gen_add_reg tcg_gen_add_i32 177 #define tcg_gen_addi_reg tcg_gen_addi_i32 178 #define tcg_gen_sub_reg tcg_gen_sub_i32 179 #define tcg_gen_neg_reg tcg_gen_neg_i32 180 #define tcg_gen_subfi_reg tcg_gen_subfi_i32 181 #define tcg_gen_subi_reg tcg_gen_subi_i32 182 #define tcg_gen_and_reg tcg_gen_and_i32 183 #define tcg_gen_andi_reg tcg_gen_andi_i32 184 #define tcg_gen_or_reg tcg_gen_or_i32 185 #define tcg_gen_ori_reg tcg_gen_ori_i32 186 #define tcg_gen_xor_reg tcg_gen_xor_i32 187 #define tcg_gen_xori_reg tcg_gen_xori_i32 188 #define tcg_gen_not_reg tcg_gen_not_i32 189 #define tcg_gen_shl_reg tcg_gen_shl_i32 190 #define tcg_gen_shli_reg tcg_gen_shli_i32 191 #define tcg_gen_shr_reg tcg_gen_shr_i32 192 #define tcg_gen_shri_reg tcg_gen_shri_i32 193 #define tcg_gen_sar_reg tcg_gen_sar_i32 194 #define tcg_gen_sari_reg tcg_gen_sari_i32 195 #define tcg_gen_brcond_reg tcg_gen_brcond_i32 196 #define tcg_gen_brcondi_reg tcg_gen_brcondi_i32 197 #define tcg_gen_setcond_reg tcg_gen_setcond_i32 198 #define tcg_gen_setcondi_reg tcg_gen_setcondi_i32 199 #define tcg_gen_mul_reg tcg_gen_mul_i32 200 #define tcg_gen_muli_reg tcg_gen_muli_i32 201 #define tcg_gen_div_reg tcg_gen_div_i32 202 #define tcg_gen_rem_reg tcg_gen_rem_i32 203 #define tcg_gen_divu_reg tcg_gen_divu_i32 204 #define tcg_gen_remu_reg tcg_gen_remu_i32 205 #define tcg_gen_discard_reg tcg_gen_discard_i32 206 #define tcg_gen_trunc_reg_i32 tcg_gen_mov_i32 207 #define tcg_gen_trunc_i64_reg tcg_gen_extrl_i64_i32 208 #define tcg_gen_extu_i32_reg tcg_gen_mov_i32 209 #define tcg_gen_ext_i32_reg tcg_gen_mov_i32 210 #define tcg_gen_extu_reg_i64 tcg_gen_extu_i32_i64 211 #define tcg_gen_ext_reg_i64 tcg_gen_ext_i32_i64 212 #define tcg_gen_ext8u_reg tcg_gen_ext8u_i32 213 #define tcg_gen_ext8s_reg tcg_gen_ext8s_i32 214 #define tcg_gen_ext16u_reg tcg_gen_ext16u_i32 215 #define tcg_gen_ext16s_reg tcg_gen_ext16s_i32 216 #define tcg_gen_ext32u_reg tcg_gen_mov_i32 217 #define tcg_gen_ext32s_reg tcg_gen_mov_i32 218 #define tcg_gen_bswap16_reg tcg_gen_bswap16_i32 219 #define tcg_gen_bswap32_reg tcg_gen_bswap32_i32 220 #define tcg_gen_concat_reg_i64 tcg_gen_concat_i32_i64 221 #define tcg_gen_andc_reg tcg_gen_andc_i32 222 #define tcg_gen_eqv_reg tcg_gen_eqv_i32 223 #define tcg_gen_nand_reg tcg_gen_nand_i32 224 #define tcg_gen_nor_reg tcg_gen_nor_i32 225 #define tcg_gen_orc_reg tcg_gen_orc_i32 226 #define tcg_gen_clz_reg tcg_gen_clz_i32 227 #define tcg_gen_ctz_reg tcg_gen_ctz_i32 228 #define tcg_gen_clzi_reg tcg_gen_clzi_i32 229 #define tcg_gen_ctzi_reg tcg_gen_ctzi_i32 230 #define tcg_gen_clrsb_reg tcg_gen_clrsb_i32 231 #define tcg_gen_ctpop_reg tcg_gen_ctpop_i32 232 #define tcg_gen_rotl_reg tcg_gen_rotl_i32 233 #define tcg_gen_rotli_reg tcg_gen_rotli_i32 234 #define tcg_gen_rotr_reg tcg_gen_rotr_i32 235 #define tcg_gen_rotri_reg tcg_gen_rotri_i32 236 #define tcg_gen_deposit_reg tcg_gen_deposit_i32 237 #define tcg_gen_deposit_z_reg tcg_gen_deposit_z_i32 238 #define tcg_gen_extract_reg tcg_gen_extract_i32 239 #define tcg_gen_sextract_reg tcg_gen_sextract_i32 240 #define tcg_const_reg tcg_const_i32 241 #define tcg_const_local_reg tcg_const_local_i32 242 #define tcg_gen_movcond_reg tcg_gen_movcond_i32 243 #define tcg_gen_add2_reg tcg_gen_add2_i32 244 #define tcg_gen_sub2_reg tcg_gen_sub2_i32 245 #define tcg_gen_qemu_ld_reg tcg_gen_qemu_ld_i32 246 #define tcg_gen_qemu_st_reg tcg_gen_qemu_st_i32 247 #define tcg_gen_atomic_xchg_reg tcg_gen_atomic_xchg_i32 248 #define tcg_gen_trunc_reg_ptr tcg_gen_ext_i32_ptr 249 #endif /* TARGET_REGISTER_BITS */ 250 251 typedef struct DisasCond { 252 TCGCond c; 253 TCGv_reg a0, a1; 254 bool a0_is_n; 255 bool a1_is_0; 256 } DisasCond; 257 258 typedef struct DisasContext { 259 DisasContextBase base; 260 CPUState *cs; 261 262 target_ureg iaoq_f; 263 target_ureg iaoq_b; 264 target_ureg iaoq_n; 265 TCGv_reg iaoq_n_var; 266 267 int ntempr, ntempl; 268 TCGv_reg tempr[8]; 269 TCGv_tl templ[4]; 270 271 DisasCond null_cond; 272 TCGLabel *null_lab; 273 274 uint32_t insn; 275 uint32_t tb_flags; 276 int mmu_idx; 277 int privilege; 278 bool psw_n_nonzero; 279 } DisasContext; 280 281 /* Note that ssm/rsm instructions number PSW_W and PSW_E differently. */ 282 static int expand_sm_imm(DisasContext *ctx, int val) 283 { 284 if (val & PSW_SM_E) { 285 val = (val & ~PSW_SM_E) | PSW_E; 286 } 287 if (val & PSW_SM_W) { 288 val = (val & ~PSW_SM_W) | PSW_W; 289 } 290 return val; 291 } 292 293 /* Inverted space register indicates 0 means sr0 not inferred from base. */ 294 static int expand_sr3x(DisasContext *ctx, int val) 295 { 296 return ~val; 297 } 298 299 /* Convert the M:A bits within a memory insn to the tri-state value 300 we use for the final M. */ 301 static int ma_to_m(DisasContext *ctx, int val) 302 { 303 return val & 2 ? (val & 1 ? -1 : 1) : 0; 304 } 305 306 /* Convert the sign of the displacement to a pre or post-modify. */ 307 static int pos_to_m(DisasContext *ctx, int val) 308 { 309 return val ? 1 : -1; 310 } 311 312 static int neg_to_m(DisasContext *ctx, int val) 313 { 314 return val ? -1 : 1; 315 } 316 317 /* Used for branch targets and fp memory ops. */ 318 static int expand_shl2(DisasContext *ctx, int val) 319 { 320 return val << 2; 321 } 322 323 /* Used for fp memory ops. */ 324 static int expand_shl3(DisasContext *ctx, int val) 325 { 326 return val << 3; 327 } 328 329 /* Used for assemble_21. */ 330 static int expand_shl11(DisasContext *ctx, int val) 331 { 332 return val << 11; 333 } 334 335 336 /* Include the auto-generated decoder. */ 337 #include "decode.inc.c" 338 339 /* We are not using a goto_tb (for whatever reason), but have updated 340 the iaq (for whatever reason), so don't do it again on exit. */ 341 #define DISAS_IAQ_N_UPDATED DISAS_TARGET_0 342 343 /* We are exiting the TB, but have neither emitted a goto_tb, nor 344 updated the iaq for the next instruction to be executed. */ 345 #define DISAS_IAQ_N_STALE DISAS_TARGET_1 346 347 /* Similarly, but we want to return to the main loop immediately 348 to recognize unmasked interrupts. */ 349 #define DISAS_IAQ_N_STALE_EXIT DISAS_TARGET_2 350 #define DISAS_EXIT DISAS_TARGET_3 351 352 /* global register indexes */ 353 static TCGv_reg cpu_gr[32]; 354 static TCGv_i64 cpu_sr[4]; 355 static TCGv_i64 cpu_srH; 356 static TCGv_reg cpu_iaoq_f; 357 static TCGv_reg cpu_iaoq_b; 358 static TCGv_i64 cpu_iasq_f; 359 static TCGv_i64 cpu_iasq_b; 360 static TCGv_reg cpu_sar; 361 static TCGv_reg cpu_psw_n; 362 static TCGv_reg cpu_psw_v; 363 static TCGv_reg cpu_psw_cb; 364 static TCGv_reg cpu_psw_cb_msb; 365 366 #include "exec/gen-icount.h" 367 368 void hppa_translate_init(void) 369 { 370 #define DEF_VAR(V) { &cpu_##V, #V, offsetof(CPUHPPAState, V) } 371 372 typedef struct { TCGv_reg *var; const char *name; int ofs; } GlobalVar; 373 static const GlobalVar vars[] = { 374 { &cpu_sar, "sar", offsetof(CPUHPPAState, cr[CR_SAR]) }, 375 DEF_VAR(psw_n), 376 DEF_VAR(psw_v), 377 DEF_VAR(psw_cb), 378 DEF_VAR(psw_cb_msb), 379 DEF_VAR(iaoq_f), 380 DEF_VAR(iaoq_b), 381 }; 382 383 #undef DEF_VAR 384 385 /* Use the symbolic register names that match the disassembler. */ 386 static const char gr_names[32][4] = { 387 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 388 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 389 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 390 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31" 391 }; 392 /* SR[4-7] are not global registers so that we can index them. */ 393 static const char sr_names[5][4] = { 394 "sr0", "sr1", "sr2", "sr3", "srH" 395 }; 396 397 int i; 398 399 cpu_gr[0] = NULL; 400 for (i = 1; i < 32; i++) { 401 cpu_gr[i] = tcg_global_mem_new(cpu_env, 402 offsetof(CPUHPPAState, gr[i]), 403 gr_names[i]); 404 } 405 for (i = 0; i < 4; i++) { 406 cpu_sr[i] = tcg_global_mem_new_i64(cpu_env, 407 offsetof(CPUHPPAState, sr[i]), 408 sr_names[i]); 409 } 410 cpu_srH = tcg_global_mem_new_i64(cpu_env, 411 offsetof(CPUHPPAState, sr[4]), 412 sr_names[4]); 413 414 for (i = 0; i < ARRAY_SIZE(vars); ++i) { 415 const GlobalVar *v = &vars[i]; 416 *v->var = tcg_global_mem_new(cpu_env, v->ofs, v->name); 417 } 418 419 cpu_iasq_f = tcg_global_mem_new_i64(cpu_env, 420 offsetof(CPUHPPAState, iasq_f), 421 "iasq_f"); 422 cpu_iasq_b = tcg_global_mem_new_i64(cpu_env, 423 offsetof(CPUHPPAState, iasq_b), 424 "iasq_b"); 425 } 426 427 static DisasCond cond_make_f(void) 428 { 429 return (DisasCond){ 430 .c = TCG_COND_NEVER, 431 .a0 = NULL, 432 .a1 = NULL, 433 }; 434 } 435 436 static DisasCond cond_make_t(void) 437 { 438 return (DisasCond){ 439 .c = TCG_COND_ALWAYS, 440 .a0 = NULL, 441 .a1 = NULL, 442 }; 443 } 444 445 static DisasCond cond_make_n(void) 446 { 447 return (DisasCond){ 448 .c = TCG_COND_NE, 449 .a0 = cpu_psw_n, 450 .a0_is_n = true, 451 .a1 = NULL, 452 .a1_is_0 = true 453 }; 454 } 455 456 static DisasCond cond_make_0_tmp(TCGCond c, TCGv_reg a0) 457 { 458 assert (c != TCG_COND_NEVER && c != TCG_COND_ALWAYS); 459 return (DisasCond){ 460 .c = c, .a0 = a0, .a1_is_0 = true 461 }; 462 } 463 464 static DisasCond cond_make_0(TCGCond c, TCGv_reg a0) 465 { 466 TCGv_reg tmp = tcg_temp_new(); 467 tcg_gen_mov_reg(tmp, a0); 468 return cond_make_0_tmp(c, tmp); 469 } 470 471 static DisasCond cond_make(TCGCond c, TCGv_reg a0, TCGv_reg a1) 472 { 473 DisasCond r = { .c = c }; 474 475 assert (c != TCG_COND_NEVER && c != TCG_COND_ALWAYS); 476 r.a0 = tcg_temp_new(); 477 tcg_gen_mov_reg(r.a0, a0); 478 r.a1 = tcg_temp_new(); 479 tcg_gen_mov_reg(r.a1, a1); 480 481 return r; 482 } 483 484 static void cond_prep(DisasCond *cond) 485 { 486 if (cond->a1_is_0) { 487 cond->a1_is_0 = false; 488 cond->a1 = tcg_const_reg(0); 489 } 490 } 491 492 static void cond_free(DisasCond *cond) 493 { 494 switch (cond->c) { 495 default: 496 if (!cond->a0_is_n) { 497 tcg_temp_free(cond->a0); 498 } 499 if (!cond->a1_is_0) { 500 tcg_temp_free(cond->a1); 501 } 502 cond->a0_is_n = false; 503 cond->a1_is_0 = false; 504 cond->a0 = NULL; 505 cond->a1 = NULL; 506 /* fallthru */ 507 case TCG_COND_ALWAYS: 508 cond->c = TCG_COND_NEVER; 509 break; 510 case TCG_COND_NEVER: 511 break; 512 } 513 } 514 515 static TCGv_reg get_temp(DisasContext *ctx) 516 { 517 unsigned i = ctx->ntempr++; 518 g_assert(i < ARRAY_SIZE(ctx->tempr)); 519 return ctx->tempr[i] = tcg_temp_new(); 520 } 521 522 #ifndef CONFIG_USER_ONLY 523 static TCGv_tl get_temp_tl(DisasContext *ctx) 524 { 525 unsigned i = ctx->ntempl++; 526 g_assert(i < ARRAY_SIZE(ctx->templ)); 527 return ctx->templ[i] = tcg_temp_new_tl(); 528 } 529 #endif 530 531 static TCGv_reg load_const(DisasContext *ctx, target_sreg v) 532 { 533 TCGv_reg t = get_temp(ctx); 534 tcg_gen_movi_reg(t, v); 535 return t; 536 } 537 538 static TCGv_reg load_gpr(DisasContext *ctx, unsigned reg) 539 { 540 if (reg == 0) { 541 TCGv_reg t = get_temp(ctx); 542 tcg_gen_movi_reg(t, 0); 543 return t; 544 } else { 545 return cpu_gr[reg]; 546 } 547 } 548 549 static TCGv_reg dest_gpr(DisasContext *ctx, unsigned reg) 550 { 551 if (reg == 0 || ctx->null_cond.c != TCG_COND_NEVER) { 552 return get_temp(ctx); 553 } else { 554 return cpu_gr[reg]; 555 } 556 } 557 558 static void save_or_nullify(DisasContext *ctx, TCGv_reg dest, TCGv_reg t) 559 { 560 if (ctx->null_cond.c != TCG_COND_NEVER) { 561 cond_prep(&ctx->null_cond); 562 tcg_gen_movcond_reg(ctx->null_cond.c, dest, ctx->null_cond.a0, 563 ctx->null_cond.a1, dest, t); 564 } else { 565 tcg_gen_mov_reg(dest, t); 566 } 567 } 568 569 static void save_gpr(DisasContext *ctx, unsigned reg, TCGv_reg t) 570 { 571 if (reg != 0) { 572 save_or_nullify(ctx, cpu_gr[reg], t); 573 } 574 } 575 576 #ifdef HOST_WORDS_BIGENDIAN 577 # define HI_OFS 0 578 # define LO_OFS 4 579 #else 580 # define HI_OFS 4 581 # define LO_OFS 0 582 #endif 583 584 static TCGv_i32 load_frw_i32(unsigned rt) 585 { 586 TCGv_i32 ret = tcg_temp_new_i32(); 587 tcg_gen_ld_i32(ret, cpu_env, 588 offsetof(CPUHPPAState, fr[rt & 31]) 589 + (rt & 32 ? LO_OFS : HI_OFS)); 590 return ret; 591 } 592 593 static TCGv_i32 load_frw0_i32(unsigned rt) 594 { 595 if (rt == 0) { 596 return tcg_const_i32(0); 597 } else { 598 return load_frw_i32(rt); 599 } 600 } 601 602 static TCGv_i64 load_frw0_i64(unsigned rt) 603 { 604 if (rt == 0) { 605 return tcg_const_i64(0); 606 } else { 607 TCGv_i64 ret = tcg_temp_new_i64(); 608 tcg_gen_ld32u_i64(ret, cpu_env, 609 offsetof(CPUHPPAState, fr[rt & 31]) 610 + (rt & 32 ? LO_OFS : HI_OFS)); 611 return ret; 612 } 613 } 614 615 static void save_frw_i32(unsigned rt, TCGv_i32 val) 616 { 617 tcg_gen_st_i32(val, cpu_env, 618 offsetof(CPUHPPAState, fr[rt & 31]) 619 + (rt & 32 ? LO_OFS : HI_OFS)); 620 } 621 622 #undef HI_OFS 623 #undef LO_OFS 624 625 static TCGv_i64 load_frd(unsigned rt) 626 { 627 TCGv_i64 ret = tcg_temp_new_i64(); 628 tcg_gen_ld_i64(ret, cpu_env, offsetof(CPUHPPAState, fr[rt])); 629 return ret; 630 } 631 632 static TCGv_i64 load_frd0(unsigned rt) 633 { 634 if (rt == 0) { 635 return tcg_const_i64(0); 636 } else { 637 return load_frd(rt); 638 } 639 } 640 641 static void save_frd(unsigned rt, TCGv_i64 val) 642 { 643 tcg_gen_st_i64(val, cpu_env, offsetof(CPUHPPAState, fr[rt])); 644 } 645 646 static void load_spr(DisasContext *ctx, TCGv_i64 dest, unsigned reg) 647 { 648 #ifdef CONFIG_USER_ONLY 649 tcg_gen_movi_i64(dest, 0); 650 #else 651 if (reg < 4) { 652 tcg_gen_mov_i64(dest, cpu_sr[reg]); 653 } else if (ctx->tb_flags & TB_FLAG_SR_SAME) { 654 tcg_gen_mov_i64(dest, cpu_srH); 655 } else { 656 tcg_gen_ld_i64(dest, cpu_env, offsetof(CPUHPPAState, sr[reg])); 657 } 658 #endif 659 } 660 661 /* Skip over the implementation of an insn that has been nullified. 662 Use this when the insn is too complex for a conditional move. */ 663 static void nullify_over(DisasContext *ctx) 664 { 665 if (ctx->null_cond.c != TCG_COND_NEVER) { 666 /* The always condition should have been handled in the main loop. */ 667 assert(ctx->null_cond.c != TCG_COND_ALWAYS); 668 669 ctx->null_lab = gen_new_label(); 670 cond_prep(&ctx->null_cond); 671 672 /* If we're using PSW[N], copy it to a temp because... */ 673 if (ctx->null_cond.a0_is_n) { 674 ctx->null_cond.a0_is_n = false; 675 ctx->null_cond.a0 = tcg_temp_new(); 676 tcg_gen_mov_reg(ctx->null_cond.a0, cpu_psw_n); 677 } 678 /* ... we clear it before branching over the implementation, 679 so that (1) it's clear after nullifying this insn and 680 (2) if this insn nullifies the next, PSW[N] is valid. */ 681 if (ctx->psw_n_nonzero) { 682 ctx->psw_n_nonzero = false; 683 tcg_gen_movi_reg(cpu_psw_n, 0); 684 } 685 686 tcg_gen_brcond_reg(ctx->null_cond.c, ctx->null_cond.a0, 687 ctx->null_cond.a1, ctx->null_lab); 688 cond_free(&ctx->null_cond); 689 } 690 } 691 692 /* Save the current nullification state to PSW[N]. */ 693 static void nullify_save(DisasContext *ctx) 694 { 695 if (ctx->null_cond.c == TCG_COND_NEVER) { 696 if (ctx->psw_n_nonzero) { 697 tcg_gen_movi_reg(cpu_psw_n, 0); 698 } 699 return; 700 } 701 if (!ctx->null_cond.a0_is_n) { 702 cond_prep(&ctx->null_cond); 703 tcg_gen_setcond_reg(ctx->null_cond.c, cpu_psw_n, 704 ctx->null_cond.a0, ctx->null_cond.a1); 705 ctx->psw_n_nonzero = true; 706 } 707 cond_free(&ctx->null_cond); 708 } 709 710 /* Set a PSW[N] to X. The intention is that this is used immediately 711 before a goto_tb/exit_tb, so that there is no fallthru path to other 712 code within the TB. Therefore we do not update psw_n_nonzero. */ 713 static void nullify_set(DisasContext *ctx, bool x) 714 { 715 if (ctx->psw_n_nonzero || x) { 716 tcg_gen_movi_reg(cpu_psw_n, x); 717 } 718 } 719 720 /* Mark the end of an instruction that may have been nullified. 721 This is the pair to nullify_over. Always returns true so that 722 it may be tail-called from a translate function. */ 723 static bool nullify_end(DisasContext *ctx) 724 { 725 TCGLabel *null_lab = ctx->null_lab; 726 DisasJumpType status = ctx->base.is_jmp; 727 728 /* For NEXT, NORETURN, STALE, we can easily continue (or exit). 729 For UPDATED, we cannot update on the nullified path. */ 730 assert(status != DISAS_IAQ_N_UPDATED); 731 732 if (likely(null_lab == NULL)) { 733 /* The current insn wasn't conditional or handled the condition 734 applied to it without a branch, so the (new) setting of 735 NULL_COND can be applied directly to the next insn. */ 736 return true; 737 } 738 ctx->null_lab = NULL; 739 740 if (likely(ctx->null_cond.c == TCG_COND_NEVER)) { 741 /* The next instruction will be unconditional, 742 and NULL_COND already reflects that. */ 743 gen_set_label(null_lab); 744 } else { 745 /* The insn that we just executed is itself nullifying the next 746 instruction. Store the condition in the PSW[N] global. 747 We asserted PSW[N] = 0 in nullify_over, so that after the 748 label we have the proper value in place. */ 749 nullify_save(ctx); 750 gen_set_label(null_lab); 751 ctx->null_cond = cond_make_n(); 752 } 753 if (status == DISAS_NORETURN) { 754 ctx->base.is_jmp = DISAS_NEXT; 755 } 756 return true; 757 } 758 759 static void copy_iaoq_entry(TCGv_reg dest, target_ureg ival, TCGv_reg vval) 760 { 761 if (unlikely(ival == -1)) { 762 tcg_gen_mov_reg(dest, vval); 763 } else { 764 tcg_gen_movi_reg(dest, ival); 765 } 766 } 767 768 static inline target_ureg iaoq_dest(DisasContext *ctx, target_sreg disp) 769 { 770 return ctx->iaoq_f + disp + 8; 771 } 772 773 static void gen_excp_1(int exception) 774 { 775 TCGv_i32 t = tcg_const_i32(exception); 776 gen_helper_excp(cpu_env, t); 777 tcg_temp_free_i32(t); 778 } 779 780 static void gen_excp(DisasContext *ctx, int exception) 781 { 782 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_f, cpu_iaoq_f); 783 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_b, cpu_iaoq_b); 784 nullify_save(ctx); 785 gen_excp_1(exception); 786 ctx->base.is_jmp = DISAS_NORETURN; 787 } 788 789 static bool gen_excp_iir(DisasContext *ctx, int exc) 790 { 791 TCGv_reg tmp; 792 793 nullify_over(ctx); 794 tmp = tcg_const_reg(ctx->insn); 795 tcg_gen_st_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr[CR_IIR])); 796 tcg_temp_free(tmp); 797 gen_excp(ctx, exc); 798 return nullify_end(ctx); 799 } 800 801 static bool gen_illegal(DisasContext *ctx) 802 { 803 return gen_excp_iir(ctx, EXCP_ILL); 804 } 805 806 #ifdef CONFIG_USER_ONLY 807 #define CHECK_MOST_PRIVILEGED(EXCP) \ 808 return gen_excp_iir(ctx, EXCP) 809 #else 810 #define CHECK_MOST_PRIVILEGED(EXCP) \ 811 do { \ 812 if (ctx->privilege != 0) { \ 813 return gen_excp_iir(ctx, EXCP); \ 814 } \ 815 } while (0) 816 #endif 817 818 static bool use_goto_tb(DisasContext *ctx, target_ureg dest) 819 { 820 /* Suppress goto_tb for page crossing, IO, or single-steping. */ 821 return !(((ctx->base.pc_first ^ dest) & TARGET_PAGE_MASK) 822 || (tb_cflags(ctx->base.tb) & CF_LAST_IO) 823 || ctx->base.singlestep_enabled); 824 } 825 826 /* If the next insn is to be nullified, and it's on the same page, 827 and we're not attempting to set a breakpoint on it, then we can 828 totally skip the nullified insn. This avoids creating and 829 executing a TB that merely branches to the next TB. */ 830 static bool use_nullify_skip(DisasContext *ctx) 831 { 832 return (((ctx->iaoq_b ^ ctx->iaoq_f) & TARGET_PAGE_MASK) == 0 833 && !cpu_breakpoint_test(ctx->cs, ctx->iaoq_b, BP_ANY)); 834 } 835 836 static void gen_goto_tb(DisasContext *ctx, int which, 837 target_ureg f, target_ureg b) 838 { 839 if (f != -1 && b != -1 && use_goto_tb(ctx, f)) { 840 tcg_gen_goto_tb(which); 841 tcg_gen_movi_reg(cpu_iaoq_f, f); 842 tcg_gen_movi_reg(cpu_iaoq_b, b); 843 tcg_gen_exit_tb(ctx->base.tb, which); 844 } else { 845 copy_iaoq_entry(cpu_iaoq_f, f, cpu_iaoq_b); 846 copy_iaoq_entry(cpu_iaoq_b, b, ctx->iaoq_n_var); 847 if (ctx->base.singlestep_enabled) { 848 gen_excp_1(EXCP_DEBUG); 849 } else { 850 tcg_gen_lookup_and_goto_ptr(); 851 } 852 } 853 } 854 855 static bool cond_need_sv(int c) 856 { 857 return c == 2 || c == 3 || c == 6; 858 } 859 860 static bool cond_need_cb(int c) 861 { 862 return c == 4 || c == 5; 863 } 864 865 /* 866 * Compute conditional for arithmetic. See Page 5-3, Table 5-1, of 867 * the Parisc 1.1 Architecture Reference Manual for details. 868 */ 869 870 static DisasCond do_cond(unsigned cf, TCGv_reg res, 871 TCGv_reg cb_msb, TCGv_reg sv) 872 { 873 DisasCond cond; 874 TCGv_reg tmp; 875 876 switch (cf >> 1) { 877 case 0: /* Never / TR (0 / 1) */ 878 cond = cond_make_f(); 879 break; 880 case 1: /* = / <> (Z / !Z) */ 881 cond = cond_make_0(TCG_COND_EQ, res); 882 break; 883 case 2: /* < / >= (N ^ V / !(N ^ V) */ 884 tmp = tcg_temp_new(); 885 tcg_gen_xor_reg(tmp, res, sv); 886 cond = cond_make_0_tmp(TCG_COND_LT, tmp); 887 break; 888 case 3: /* <= / > (N ^ V) | Z / !((N ^ V) | Z) */ 889 /* 890 * Simplify: 891 * (N ^ V) | Z 892 * ((res < 0) ^ (sv < 0)) | !res 893 * ((res ^ sv) < 0) | !res 894 * (~(res ^ sv) >= 0) | !res 895 * !(~(res ^ sv) >> 31) | !res 896 * !(~(res ^ sv) >> 31 & res) 897 */ 898 tmp = tcg_temp_new(); 899 tcg_gen_eqv_reg(tmp, res, sv); 900 tcg_gen_sari_reg(tmp, tmp, TARGET_REGISTER_BITS - 1); 901 tcg_gen_and_reg(tmp, tmp, res); 902 cond = cond_make_0_tmp(TCG_COND_EQ, tmp); 903 break; 904 case 4: /* NUV / UV (!C / C) */ 905 cond = cond_make_0(TCG_COND_EQ, cb_msb); 906 break; 907 case 5: /* ZNV / VNZ (!C | Z / C & !Z) */ 908 tmp = tcg_temp_new(); 909 tcg_gen_neg_reg(tmp, cb_msb); 910 tcg_gen_and_reg(tmp, tmp, res); 911 cond = cond_make_0_tmp(TCG_COND_EQ, tmp); 912 break; 913 case 6: /* SV / NSV (V / !V) */ 914 cond = cond_make_0(TCG_COND_LT, sv); 915 break; 916 case 7: /* OD / EV */ 917 tmp = tcg_temp_new(); 918 tcg_gen_andi_reg(tmp, res, 1); 919 cond = cond_make_0_tmp(TCG_COND_NE, tmp); 920 break; 921 default: 922 g_assert_not_reached(); 923 } 924 if (cf & 1) { 925 cond.c = tcg_invert_cond(cond.c); 926 } 927 928 return cond; 929 } 930 931 /* Similar, but for the special case of subtraction without borrow, we 932 can use the inputs directly. This can allow other computation to be 933 deleted as unused. */ 934 935 static DisasCond do_sub_cond(unsigned cf, TCGv_reg res, 936 TCGv_reg in1, TCGv_reg in2, TCGv_reg sv) 937 { 938 DisasCond cond; 939 940 switch (cf >> 1) { 941 case 1: /* = / <> */ 942 cond = cond_make(TCG_COND_EQ, in1, in2); 943 break; 944 case 2: /* < / >= */ 945 cond = cond_make(TCG_COND_LT, in1, in2); 946 break; 947 case 3: /* <= / > */ 948 cond = cond_make(TCG_COND_LE, in1, in2); 949 break; 950 case 4: /* << / >>= */ 951 cond = cond_make(TCG_COND_LTU, in1, in2); 952 break; 953 case 5: /* <<= / >> */ 954 cond = cond_make(TCG_COND_LEU, in1, in2); 955 break; 956 default: 957 return do_cond(cf, res, NULL, sv); 958 } 959 if (cf & 1) { 960 cond.c = tcg_invert_cond(cond.c); 961 } 962 963 return cond; 964 } 965 966 /* 967 * Similar, but for logicals, where the carry and overflow bits are not 968 * computed, and use of them is undefined. 969 * 970 * Undefined or not, hardware does not trap. It seems reasonable to 971 * assume hardware treats cases c={4,5,6} as if C=0 & V=0, since that's 972 * how cases c={2,3} are treated. 973 */ 974 975 static DisasCond do_log_cond(unsigned cf, TCGv_reg res) 976 { 977 switch (cf) { 978 case 0: /* never */ 979 case 9: /* undef, C */ 980 case 11: /* undef, C & !Z */ 981 case 12: /* undef, V */ 982 return cond_make_f(); 983 984 case 1: /* true */ 985 case 8: /* undef, !C */ 986 case 10: /* undef, !C | Z */ 987 case 13: /* undef, !V */ 988 return cond_make_t(); 989 990 case 2: /* == */ 991 return cond_make_0(TCG_COND_EQ, res); 992 case 3: /* <> */ 993 return cond_make_0(TCG_COND_NE, res); 994 case 4: /* < */ 995 return cond_make_0(TCG_COND_LT, res); 996 case 5: /* >= */ 997 return cond_make_0(TCG_COND_GE, res); 998 case 6: /* <= */ 999 return cond_make_0(TCG_COND_LE, res); 1000 case 7: /* > */ 1001 return cond_make_0(TCG_COND_GT, res); 1002 1003 case 14: /* OD */ 1004 case 15: /* EV */ 1005 return do_cond(cf, res, NULL, NULL); 1006 1007 default: 1008 g_assert_not_reached(); 1009 } 1010 } 1011 1012 /* Similar, but for shift/extract/deposit conditions. */ 1013 1014 static DisasCond do_sed_cond(unsigned orig, TCGv_reg res) 1015 { 1016 unsigned c, f; 1017 1018 /* Convert the compressed condition codes to standard. 1019 0-2 are the same as logicals (nv,<,<=), while 3 is OD. 1020 4-7 are the reverse of 0-3. */ 1021 c = orig & 3; 1022 if (c == 3) { 1023 c = 7; 1024 } 1025 f = (orig & 4) / 4; 1026 1027 return do_log_cond(c * 2 + f, res); 1028 } 1029 1030 /* Similar, but for unit conditions. */ 1031 1032 static DisasCond do_unit_cond(unsigned cf, TCGv_reg res, 1033 TCGv_reg in1, TCGv_reg in2) 1034 { 1035 DisasCond cond; 1036 TCGv_reg tmp, cb = NULL; 1037 1038 if (cf & 8) { 1039 /* Since we want to test lots of carry-out bits all at once, do not 1040 * do our normal thing and compute carry-in of bit B+1 since that 1041 * leaves us with carry bits spread across two words. 1042 */ 1043 cb = tcg_temp_new(); 1044 tmp = tcg_temp_new(); 1045 tcg_gen_or_reg(cb, in1, in2); 1046 tcg_gen_and_reg(tmp, in1, in2); 1047 tcg_gen_andc_reg(cb, cb, res); 1048 tcg_gen_or_reg(cb, cb, tmp); 1049 tcg_temp_free(tmp); 1050 } 1051 1052 switch (cf >> 1) { 1053 case 0: /* never / TR */ 1054 case 1: /* undefined */ 1055 case 5: /* undefined */ 1056 cond = cond_make_f(); 1057 break; 1058 1059 case 2: /* SBZ / NBZ */ 1060 /* See hasless(v,1) from 1061 * https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord 1062 */ 1063 tmp = tcg_temp_new(); 1064 tcg_gen_subi_reg(tmp, res, 0x01010101u); 1065 tcg_gen_andc_reg(tmp, tmp, res); 1066 tcg_gen_andi_reg(tmp, tmp, 0x80808080u); 1067 cond = cond_make_0(TCG_COND_NE, tmp); 1068 tcg_temp_free(tmp); 1069 break; 1070 1071 case 3: /* SHZ / NHZ */ 1072 tmp = tcg_temp_new(); 1073 tcg_gen_subi_reg(tmp, res, 0x00010001u); 1074 tcg_gen_andc_reg(tmp, tmp, res); 1075 tcg_gen_andi_reg(tmp, tmp, 0x80008000u); 1076 cond = cond_make_0(TCG_COND_NE, tmp); 1077 tcg_temp_free(tmp); 1078 break; 1079 1080 case 4: /* SDC / NDC */ 1081 tcg_gen_andi_reg(cb, cb, 0x88888888u); 1082 cond = cond_make_0(TCG_COND_NE, cb); 1083 break; 1084 1085 case 6: /* SBC / NBC */ 1086 tcg_gen_andi_reg(cb, cb, 0x80808080u); 1087 cond = cond_make_0(TCG_COND_NE, cb); 1088 break; 1089 1090 case 7: /* SHC / NHC */ 1091 tcg_gen_andi_reg(cb, cb, 0x80008000u); 1092 cond = cond_make_0(TCG_COND_NE, cb); 1093 break; 1094 1095 default: 1096 g_assert_not_reached(); 1097 } 1098 if (cf & 8) { 1099 tcg_temp_free(cb); 1100 } 1101 if (cf & 1) { 1102 cond.c = tcg_invert_cond(cond.c); 1103 } 1104 1105 return cond; 1106 } 1107 1108 /* Compute signed overflow for addition. */ 1109 static TCGv_reg do_add_sv(DisasContext *ctx, TCGv_reg res, 1110 TCGv_reg in1, TCGv_reg in2) 1111 { 1112 TCGv_reg sv = get_temp(ctx); 1113 TCGv_reg tmp = tcg_temp_new(); 1114 1115 tcg_gen_xor_reg(sv, res, in1); 1116 tcg_gen_xor_reg(tmp, in1, in2); 1117 tcg_gen_andc_reg(sv, sv, tmp); 1118 tcg_temp_free(tmp); 1119 1120 return sv; 1121 } 1122 1123 /* Compute signed overflow for subtraction. */ 1124 static TCGv_reg do_sub_sv(DisasContext *ctx, TCGv_reg res, 1125 TCGv_reg in1, TCGv_reg in2) 1126 { 1127 TCGv_reg sv = get_temp(ctx); 1128 TCGv_reg tmp = tcg_temp_new(); 1129 1130 tcg_gen_xor_reg(sv, res, in1); 1131 tcg_gen_xor_reg(tmp, in1, in2); 1132 tcg_gen_and_reg(sv, sv, tmp); 1133 tcg_temp_free(tmp); 1134 1135 return sv; 1136 } 1137 1138 static void do_add(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1139 TCGv_reg in2, unsigned shift, bool is_l, 1140 bool is_tsv, bool is_tc, bool is_c, unsigned cf) 1141 { 1142 TCGv_reg dest, cb, cb_msb, sv, tmp; 1143 unsigned c = cf >> 1; 1144 DisasCond cond; 1145 1146 dest = tcg_temp_new(); 1147 cb = NULL; 1148 cb_msb = NULL; 1149 1150 if (shift) { 1151 tmp = get_temp(ctx); 1152 tcg_gen_shli_reg(tmp, in1, shift); 1153 in1 = tmp; 1154 } 1155 1156 if (!is_l || cond_need_cb(c)) { 1157 TCGv_reg zero = tcg_const_reg(0); 1158 cb_msb = get_temp(ctx); 1159 tcg_gen_add2_reg(dest, cb_msb, in1, zero, in2, zero); 1160 if (is_c) { 1161 tcg_gen_add2_reg(dest, cb_msb, dest, cb_msb, cpu_psw_cb_msb, zero); 1162 } 1163 tcg_temp_free(zero); 1164 if (!is_l) { 1165 cb = get_temp(ctx); 1166 tcg_gen_xor_reg(cb, in1, in2); 1167 tcg_gen_xor_reg(cb, cb, dest); 1168 } 1169 } else { 1170 tcg_gen_add_reg(dest, in1, in2); 1171 if (is_c) { 1172 tcg_gen_add_reg(dest, dest, cpu_psw_cb_msb); 1173 } 1174 } 1175 1176 /* Compute signed overflow if required. */ 1177 sv = NULL; 1178 if (is_tsv || cond_need_sv(c)) { 1179 sv = do_add_sv(ctx, dest, in1, in2); 1180 if (is_tsv) { 1181 /* ??? Need to include overflow from shift. */ 1182 gen_helper_tsv(cpu_env, sv); 1183 } 1184 } 1185 1186 /* Emit any conditional trap before any writeback. */ 1187 cond = do_cond(cf, dest, cb_msb, sv); 1188 if (is_tc) { 1189 cond_prep(&cond); 1190 tmp = tcg_temp_new(); 1191 tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1); 1192 gen_helper_tcond(cpu_env, tmp); 1193 tcg_temp_free(tmp); 1194 } 1195 1196 /* Write back the result. */ 1197 if (!is_l) { 1198 save_or_nullify(ctx, cpu_psw_cb, cb); 1199 save_or_nullify(ctx, cpu_psw_cb_msb, cb_msb); 1200 } 1201 save_gpr(ctx, rt, dest); 1202 tcg_temp_free(dest); 1203 1204 /* Install the new nullification. */ 1205 cond_free(&ctx->null_cond); 1206 ctx->null_cond = cond; 1207 } 1208 1209 static bool do_add_reg(DisasContext *ctx, arg_rrr_cf_sh *a, 1210 bool is_l, bool is_tsv, bool is_tc, bool is_c) 1211 { 1212 TCGv_reg tcg_r1, tcg_r2; 1213 1214 if (a->cf) { 1215 nullify_over(ctx); 1216 } 1217 tcg_r1 = load_gpr(ctx, a->r1); 1218 tcg_r2 = load_gpr(ctx, a->r2); 1219 do_add(ctx, a->t, tcg_r1, tcg_r2, a->sh, is_l, is_tsv, is_tc, is_c, a->cf); 1220 return nullify_end(ctx); 1221 } 1222 1223 static bool do_add_imm(DisasContext *ctx, arg_rri_cf *a, 1224 bool is_tsv, bool is_tc) 1225 { 1226 TCGv_reg tcg_im, tcg_r2; 1227 1228 if (a->cf) { 1229 nullify_over(ctx); 1230 } 1231 tcg_im = load_const(ctx, a->i); 1232 tcg_r2 = load_gpr(ctx, a->r); 1233 do_add(ctx, a->t, tcg_im, tcg_r2, 0, 0, is_tsv, is_tc, 0, a->cf); 1234 return nullify_end(ctx); 1235 } 1236 1237 static void do_sub(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1238 TCGv_reg in2, bool is_tsv, bool is_b, 1239 bool is_tc, unsigned cf) 1240 { 1241 TCGv_reg dest, sv, cb, cb_msb, zero, tmp; 1242 unsigned c = cf >> 1; 1243 DisasCond cond; 1244 1245 dest = tcg_temp_new(); 1246 cb = tcg_temp_new(); 1247 cb_msb = tcg_temp_new(); 1248 1249 zero = tcg_const_reg(0); 1250 if (is_b) { 1251 /* DEST,C = IN1 + ~IN2 + C. */ 1252 tcg_gen_not_reg(cb, in2); 1253 tcg_gen_add2_reg(dest, cb_msb, in1, zero, cpu_psw_cb_msb, zero); 1254 tcg_gen_add2_reg(dest, cb_msb, dest, cb_msb, cb, zero); 1255 tcg_gen_xor_reg(cb, cb, in1); 1256 tcg_gen_xor_reg(cb, cb, dest); 1257 } else { 1258 /* DEST,C = IN1 + ~IN2 + 1. We can produce the same result in fewer 1259 operations by seeding the high word with 1 and subtracting. */ 1260 tcg_gen_movi_reg(cb_msb, 1); 1261 tcg_gen_sub2_reg(dest, cb_msb, in1, cb_msb, in2, zero); 1262 tcg_gen_eqv_reg(cb, in1, in2); 1263 tcg_gen_xor_reg(cb, cb, dest); 1264 } 1265 tcg_temp_free(zero); 1266 1267 /* Compute signed overflow if required. */ 1268 sv = NULL; 1269 if (is_tsv || cond_need_sv(c)) { 1270 sv = do_sub_sv(ctx, dest, in1, in2); 1271 if (is_tsv) { 1272 gen_helper_tsv(cpu_env, sv); 1273 } 1274 } 1275 1276 /* Compute the condition. We cannot use the special case for borrow. */ 1277 if (!is_b) { 1278 cond = do_sub_cond(cf, dest, in1, in2, sv); 1279 } else { 1280 cond = do_cond(cf, dest, cb_msb, sv); 1281 } 1282 1283 /* Emit any conditional trap before any writeback. */ 1284 if (is_tc) { 1285 cond_prep(&cond); 1286 tmp = tcg_temp_new(); 1287 tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1); 1288 gen_helper_tcond(cpu_env, tmp); 1289 tcg_temp_free(tmp); 1290 } 1291 1292 /* Write back the result. */ 1293 save_or_nullify(ctx, cpu_psw_cb, cb); 1294 save_or_nullify(ctx, cpu_psw_cb_msb, cb_msb); 1295 save_gpr(ctx, rt, dest); 1296 tcg_temp_free(dest); 1297 1298 /* Install the new nullification. */ 1299 cond_free(&ctx->null_cond); 1300 ctx->null_cond = cond; 1301 } 1302 1303 static bool do_sub_reg(DisasContext *ctx, arg_rrr_cf *a, 1304 bool is_tsv, bool is_b, bool is_tc) 1305 { 1306 TCGv_reg tcg_r1, tcg_r2; 1307 1308 if (a->cf) { 1309 nullify_over(ctx); 1310 } 1311 tcg_r1 = load_gpr(ctx, a->r1); 1312 tcg_r2 = load_gpr(ctx, a->r2); 1313 do_sub(ctx, a->t, tcg_r1, tcg_r2, is_tsv, is_b, is_tc, a->cf); 1314 return nullify_end(ctx); 1315 } 1316 1317 static bool do_sub_imm(DisasContext *ctx, arg_rri_cf *a, bool is_tsv) 1318 { 1319 TCGv_reg tcg_im, tcg_r2; 1320 1321 if (a->cf) { 1322 nullify_over(ctx); 1323 } 1324 tcg_im = load_const(ctx, a->i); 1325 tcg_r2 = load_gpr(ctx, a->r); 1326 do_sub(ctx, a->t, tcg_im, tcg_r2, is_tsv, 0, 0, a->cf); 1327 return nullify_end(ctx); 1328 } 1329 1330 static void do_cmpclr(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1331 TCGv_reg in2, unsigned cf) 1332 { 1333 TCGv_reg dest, sv; 1334 DisasCond cond; 1335 1336 dest = tcg_temp_new(); 1337 tcg_gen_sub_reg(dest, in1, in2); 1338 1339 /* Compute signed overflow if required. */ 1340 sv = NULL; 1341 if (cond_need_sv(cf >> 1)) { 1342 sv = do_sub_sv(ctx, dest, in1, in2); 1343 } 1344 1345 /* Form the condition for the compare. */ 1346 cond = do_sub_cond(cf, dest, in1, in2, sv); 1347 1348 /* Clear. */ 1349 tcg_gen_movi_reg(dest, 0); 1350 save_gpr(ctx, rt, dest); 1351 tcg_temp_free(dest); 1352 1353 /* Install the new nullification. */ 1354 cond_free(&ctx->null_cond); 1355 ctx->null_cond = cond; 1356 } 1357 1358 static void do_log(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1359 TCGv_reg in2, unsigned cf, 1360 void (*fn)(TCGv_reg, TCGv_reg, TCGv_reg)) 1361 { 1362 TCGv_reg dest = dest_gpr(ctx, rt); 1363 1364 /* Perform the operation, and writeback. */ 1365 fn(dest, in1, in2); 1366 save_gpr(ctx, rt, dest); 1367 1368 /* Install the new nullification. */ 1369 cond_free(&ctx->null_cond); 1370 if (cf) { 1371 ctx->null_cond = do_log_cond(cf, dest); 1372 } 1373 } 1374 1375 static bool do_log_reg(DisasContext *ctx, arg_rrr_cf *a, 1376 void (*fn)(TCGv_reg, TCGv_reg, TCGv_reg)) 1377 { 1378 TCGv_reg tcg_r1, tcg_r2; 1379 1380 if (a->cf) { 1381 nullify_over(ctx); 1382 } 1383 tcg_r1 = load_gpr(ctx, a->r1); 1384 tcg_r2 = load_gpr(ctx, a->r2); 1385 do_log(ctx, a->t, tcg_r1, tcg_r2, a->cf, fn); 1386 return nullify_end(ctx); 1387 } 1388 1389 static void do_unit(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1390 TCGv_reg in2, unsigned cf, bool is_tc, 1391 void (*fn)(TCGv_reg, TCGv_reg, TCGv_reg)) 1392 { 1393 TCGv_reg dest; 1394 DisasCond cond; 1395 1396 if (cf == 0) { 1397 dest = dest_gpr(ctx, rt); 1398 fn(dest, in1, in2); 1399 save_gpr(ctx, rt, dest); 1400 cond_free(&ctx->null_cond); 1401 } else { 1402 dest = tcg_temp_new(); 1403 fn(dest, in1, in2); 1404 1405 cond = do_unit_cond(cf, dest, in1, in2); 1406 1407 if (is_tc) { 1408 TCGv_reg tmp = tcg_temp_new(); 1409 cond_prep(&cond); 1410 tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1); 1411 gen_helper_tcond(cpu_env, tmp); 1412 tcg_temp_free(tmp); 1413 } 1414 save_gpr(ctx, rt, dest); 1415 1416 cond_free(&ctx->null_cond); 1417 ctx->null_cond = cond; 1418 } 1419 } 1420 1421 #ifndef CONFIG_USER_ONLY 1422 /* The "normal" usage is SP >= 0, wherein SP == 0 selects the space 1423 from the top 2 bits of the base register. There are a few system 1424 instructions that have a 3-bit space specifier, for which SR0 is 1425 not special. To handle this, pass ~SP. */ 1426 static TCGv_i64 space_select(DisasContext *ctx, int sp, TCGv_reg base) 1427 { 1428 TCGv_ptr ptr; 1429 TCGv_reg tmp; 1430 TCGv_i64 spc; 1431 1432 if (sp != 0) { 1433 if (sp < 0) { 1434 sp = ~sp; 1435 } 1436 spc = get_temp_tl(ctx); 1437 load_spr(ctx, spc, sp); 1438 return spc; 1439 } 1440 if (ctx->tb_flags & TB_FLAG_SR_SAME) { 1441 return cpu_srH; 1442 } 1443 1444 ptr = tcg_temp_new_ptr(); 1445 tmp = tcg_temp_new(); 1446 spc = get_temp_tl(ctx); 1447 1448 tcg_gen_shri_reg(tmp, base, TARGET_REGISTER_BITS - 5); 1449 tcg_gen_andi_reg(tmp, tmp, 030); 1450 tcg_gen_trunc_reg_ptr(ptr, tmp); 1451 tcg_temp_free(tmp); 1452 1453 tcg_gen_add_ptr(ptr, ptr, cpu_env); 1454 tcg_gen_ld_i64(spc, ptr, offsetof(CPUHPPAState, sr[4])); 1455 tcg_temp_free_ptr(ptr); 1456 1457 return spc; 1458 } 1459 #endif 1460 1461 static void form_gva(DisasContext *ctx, TCGv_tl *pgva, TCGv_reg *pofs, 1462 unsigned rb, unsigned rx, int scale, target_sreg disp, 1463 unsigned sp, int modify, bool is_phys) 1464 { 1465 TCGv_reg base = load_gpr(ctx, rb); 1466 TCGv_reg ofs; 1467 1468 /* Note that RX is mutually exclusive with DISP. */ 1469 if (rx) { 1470 ofs = get_temp(ctx); 1471 tcg_gen_shli_reg(ofs, cpu_gr[rx], scale); 1472 tcg_gen_add_reg(ofs, ofs, base); 1473 } else if (disp || modify) { 1474 ofs = get_temp(ctx); 1475 tcg_gen_addi_reg(ofs, base, disp); 1476 } else { 1477 ofs = base; 1478 } 1479 1480 *pofs = ofs; 1481 #ifdef CONFIG_USER_ONLY 1482 *pgva = (modify <= 0 ? ofs : base); 1483 #else 1484 TCGv_tl addr = get_temp_tl(ctx); 1485 tcg_gen_extu_reg_tl(addr, modify <= 0 ? ofs : base); 1486 if (ctx->tb_flags & PSW_W) { 1487 tcg_gen_andi_tl(addr, addr, 0x3fffffffffffffffull); 1488 } 1489 if (!is_phys) { 1490 tcg_gen_or_tl(addr, addr, space_select(ctx, sp, base)); 1491 } 1492 *pgva = addr; 1493 #endif 1494 } 1495 1496 /* Emit a memory load. The modify parameter should be 1497 * < 0 for pre-modify, 1498 * > 0 for post-modify, 1499 * = 0 for no base register update. 1500 */ 1501 static void do_load_32(DisasContext *ctx, TCGv_i32 dest, unsigned rb, 1502 unsigned rx, int scale, target_sreg disp, 1503 unsigned sp, int modify, MemOp mop) 1504 { 1505 TCGv_reg ofs; 1506 TCGv_tl addr; 1507 1508 /* Caller uses nullify_over/nullify_end. */ 1509 assert(ctx->null_cond.c == TCG_COND_NEVER); 1510 1511 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, 1512 ctx->mmu_idx == MMU_PHYS_IDX); 1513 tcg_gen_qemu_ld_reg(dest, addr, ctx->mmu_idx, mop); 1514 if (modify) { 1515 save_gpr(ctx, rb, ofs); 1516 } 1517 } 1518 1519 static void do_load_64(DisasContext *ctx, TCGv_i64 dest, unsigned rb, 1520 unsigned rx, int scale, target_sreg disp, 1521 unsigned sp, int modify, MemOp mop) 1522 { 1523 TCGv_reg ofs; 1524 TCGv_tl addr; 1525 1526 /* Caller uses nullify_over/nullify_end. */ 1527 assert(ctx->null_cond.c == TCG_COND_NEVER); 1528 1529 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, 1530 ctx->mmu_idx == MMU_PHYS_IDX); 1531 tcg_gen_qemu_ld_i64(dest, addr, ctx->mmu_idx, mop); 1532 if (modify) { 1533 save_gpr(ctx, rb, ofs); 1534 } 1535 } 1536 1537 static void do_store_32(DisasContext *ctx, TCGv_i32 src, unsigned rb, 1538 unsigned rx, int scale, target_sreg disp, 1539 unsigned sp, int modify, MemOp mop) 1540 { 1541 TCGv_reg ofs; 1542 TCGv_tl addr; 1543 1544 /* Caller uses nullify_over/nullify_end. */ 1545 assert(ctx->null_cond.c == TCG_COND_NEVER); 1546 1547 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, 1548 ctx->mmu_idx == MMU_PHYS_IDX); 1549 tcg_gen_qemu_st_i32(src, addr, ctx->mmu_idx, mop); 1550 if (modify) { 1551 save_gpr(ctx, rb, ofs); 1552 } 1553 } 1554 1555 static void do_store_64(DisasContext *ctx, TCGv_i64 src, unsigned rb, 1556 unsigned rx, int scale, target_sreg disp, 1557 unsigned sp, int modify, MemOp mop) 1558 { 1559 TCGv_reg ofs; 1560 TCGv_tl addr; 1561 1562 /* Caller uses nullify_over/nullify_end. */ 1563 assert(ctx->null_cond.c == TCG_COND_NEVER); 1564 1565 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, 1566 ctx->mmu_idx == MMU_PHYS_IDX); 1567 tcg_gen_qemu_st_i64(src, addr, ctx->mmu_idx, mop); 1568 if (modify) { 1569 save_gpr(ctx, rb, ofs); 1570 } 1571 } 1572 1573 #if TARGET_REGISTER_BITS == 64 1574 #define do_load_reg do_load_64 1575 #define do_store_reg do_store_64 1576 #else 1577 #define do_load_reg do_load_32 1578 #define do_store_reg do_store_32 1579 #endif 1580 1581 static bool do_load(DisasContext *ctx, unsigned rt, unsigned rb, 1582 unsigned rx, int scale, target_sreg disp, 1583 unsigned sp, int modify, MemOp mop) 1584 { 1585 TCGv_reg dest; 1586 1587 nullify_over(ctx); 1588 1589 if (modify == 0) { 1590 /* No base register update. */ 1591 dest = dest_gpr(ctx, rt); 1592 } else { 1593 /* Make sure if RT == RB, we see the result of the load. */ 1594 dest = get_temp(ctx); 1595 } 1596 do_load_reg(ctx, dest, rb, rx, scale, disp, sp, modify, mop); 1597 save_gpr(ctx, rt, dest); 1598 1599 return nullify_end(ctx); 1600 } 1601 1602 static bool do_floadw(DisasContext *ctx, unsigned rt, unsigned rb, 1603 unsigned rx, int scale, target_sreg disp, 1604 unsigned sp, int modify) 1605 { 1606 TCGv_i32 tmp; 1607 1608 nullify_over(ctx); 1609 1610 tmp = tcg_temp_new_i32(); 1611 do_load_32(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEUL); 1612 save_frw_i32(rt, tmp); 1613 tcg_temp_free_i32(tmp); 1614 1615 if (rt == 0) { 1616 gen_helper_loaded_fr0(cpu_env); 1617 } 1618 1619 return nullify_end(ctx); 1620 } 1621 1622 static bool trans_fldw(DisasContext *ctx, arg_ldst *a) 1623 { 1624 return do_floadw(ctx, a->t, a->b, a->x, a->scale ? 2 : 0, 1625 a->disp, a->sp, a->m); 1626 } 1627 1628 static bool do_floadd(DisasContext *ctx, unsigned rt, unsigned rb, 1629 unsigned rx, int scale, target_sreg disp, 1630 unsigned sp, int modify) 1631 { 1632 TCGv_i64 tmp; 1633 1634 nullify_over(ctx); 1635 1636 tmp = tcg_temp_new_i64(); 1637 do_load_64(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEQ); 1638 save_frd(rt, tmp); 1639 tcg_temp_free_i64(tmp); 1640 1641 if (rt == 0) { 1642 gen_helper_loaded_fr0(cpu_env); 1643 } 1644 1645 return nullify_end(ctx); 1646 } 1647 1648 static bool trans_fldd(DisasContext *ctx, arg_ldst *a) 1649 { 1650 return do_floadd(ctx, a->t, a->b, a->x, a->scale ? 3 : 0, 1651 a->disp, a->sp, a->m); 1652 } 1653 1654 static bool do_store(DisasContext *ctx, unsigned rt, unsigned rb, 1655 target_sreg disp, unsigned sp, 1656 int modify, MemOp mop) 1657 { 1658 nullify_over(ctx); 1659 do_store_reg(ctx, load_gpr(ctx, rt), rb, 0, 0, disp, sp, modify, mop); 1660 return nullify_end(ctx); 1661 } 1662 1663 static bool do_fstorew(DisasContext *ctx, unsigned rt, unsigned rb, 1664 unsigned rx, int scale, target_sreg disp, 1665 unsigned sp, int modify) 1666 { 1667 TCGv_i32 tmp; 1668 1669 nullify_over(ctx); 1670 1671 tmp = load_frw_i32(rt); 1672 do_store_32(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEUL); 1673 tcg_temp_free_i32(tmp); 1674 1675 return nullify_end(ctx); 1676 } 1677 1678 static bool trans_fstw(DisasContext *ctx, arg_ldst *a) 1679 { 1680 return do_fstorew(ctx, a->t, a->b, a->x, a->scale ? 2 : 0, 1681 a->disp, a->sp, a->m); 1682 } 1683 1684 static bool do_fstored(DisasContext *ctx, unsigned rt, unsigned rb, 1685 unsigned rx, int scale, target_sreg disp, 1686 unsigned sp, int modify) 1687 { 1688 TCGv_i64 tmp; 1689 1690 nullify_over(ctx); 1691 1692 tmp = load_frd(rt); 1693 do_store_64(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEQ); 1694 tcg_temp_free_i64(tmp); 1695 1696 return nullify_end(ctx); 1697 } 1698 1699 static bool trans_fstd(DisasContext *ctx, arg_ldst *a) 1700 { 1701 return do_fstored(ctx, a->t, a->b, a->x, a->scale ? 3 : 0, 1702 a->disp, a->sp, a->m); 1703 } 1704 1705 static bool do_fop_wew(DisasContext *ctx, unsigned rt, unsigned ra, 1706 void (*func)(TCGv_i32, TCGv_env, TCGv_i32)) 1707 { 1708 TCGv_i32 tmp; 1709 1710 nullify_over(ctx); 1711 tmp = load_frw0_i32(ra); 1712 1713 func(tmp, cpu_env, tmp); 1714 1715 save_frw_i32(rt, tmp); 1716 tcg_temp_free_i32(tmp); 1717 return nullify_end(ctx); 1718 } 1719 1720 static bool do_fop_wed(DisasContext *ctx, unsigned rt, unsigned ra, 1721 void (*func)(TCGv_i32, TCGv_env, TCGv_i64)) 1722 { 1723 TCGv_i32 dst; 1724 TCGv_i64 src; 1725 1726 nullify_over(ctx); 1727 src = load_frd(ra); 1728 dst = tcg_temp_new_i32(); 1729 1730 func(dst, cpu_env, src); 1731 1732 tcg_temp_free_i64(src); 1733 save_frw_i32(rt, dst); 1734 tcg_temp_free_i32(dst); 1735 return nullify_end(ctx); 1736 } 1737 1738 static bool do_fop_ded(DisasContext *ctx, unsigned rt, unsigned ra, 1739 void (*func)(TCGv_i64, TCGv_env, TCGv_i64)) 1740 { 1741 TCGv_i64 tmp; 1742 1743 nullify_over(ctx); 1744 tmp = load_frd0(ra); 1745 1746 func(tmp, cpu_env, tmp); 1747 1748 save_frd(rt, tmp); 1749 tcg_temp_free_i64(tmp); 1750 return nullify_end(ctx); 1751 } 1752 1753 static bool do_fop_dew(DisasContext *ctx, unsigned rt, unsigned ra, 1754 void (*func)(TCGv_i64, TCGv_env, TCGv_i32)) 1755 { 1756 TCGv_i32 src; 1757 TCGv_i64 dst; 1758 1759 nullify_over(ctx); 1760 src = load_frw0_i32(ra); 1761 dst = tcg_temp_new_i64(); 1762 1763 func(dst, cpu_env, src); 1764 1765 tcg_temp_free_i32(src); 1766 save_frd(rt, dst); 1767 tcg_temp_free_i64(dst); 1768 return nullify_end(ctx); 1769 } 1770 1771 static bool do_fop_weww(DisasContext *ctx, unsigned rt, 1772 unsigned ra, unsigned rb, 1773 void (*func)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32)) 1774 { 1775 TCGv_i32 a, b; 1776 1777 nullify_over(ctx); 1778 a = load_frw0_i32(ra); 1779 b = load_frw0_i32(rb); 1780 1781 func(a, cpu_env, a, b); 1782 1783 tcg_temp_free_i32(b); 1784 save_frw_i32(rt, a); 1785 tcg_temp_free_i32(a); 1786 return nullify_end(ctx); 1787 } 1788 1789 static bool do_fop_dedd(DisasContext *ctx, unsigned rt, 1790 unsigned ra, unsigned rb, 1791 void (*func)(TCGv_i64, TCGv_env, TCGv_i64, TCGv_i64)) 1792 { 1793 TCGv_i64 a, b; 1794 1795 nullify_over(ctx); 1796 a = load_frd0(ra); 1797 b = load_frd0(rb); 1798 1799 func(a, cpu_env, a, b); 1800 1801 tcg_temp_free_i64(b); 1802 save_frd(rt, a); 1803 tcg_temp_free_i64(a); 1804 return nullify_end(ctx); 1805 } 1806 1807 /* Emit an unconditional branch to a direct target, which may or may not 1808 have already had nullification handled. */ 1809 static bool do_dbranch(DisasContext *ctx, target_ureg dest, 1810 unsigned link, bool is_n) 1811 { 1812 if (ctx->null_cond.c == TCG_COND_NEVER && ctx->null_lab == NULL) { 1813 if (link != 0) { 1814 copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var); 1815 } 1816 ctx->iaoq_n = dest; 1817 if (is_n) { 1818 ctx->null_cond.c = TCG_COND_ALWAYS; 1819 } 1820 } else { 1821 nullify_over(ctx); 1822 1823 if (link != 0) { 1824 copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var); 1825 } 1826 1827 if (is_n && use_nullify_skip(ctx)) { 1828 nullify_set(ctx, 0); 1829 gen_goto_tb(ctx, 0, dest, dest + 4); 1830 } else { 1831 nullify_set(ctx, is_n); 1832 gen_goto_tb(ctx, 0, ctx->iaoq_b, dest); 1833 } 1834 1835 nullify_end(ctx); 1836 1837 nullify_set(ctx, 0); 1838 gen_goto_tb(ctx, 1, ctx->iaoq_b, ctx->iaoq_n); 1839 ctx->base.is_jmp = DISAS_NORETURN; 1840 } 1841 return true; 1842 } 1843 1844 /* Emit a conditional branch to a direct target. If the branch itself 1845 is nullified, we should have already used nullify_over. */ 1846 static bool do_cbranch(DisasContext *ctx, target_sreg disp, bool is_n, 1847 DisasCond *cond) 1848 { 1849 target_ureg dest = iaoq_dest(ctx, disp); 1850 TCGLabel *taken = NULL; 1851 TCGCond c = cond->c; 1852 bool n; 1853 1854 assert(ctx->null_cond.c == TCG_COND_NEVER); 1855 1856 /* Handle TRUE and NEVER as direct branches. */ 1857 if (c == TCG_COND_ALWAYS) { 1858 return do_dbranch(ctx, dest, 0, is_n && disp >= 0); 1859 } 1860 if (c == TCG_COND_NEVER) { 1861 return do_dbranch(ctx, ctx->iaoq_n, 0, is_n && disp < 0); 1862 } 1863 1864 taken = gen_new_label(); 1865 cond_prep(cond); 1866 tcg_gen_brcond_reg(c, cond->a0, cond->a1, taken); 1867 cond_free(cond); 1868 1869 /* Not taken: Condition not satisfied; nullify on backward branches. */ 1870 n = is_n && disp < 0; 1871 if (n && use_nullify_skip(ctx)) { 1872 nullify_set(ctx, 0); 1873 gen_goto_tb(ctx, 0, ctx->iaoq_n, ctx->iaoq_n + 4); 1874 } else { 1875 if (!n && ctx->null_lab) { 1876 gen_set_label(ctx->null_lab); 1877 ctx->null_lab = NULL; 1878 } 1879 nullify_set(ctx, n); 1880 if (ctx->iaoq_n == -1) { 1881 /* The temporary iaoq_n_var died at the branch above. 1882 Regenerate it here instead of saving it. */ 1883 tcg_gen_addi_reg(ctx->iaoq_n_var, cpu_iaoq_b, 4); 1884 } 1885 gen_goto_tb(ctx, 0, ctx->iaoq_b, ctx->iaoq_n); 1886 } 1887 1888 gen_set_label(taken); 1889 1890 /* Taken: Condition satisfied; nullify on forward branches. */ 1891 n = is_n && disp >= 0; 1892 if (n && use_nullify_skip(ctx)) { 1893 nullify_set(ctx, 0); 1894 gen_goto_tb(ctx, 1, dest, dest + 4); 1895 } else { 1896 nullify_set(ctx, n); 1897 gen_goto_tb(ctx, 1, ctx->iaoq_b, dest); 1898 } 1899 1900 /* Not taken: the branch itself was nullified. */ 1901 if (ctx->null_lab) { 1902 gen_set_label(ctx->null_lab); 1903 ctx->null_lab = NULL; 1904 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 1905 } else { 1906 ctx->base.is_jmp = DISAS_NORETURN; 1907 } 1908 return true; 1909 } 1910 1911 /* Emit an unconditional branch to an indirect target. This handles 1912 nullification of the branch itself. */ 1913 static bool do_ibranch(DisasContext *ctx, TCGv_reg dest, 1914 unsigned link, bool is_n) 1915 { 1916 TCGv_reg a0, a1, next, tmp; 1917 TCGCond c; 1918 1919 assert(ctx->null_lab == NULL); 1920 1921 if (ctx->null_cond.c == TCG_COND_NEVER) { 1922 if (link != 0) { 1923 copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var); 1924 } 1925 next = get_temp(ctx); 1926 tcg_gen_mov_reg(next, dest); 1927 if (is_n) { 1928 if (use_nullify_skip(ctx)) { 1929 tcg_gen_mov_reg(cpu_iaoq_f, next); 1930 tcg_gen_addi_reg(cpu_iaoq_b, next, 4); 1931 nullify_set(ctx, 0); 1932 ctx->base.is_jmp = DISAS_IAQ_N_UPDATED; 1933 return true; 1934 } 1935 ctx->null_cond.c = TCG_COND_ALWAYS; 1936 } 1937 ctx->iaoq_n = -1; 1938 ctx->iaoq_n_var = next; 1939 } else if (is_n && use_nullify_skip(ctx)) { 1940 /* The (conditional) branch, B, nullifies the next insn, N, 1941 and we're allowed to skip execution N (no single-step or 1942 tracepoint in effect). Since the goto_ptr that we must use 1943 for the indirect branch consumes no special resources, we 1944 can (conditionally) skip B and continue execution. */ 1945 /* The use_nullify_skip test implies we have a known control path. */ 1946 tcg_debug_assert(ctx->iaoq_b != -1); 1947 tcg_debug_assert(ctx->iaoq_n != -1); 1948 1949 /* We do have to handle the non-local temporary, DEST, before 1950 branching. Since IOAQ_F is not really live at this point, we 1951 can simply store DEST optimistically. Similarly with IAOQ_B. */ 1952 tcg_gen_mov_reg(cpu_iaoq_f, dest); 1953 tcg_gen_addi_reg(cpu_iaoq_b, dest, 4); 1954 1955 nullify_over(ctx); 1956 if (link != 0) { 1957 tcg_gen_movi_reg(cpu_gr[link], ctx->iaoq_n); 1958 } 1959 tcg_gen_lookup_and_goto_ptr(); 1960 return nullify_end(ctx); 1961 } else { 1962 cond_prep(&ctx->null_cond); 1963 c = ctx->null_cond.c; 1964 a0 = ctx->null_cond.a0; 1965 a1 = ctx->null_cond.a1; 1966 1967 tmp = tcg_temp_new(); 1968 next = get_temp(ctx); 1969 1970 copy_iaoq_entry(tmp, ctx->iaoq_n, ctx->iaoq_n_var); 1971 tcg_gen_movcond_reg(c, next, a0, a1, tmp, dest); 1972 ctx->iaoq_n = -1; 1973 ctx->iaoq_n_var = next; 1974 1975 if (link != 0) { 1976 tcg_gen_movcond_reg(c, cpu_gr[link], a0, a1, cpu_gr[link], tmp); 1977 } 1978 1979 if (is_n) { 1980 /* The branch nullifies the next insn, which means the state of N 1981 after the branch is the inverse of the state of N that applied 1982 to the branch. */ 1983 tcg_gen_setcond_reg(tcg_invert_cond(c), cpu_psw_n, a0, a1); 1984 cond_free(&ctx->null_cond); 1985 ctx->null_cond = cond_make_n(); 1986 ctx->psw_n_nonzero = true; 1987 } else { 1988 cond_free(&ctx->null_cond); 1989 } 1990 } 1991 return true; 1992 } 1993 1994 /* Implement 1995 * if (IAOQ_Front{30..31} < GR[b]{30..31}) 1996 * IAOQ_Next{30..31} ← GR[b]{30..31}; 1997 * else 1998 * IAOQ_Next{30..31} ← IAOQ_Front{30..31}; 1999 * which keeps the privilege level from being increased. 2000 */ 2001 static TCGv_reg do_ibranch_priv(DisasContext *ctx, TCGv_reg offset) 2002 { 2003 TCGv_reg dest; 2004 switch (ctx->privilege) { 2005 case 0: 2006 /* Privilege 0 is maximum and is allowed to decrease. */ 2007 return offset; 2008 case 3: 2009 /* Privilege 3 is minimum and is never allowed to increase. */ 2010 dest = get_temp(ctx); 2011 tcg_gen_ori_reg(dest, offset, 3); 2012 break; 2013 default: 2014 dest = get_temp(ctx); 2015 tcg_gen_andi_reg(dest, offset, -4); 2016 tcg_gen_ori_reg(dest, dest, ctx->privilege); 2017 tcg_gen_movcond_reg(TCG_COND_GTU, dest, dest, offset, dest, offset); 2018 break; 2019 } 2020 return dest; 2021 } 2022 2023 #ifdef CONFIG_USER_ONLY 2024 /* On Linux, page zero is normally marked execute only + gateway. 2025 Therefore normal read or write is supposed to fail, but specific 2026 offsets have kernel code mapped to raise permissions to implement 2027 system calls. Handling this via an explicit check here, rather 2028 in than the "be disp(sr2,r0)" instruction that probably sent us 2029 here, is the easiest way to handle the branch delay slot on the 2030 aforementioned BE. */ 2031 static void do_page_zero(DisasContext *ctx) 2032 { 2033 /* If by some means we get here with PSW[N]=1, that implies that 2034 the B,GATE instruction would be skipped, and we'd fault on the 2035 next insn within the privilaged page. */ 2036 switch (ctx->null_cond.c) { 2037 case TCG_COND_NEVER: 2038 break; 2039 case TCG_COND_ALWAYS: 2040 tcg_gen_movi_reg(cpu_psw_n, 0); 2041 goto do_sigill; 2042 default: 2043 /* Since this is always the first (and only) insn within the 2044 TB, we should know the state of PSW[N] from TB->FLAGS. */ 2045 g_assert_not_reached(); 2046 } 2047 2048 /* Check that we didn't arrive here via some means that allowed 2049 non-sequential instruction execution. Normally the PSW[B] bit 2050 detects this by disallowing the B,GATE instruction to execute 2051 under such conditions. */ 2052 if (ctx->iaoq_b != ctx->iaoq_f + 4) { 2053 goto do_sigill; 2054 } 2055 2056 switch (ctx->iaoq_f & -4) { 2057 case 0x00: /* Null pointer call */ 2058 gen_excp_1(EXCP_IMP); 2059 ctx->base.is_jmp = DISAS_NORETURN; 2060 break; 2061 2062 case 0xb0: /* LWS */ 2063 gen_excp_1(EXCP_SYSCALL_LWS); 2064 ctx->base.is_jmp = DISAS_NORETURN; 2065 break; 2066 2067 case 0xe0: /* SET_THREAD_POINTER */ 2068 tcg_gen_st_reg(cpu_gr[26], cpu_env, offsetof(CPUHPPAState, cr[27])); 2069 tcg_gen_ori_reg(cpu_iaoq_f, cpu_gr[31], 3); 2070 tcg_gen_addi_reg(cpu_iaoq_b, cpu_iaoq_f, 4); 2071 ctx->base.is_jmp = DISAS_IAQ_N_UPDATED; 2072 break; 2073 2074 case 0x100: /* SYSCALL */ 2075 gen_excp_1(EXCP_SYSCALL); 2076 ctx->base.is_jmp = DISAS_NORETURN; 2077 break; 2078 2079 default: 2080 do_sigill: 2081 gen_excp_1(EXCP_ILL); 2082 ctx->base.is_jmp = DISAS_NORETURN; 2083 break; 2084 } 2085 } 2086 #endif 2087 2088 static bool trans_nop(DisasContext *ctx, arg_nop *a) 2089 { 2090 cond_free(&ctx->null_cond); 2091 return true; 2092 } 2093 2094 static bool trans_break(DisasContext *ctx, arg_break *a) 2095 { 2096 return gen_excp_iir(ctx, EXCP_BREAK); 2097 } 2098 2099 static bool trans_sync(DisasContext *ctx, arg_sync *a) 2100 { 2101 /* No point in nullifying the memory barrier. */ 2102 tcg_gen_mb(TCG_BAR_SC | TCG_MO_ALL); 2103 2104 cond_free(&ctx->null_cond); 2105 return true; 2106 } 2107 2108 static bool trans_mfia(DisasContext *ctx, arg_mfia *a) 2109 { 2110 unsigned rt = a->t; 2111 TCGv_reg tmp = dest_gpr(ctx, rt); 2112 tcg_gen_movi_reg(tmp, ctx->iaoq_f); 2113 save_gpr(ctx, rt, tmp); 2114 2115 cond_free(&ctx->null_cond); 2116 return true; 2117 } 2118 2119 static bool trans_mfsp(DisasContext *ctx, arg_mfsp *a) 2120 { 2121 unsigned rt = a->t; 2122 unsigned rs = a->sp; 2123 TCGv_i64 t0 = tcg_temp_new_i64(); 2124 TCGv_reg t1 = tcg_temp_new(); 2125 2126 load_spr(ctx, t0, rs); 2127 tcg_gen_shri_i64(t0, t0, 32); 2128 tcg_gen_trunc_i64_reg(t1, t0); 2129 2130 save_gpr(ctx, rt, t1); 2131 tcg_temp_free(t1); 2132 tcg_temp_free_i64(t0); 2133 2134 cond_free(&ctx->null_cond); 2135 return true; 2136 } 2137 2138 static bool trans_mfctl(DisasContext *ctx, arg_mfctl *a) 2139 { 2140 unsigned rt = a->t; 2141 unsigned ctl = a->r; 2142 TCGv_reg tmp; 2143 2144 switch (ctl) { 2145 case CR_SAR: 2146 #ifdef TARGET_HPPA64 2147 if (a->e == 0) { 2148 /* MFSAR without ,W masks low 5 bits. */ 2149 tmp = dest_gpr(ctx, rt); 2150 tcg_gen_andi_reg(tmp, cpu_sar, 31); 2151 save_gpr(ctx, rt, tmp); 2152 goto done; 2153 } 2154 #endif 2155 save_gpr(ctx, rt, cpu_sar); 2156 goto done; 2157 case CR_IT: /* Interval Timer */ 2158 /* FIXME: Respect PSW_S bit. */ 2159 nullify_over(ctx); 2160 tmp = dest_gpr(ctx, rt); 2161 if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) { 2162 gen_io_start(); 2163 gen_helper_read_interval_timer(tmp); 2164 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 2165 } else { 2166 gen_helper_read_interval_timer(tmp); 2167 } 2168 save_gpr(ctx, rt, tmp); 2169 return nullify_end(ctx); 2170 case 26: 2171 case 27: 2172 break; 2173 default: 2174 /* All other control registers are privileged. */ 2175 CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG); 2176 break; 2177 } 2178 2179 tmp = get_temp(ctx); 2180 tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr[ctl])); 2181 save_gpr(ctx, rt, tmp); 2182 2183 done: 2184 cond_free(&ctx->null_cond); 2185 return true; 2186 } 2187 2188 static bool trans_mtsp(DisasContext *ctx, arg_mtsp *a) 2189 { 2190 unsigned rr = a->r; 2191 unsigned rs = a->sp; 2192 TCGv_i64 t64; 2193 2194 if (rs >= 5) { 2195 CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG); 2196 } 2197 nullify_over(ctx); 2198 2199 t64 = tcg_temp_new_i64(); 2200 tcg_gen_extu_reg_i64(t64, load_gpr(ctx, rr)); 2201 tcg_gen_shli_i64(t64, t64, 32); 2202 2203 if (rs >= 4) { 2204 tcg_gen_st_i64(t64, cpu_env, offsetof(CPUHPPAState, sr[rs])); 2205 ctx->tb_flags &= ~TB_FLAG_SR_SAME; 2206 } else { 2207 tcg_gen_mov_i64(cpu_sr[rs], t64); 2208 } 2209 tcg_temp_free_i64(t64); 2210 2211 return nullify_end(ctx); 2212 } 2213 2214 static bool trans_mtctl(DisasContext *ctx, arg_mtctl *a) 2215 { 2216 unsigned ctl = a->t; 2217 TCGv_reg reg; 2218 TCGv_reg tmp; 2219 2220 if (ctl == CR_SAR) { 2221 reg = load_gpr(ctx, a->r); 2222 tmp = tcg_temp_new(); 2223 tcg_gen_andi_reg(tmp, reg, TARGET_REGISTER_BITS - 1); 2224 save_or_nullify(ctx, cpu_sar, tmp); 2225 tcg_temp_free(tmp); 2226 2227 cond_free(&ctx->null_cond); 2228 return true; 2229 } 2230 2231 /* All other control registers are privileged or read-only. */ 2232 CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG); 2233 2234 #ifndef CONFIG_USER_ONLY 2235 nullify_over(ctx); 2236 reg = load_gpr(ctx, a->r); 2237 2238 switch (ctl) { 2239 case CR_IT: 2240 gen_helper_write_interval_timer(cpu_env, reg); 2241 break; 2242 case CR_EIRR: 2243 gen_helper_write_eirr(cpu_env, reg); 2244 break; 2245 case CR_EIEM: 2246 gen_helper_write_eiem(cpu_env, reg); 2247 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT; 2248 break; 2249 2250 case CR_IIASQ: 2251 case CR_IIAOQ: 2252 /* FIXME: Respect PSW_Q bit */ 2253 /* The write advances the queue and stores to the back element. */ 2254 tmp = get_temp(ctx); 2255 tcg_gen_ld_reg(tmp, cpu_env, 2256 offsetof(CPUHPPAState, cr_back[ctl - CR_IIASQ])); 2257 tcg_gen_st_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr[ctl])); 2258 tcg_gen_st_reg(reg, cpu_env, 2259 offsetof(CPUHPPAState, cr_back[ctl - CR_IIASQ])); 2260 break; 2261 2262 case CR_PID1: 2263 case CR_PID2: 2264 case CR_PID3: 2265 case CR_PID4: 2266 tcg_gen_st_reg(reg, cpu_env, offsetof(CPUHPPAState, cr[ctl])); 2267 #ifndef CONFIG_USER_ONLY 2268 gen_helper_change_prot_id(cpu_env); 2269 #endif 2270 break; 2271 2272 default: 2273 tcg_gen_st_reg(reg, cpu_env, offsetof(CPUHPPAState, cr[ctl])); 2274 break; 2275 } 2276 return nullify_end(ctx); 2277 #endif 2278 } 2279 2280 static bool trans_mtsarcm(DisasContext *ctx, arg_mtsarcm *a) 2281 { 2282 TCGv_reg tmp = tcg_temp_new(); 2283 2284 tcg_gen_not_reg(tmp, load_gpr(ctx, a->r)); 2285 tcg_gen_andi_reg(tmp, tmp, TARGET_REGISTER_BITS - 1); 2286 save_or_nullify(ctx, cpu_sar, tmp); 2287 tcg_temp_free(tmp); 2288 2289 cond_free(&ctx->null_cond); 2290 return true; 2291 } 2292 2293 static bool trans_ldsid(DisasContext *ctx, arg_ldsid *a) 2294 { 2295 TCGv_reg dest = dest_gpr(ctx, a->t); 2296 2297 #ifdef CONFIG_USER_ONLY 2298 /* We don't implement space registers in user mode. */ 2299 tcg_gen_movi_reg(dest, 0); 2300 #else 2301 TCGv_i64 t0 = tcg_temp_new_i64(); 2302 2303 tcg_gen_mov_i64(t0, space_select(ctx, a->sp, load_gpr(ctx, a->b))); 2304 tcg_gen_shri_i64(t0, t0, 32); 2305 tcg_gen_trunc_i64_reg(dest, t0); 2306 2307 tcg_temp_free_i64(t0); 2308 #endif 2309 save_gpr(ctx, a->t, dest); 2310 2311 cond_free(&ctx->null_cond); 2312 return true; 2313 } 2314 2315 static bool trans_rsm(DisasContext *ctx, arg_rsm *a) 2316 { 2317 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2318 #ifndef CONFIG_USER_ONLY 2319 TCGv_reg tmp; 2320 2321 nullify_over(ctx); 2322 2323 tmp = get_temp(ctx); 2324 tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, psw)); 2325 tcg_gen_andi_reg(tmp, tmp, ~a->i); 2326 gen_helper_swap_system_mask(tmp, cpu_env, tmp); 2327 save_gpr(ctx, a->t, tmp); 2328 2329 /* Exit the TB to recognize new interrupts, e.g. PSW_M. */ 2330 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT; 2331 return nullify_end(ctx); 2332 #endif 2333 } 2334 2335 static bool trans_ssm(DisasContext *ctx, arg_ssm *a) 2336 { 2337 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2338 #ifndef CONFIG_USER_ONLY 2339 TCGv_reg tmp; 2340 2341 nullify_over(ctx); 2342 2343 tmp = get_temp(ctx); 2344 tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, psw)); 2345 tcg_gen_ori_reg(tmp, tmp, a->i); 2346 gen_helper_swap_system_mask(tmp, cpu_env, tmp); 2347 save_gpr(ctx, a->t, tmp); 2348 2349 /* Exit the TB to recognize new interrupts, e.g. PSW_I. */ 2350 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT; 2351 return nullify_end(ctx); 2352 #endif 2353 } 2354 2355 static bool trans_mtsm(DisasContext *ctx, arg_mtsm *a) 2356 { 2357 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2358 #ifndef CONFIG_USER_ONLY 2359 TCGv_reg tmp, reg; 2360 nullify_over(ctx); 2361 2362 reg = load_gpr(ctx, a->r); 2363 tmp = get_temp(ctx); 2364 gen_helper_swap_system_mask(tmp, cpu_env, reg); 2365 2366 /* Exit the TB to recognize new interrupts. */ 2367 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT; 2368 return nullify_end(ctx); 2369 #endif 2370 } 2371 2372 static bool do_rfi(DisasContext *ctx, bool rfi_r) 2373 { 2374 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2375 #ifndef CONFIG_USER_ONLY 2376 nullify_over(ctx); 2377 2378 if (rfi_r) { 2379 gen_helper_rfi_r(cpu_env); 2380 } else { 2381 gen_helper_rfi(cpu_env); 2382 } 2383 /* Exit the TB to recognize new interrupts. */ 2384 if (ctx->base.singlestep_enabled) { 2385 gen_excp_1(EXCP_DEBUG); 2386 } else { 2387 tcg_gen_exit_tb(NULL, 0); 2388 } 2389 ctx->base.is_jmp = DISAS_NORETURN; 2390 2391 return nullify_end(ctx); 2392 #endif 2393 } 2394 2395 static bool trans_rfi(DisasContext *ctx, arg_rfi *a) 2396 { 2397 return do_rfi(ctx, false); 2398 } 2399 2400 static bool trans_rfi_r(DisasContext *ctx, arg_rfi_r *a) 2401 { 2402 return do_rfi(ctx, true); 2403 } 2404 2405 static bool trans_halt(DisasContext *ctx, arg_halt *a) 2406 { 2407 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2408 #ifndef CONFIG_USER_ONLY 2409 nullify_over(ctx); 2410 gen_helper_halt(cpu_env); 2411 ctx->base.is_jmp = DISAS_NORETURN; 2412 return nullify_end(ctx); 2413 #endif 2414 } 2415 2416 static bool trans_reset(DisasContext *ctx, arg_reset *a) 2417 { 2418 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2419 #ifndef CONFIG_USER_ONLY 2420 nullify_over(ctx); 2421 gen_helper_reset(cpu_env); 2422 ctx->base.is_jmp = DISAS_NORETURN; 2423 return nullify_end(ctx); 2424 #endif 2425 } 2426 2427 static bool trans_nop_addrx(DisasContext *ctx, arg_ldst *a) 2428 { 2429 if (a->m) { 2430 TCGv_reg dest = dest_gpr(ctx, a->b); 2431 TCGv_reg src1 = load_gpr(ctx, a->b); 2432 TCGv_reg src2 = load_gpr(ctx, a->x); 2433 2434 /* The only thing we need to do is the base register modification. */ 2435 tcg_gen_add_reg(dest, src1, src2); 2436 save_gpr(ctx, a->b, dest); 2437 } 2438 cond_free(&ctx->null_cond); 2439 return true; 2440 } 2441 2442 static bool trans_probe(DisasContext *ctx, arg_probe *a) 2443 { 2444 TCGv_reg dest, ofs; 2445 TCGv_i32 level, want; 2446 TCGv_tl addr; 2447 2448 nullify_over(ctx); 2449 2450 dest = dest_gpr(ctx, a->t); 2451 form_gva(ctx, &addr, &ofs, a->b, 0, 0, 0, a->sp, 0, false); 2452 2453 if (a->imm) { 2454 level = tcg_const_i32(a->ri); 2455 } else { 2456 level = tcg_temp_new_i32(); 2457 tcg_gen_trunc_reg_i32(level, load_gpr(ctx, a->ri)); 2458 tcg_gen_andi_i32(level, level, 3); 2459 } 2460 want = tcg_const_i32(a->write ? PAGE_WRITE : PAGE_READ); 2461 2462 gen_helper_probe(dest, cpu_env, addr, level, want); 2463 2464 tcg_temp_free_i32(want); 2465 tcg_temp_free_i32(level); 2466 2467 save_gpr(ctx, a->t, dest); 2468 return nullify_end(ctx); 2469 } 2470 2471 static bool trans_ixtlbx(DisasContext *ctx, arg_ixtlbx *a) 2472 { 2473 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2474 #ifndef CONFIG_USER_ONLY 2475 TCGv_tl addr; 2476 TCGv_reg ofs, reg; 2477 2478 nullify_over(ctx); 2479 2480 form_gva(ctx, &addr, &ofs, a->b, 0, 0, 0, a->sp, 0, false); 2481 reg = load_gpr(ctx, a->r); 2482 if (a->addr) { 2483 gen_helper_itlba(cpu_env, addr, reg); 2484 } else { 2485 gen_helper_itlbp(cpu_env, addr, reg); 2486 } 2487 2488 /* Exit TB for TLB change if mmu is enabled. */ 2489 if (ctx->tb_flags & PSW_C) { 2490 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 2491 } 2492 return nullify_end(ctx); 2493 #endif 2494 } 2495 2496 static bool trans_pxtlbx(DisasContext *ctx, arg_pxtlbx *a) 2497 { 2498 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2499 #ifndef CONFIG_USER_ONLY 2500 TCGv_tl addr; 2501 TCGv_reg ofs; 2502 2503 nullify_over(ctx); 2504 2505 form_gva(ctx, &addr, &ofs, a->b, a->x, 0, 0, a->sp, a->m, false); 2506 if (a->m) { 2507 save_gpr(ctx, a->b, ofs); 2508 } 2509 if (a->local) { 2510 gen_helper_ptlbe(cpu_env); 2511 } else { 2512 gen_helper_ptlb(cpu_env, addr); 2513 } 2514 2515 /* Exit TB for TLB change if mmu is enabled. */ 2516 if (ctx->tb_flags & PSW_C) { 2517 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 2518 } 2519 return nullify_end(ctx); 2520 #endif 2521 } 2522 2523 /* 2524 * Implement the pcxl and pcxl2 Fast TLB Insert instructions. 2525 * See 2526 * https://parisc.wiki.kernel.org/images-parisc/a/a9/Pcxl2_ers.pdf 2527 * page 13-9 (195/206) 2528 */ 2529 static bool trans_ixtlbxf(DisasContext *ctx, arg_ixtlbxf *a) 2530 { 2531 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2532 #ifndef CONFIG_USER_ONLY 2533 TCGv_tl addr, atl, stl; 2534 TCGv_reg reg; 2535 2536 nullify_over(ctx); 2537 2538 /* 2539 * FIXME: 2540 * if (not (pcxl or pcxl2)) 2541 * return gen_illegal(ctx); 2542 * 2543 * Note for future: these are 32-bit systems; no hppa64. 2544 */ 2545 2546 atl = tcg_temp_new_tl(); 2547 stl = tcg_temp_new_tl(); 2548 addr = tcg_temp_new_tl(); 2549 2550 tcg_gen_ld32u_i64(stl, cpu_env, 2551 a->data ? offsetof(CPUHPPAState, cr[CR_ISR]) 2552 : offsetof(CPUHPPAState, cr[CR_IIASQ])); 2553 tcg_gen_ld32u_i64(atl, cpu_env, 2554 a->data ? offsetof(CPUHPPAState, cr[CR_IOR]) 2555 : offsetof(CPUHPPAState, cr[CR_IIAOQ])); 2556 tcg_gen_shli_i64(stl, stl, 32); 2557 tcg_gen_or_tl(addr, atl, stl); 2558 tcg_temp_free_tl(atl); 2559 tcg_temp_free_tl(stl); 2560 2561 reg = load_gpr(ctx, a->r); 2562 if (a->addr) { 2563 gen_helper_itlba(cpu_env, addr, reg); 2564 } else { 2565 gen_helper_itlbp(cpu_env, addr, reg); 2566 } 2567 tcg_temp_free_tl(addr); 2568 2569 /* Exit TB for TLB change if mmu is enabled. */ 2570 if (ctx->tb_flags & PSW_C) { 2571 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 2572 } 2573 return nullify_end(ctx); 2574 #endif 2575 } 2576 2577 static bool trans_lpa(DisasContext *ctx, arg_ldst *a) 2578 { 2579 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2580 #ifndef CONFIG_USER_ONLY 2581 TCGv_tl vaddr; 2582 TCGv_reg ofs, paddr; 2583 2584 nullify_over(ctx); 2585 2586 form_gva(ctx, &vaddr, &ofs, a->b, a->x, 0, 0, a->sp, a->m, false); 2587 2588 paddr = tcg_temp_new(); 2589 gen_helper_lpa(paddr, cpu_env, vaddr); 2590 2591 /* Note that physical address result overrides base modification. */ 2592 if (a->m) { 2593 save_gpr(ctx, a->b, ofs); 2594 } 2595 save_gpr(ctx, a->t, paddr); 2596 tcg_temp_free(paddr); 2597 2598 return nullify_end(ctx); 2599 #endif 2600 } 2601 2602 static bool trans_lci(DisasContext *ctx, arg_lci *a) 2603 { 2604 TCGv_reg ci; 2605 2606 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2607 2608 /* The Coherence Index is an implementation-defined function of the 2609 physical address. Two addresses with the same CI have a coherent 2610 view of the cache. Our implementation is to return 0 for all, 2611 since the entire address space is coherent. */ 2612 ci = tcg_const_reg(0); 2613 save_gpr(ctx, a->t, ci); 2614 tcg_temp_free(ci); 2615 2616 cond_free(&ctx->null_cond); 2617 return true; 2618 } 2619 2620 static bool trans_add(DisasContext *ctx, arg_rrr_cf_sh *a) 2621 { 2622 return do_add_reg(ctx, a, false, false, false, false); 2623 } 2624 2625 static bool trans_add_l(DisasContext *ctx, arg_rrr_cf_sh *a) 2626 { 2627 return do_add_reg(ctx, a, true, false, false, false); 2628 } 2629 2630 static bool trans_add_tsv(DisasContext *ctx, arg_rrr_cf_sh *a) 2631 { 2632 return do_add_reg(ctx, a, false, true, false, false); 2633 } 2634 2635 static bool trans_add_c(DisasContext *ctx, arg_rrr_cf_sh *a) 2636 { 2637 return do_add_reg(ctx, a, false, false, false, true); 2638 } 2639 2640 static bool trans_add_c_tsv(DisasContext *ctx, arg_rrr_cf_sh *a) 2641 { 2642 return do_add_reg(ctx, a, false, true, false, true); 2643 } 2644 2645 static bool trans_sub(DisasContext *ctx, arg_rrr_cf *a) 2646 { 2647 return do_sub_reg(ctx, a, false, false, false); 2648 } 2649 2650 static bool trans_sub_tsv(DisasContext *ctx, arg_rrr_cf *a) 2651 { 2652 return do_sub_reg(ctx, a, true, false, false); 2653 } 2654 2655 static bool trans_sub_tc(DisasContext *ctx, arg_rrr_cf *a) 2656 { 2657 return do_sub_reg(ctx, a, false, false, true); 2658 } 2659 2660 static bool trans_sub_tsv_tc(DisasContext *ctx, arg_rrr_cf *a) 2661 { 2662 return do_sub_reg(ctx, a, true, false, true); 2663 } 2664 2665 static bool trans_sub_b(DisasContext *ctx, arg_rrr_cf *a) 2666 { 2667 return do_sub_reg(ctx, a, false, true, false); 2668 } 2669 2670 static bool trans_sub_b_tsv(DisasContext *ctx, arg_rrr_cf *a) 2671 { 2672 return do_sub_reg(ctx, a, true, true, false); 2673 } 2674 2675 static bool trans_andcm(DisasContext *ctx, arg_rrr_cf *a) 2676 { 2677 return do_log_reg(ctx, a, tcg_gen_andc_reg); 2678 } 2679 2680 static bool trans_and(DisasContext *ctx, arg_rrr_cf *a) 2681 { 2682 return do_log_reg(ctx, a, tcg_gen_and_reg); 2683 } 2684 2685 static bool trans_or(DisasContext *ctx, arg_rrr_cf *a) 2686 { 2687 if (a->cf == 0) { 2688 unsigned r2 = a->r2; 2689 unsigned r1 = a->r1; 2690 unsigned rt = a->t; 2691 2692 if (rt == 0) { /* NOP */ 2693 cond_free(&ctx->null_cond); 2694 return true; 2695 } 2696 if (r2 == 0) { /* COPY */ 2697 if (r1 == 0) { 2698 TCGv_reg dest = dest_gpr(ctx, rt); 2699 tcg_gen_movi_reg(dest, 0); 2700 save_gpr(ctx, rt, dest); 2701 } else { 2702 save_gpr(ctx, rt, cpu_gr[r1]); 2703 } 2704 cond_free(&ctx->null_cond); 2705 return true; 2706 } 2707 #ifndef CONFIG_USER_ONLY 2708 /* These are QEMU extensions and are nops in the real architecture: 2709 * 2710 * or %r10,%r10,%r10 -- idle loop; wait for interrupt 2711 * or %r31,%r31,%r31 -- death loop; offline cpu 2712 * currently implemented as idle. 2713 */ 2714 if ((rt == 10 || rt == 31) && r1 == rt && r2 == rt) { /* PAUSE */ 2715 TCGv_i32 tmp; 2716 2717 /* No need to check for supervisor, as userland can only pause 2718 until the next timer interrupt. */ 2719 nullify_over(ctx); 2720 2721 /* Advance the instruction queue. */ 2722 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b); 2723 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_n, ctx->iaoq_n_var); 2724 nullify_set(ctx, 0); 2725 2726 /* Tell the qemu main loop to halt until this cpu has work. */ 2727 tmp = tcg_const_i32(1); 2728 tcg_gen_st_i32(tmp, cpu_env, -offsetof(HPPACPU, env) + 2729 offsetof(CPUState, halted)); 2730 tcg_temp_free_i32(tmp); 2731 gen_excp_1(EXCP_HALTED); 2732 ctx->base.is_jmp = DISAS_NORETURN; 2733 2734 return nullify_end(ctx); 2735 } 2736 #endif 2737 } 2738 return do_log_reg(ctx, a, tcg_gen_or_reg); 2739 } 2740 2741 static bool trans_xor(DisasContext *ctx, arg_rrr_cf *a) 2742 { 2743 return do_log_reg(ctx, a, tcg_gen_xor_reg); 2744 } 2745 2746 static bool trans_cmpclr(DisasContext *ctx, arg_rrr_cf *a) 2747 { 2748 TCGv_reg tcg_r1, tcg_r2; 2749 2750 if (a->cf) { 2751 nullify_over(ctx); 2752 } 2753 tcg_r1 = load_gpr(ctx, a->r1); 2754 tcg_r2 = load_gpr(ctx, a->r2); 2755 do_cmpclr(ctx, a->t, tcg_r1, tcg_r2, a->cf); 2756 return nullify_end(ctx); 2757 } 2758 2759 static bool trans_uxor(DisasContext *ctx, arg_rrr_cf *a) 2760 { 2761 TCGv_reg tcg_r1, tcg_r2; 2762 2763 if (a->cf) { 2764 nullify_over(ctx); 2765 } 2766 tcg_r1 = load_gpr(ctx, a->r1); 2767 tcg_r2 = load_gpr(ctx, a->r2); 2768 do_unit(ctx, a->t, tcg_r1, tcg_r2, a->cf, false, tcg_gen_xor_reg); 2769 return nullify_end(ctx); 2770 } 2771 2772 static bool do_uaddcm(DisasContext *ctx, arg_rrr_cf *a, bool is_tc) 2773 { 2774 TCGv_reg tcg_r1, tcg_r2, tmp; 2775 2776 if (a->cf) { 2777 nullify_over(ctx); 2778 } 2779 tcg_r1 = load_gpr(ctx, a->r1); 2780 tcg_r2 = load_gpr(ctx, a->r2); 2781 tmp = get_temp(ctx); 2782 tcg_gen_not_reg(tmp, tcg_r2); 2783 do_unit(ctx, a->t, tcg_r1, tmp, a->cf, is_tc, tcg_gen_add_reg); 2784 return nullify_end(ctx); 2785 } 2786 2787 static bool trans_uaddcm(DisasContext *ctx, arg_rrr_cf *a) 2788 { 2789 return do_uaddcm(ctx, a, false); 2790 } 2791 2792 static bool trans_uaddcm_tc(DisasContext *ctx, arg_rrr_cf *a) 2793 { 2794 return do_uaddcm(ctx, a, true); 2795 } 2796 2797 static bool do_dcor(DisasContext *ctx, arg_rr_cf *a, bool is_i) 2798 { 2799 TCGv_reg tmp; 2800 2801 nullify_over(ctx); 2802 2803 tmp = get_temp(ctx); 2804 tcg_gen_shri_reg(tmp, cpu_psw_cb, 3); 2805 if (!is_i) { 2806 tcg_gen_not_reg(tmp, tmp); 2807 } 2808 tcg_gen_andi_reg(tmp, tmp, 0x11111111); 2809 tcg_gen_muli_reg(tmp, tmp, 6); 2810 do_unit(ctx, a->t, load_gpr(ctx, a->r), tmp, a->cf, false, 2811 is_i ? tcg_gen_add_reg : tcg_gen_sub_reg); 2812 return nullify_end(ctx); 2813 } 2814 2815 static bool trans_dcor(DisasContext *ctx, arg_rr_cf *a) 2816 { 2817 return do_dcor(ctx, a, false); 2818 } 2819 2820 static bool trans_dcor_i(DisasContext *ctx, arg_rr_cf *a) 2821 { 2822 return do_dcor(ctx, a, true); 2823 } 2824 2825 static bool trans_ds(DisasContext *ctx, arg_rrr_cf *a) 2826 { 2827 TCGv_reg dest, add1, add2, addc, zero, in1, in2; 2828 2829 nullify_over(ctx); 2830 2831 in1 = load_gpr(ctx, a->r1); 2832 in2 = load_gpr(ctx, a->r2); 2833 2834 add1 = tcg_temp_new(); 2835 add2 = tcg_temp_new(); 2836 addc = tcg_temp_new(); 2837 dest = tcg_temp_new(); 2838 zero = tcg_const_reg(0); 2839 2840 /* Form R1 << 1 | PSW[CB]{8}. */ 2841 tcg_gen_add_reg(add1, in1, in1); 2842 tcg_gen_add_reg(add1, add1, cpu_psw_cb_msb); 2843 2844 /* Add or subtract R2, depending on PSW[V]. Proper computation of 2845 carry{8} requires that we subtract via + ~R2 + 1, as described in 2846 the manual. By extracting and masking V, we can produce the 2847 proper inputs to the addition without movcond. */ 2848 tcg_gen_sari_reg(addc, cpu_psw_v, TARGET_REGISTER_BITS - 1); 2849 tcg_gen_xor_reg(add2, in2, addc); 2850 tcg_gen_andi_reg(addc, addc, 1); 2851 /* ??? This is only correct for 32-bit. */ 2852 tcg_gen_add2_i32(dest, cpu_psw_cb_msb, add1, zero, add2, zero); 2853 tcg_gen_add2_i32(dest, cpu_psw_cb_msb, dest, cpu_psw_cb_msb, addc, zero); 2854 2855 tcg_temp_free(addc); 2856 tcg_temp_free(zero); 2857 2858 /* Write back the result register. */ 2859 save_gpr(ctx, a->t, dest); 2860 2861 /* Write back PSW[CB]. */ 2862 tcg_gen_xor_reg(cpu_psw_cb, add1, add2); 2863 tcg_gen_xor_reg(cpu_psw_cb, cpu_psw_cb, dest); 2864 2865 /* Write back PSW[V] for the division step. */ 2866 tcg_gen_neg_reg(cpu_psw_v, cpu_psw_cb_msb); 2867 tcg_gen_xor_reg(cpu_psw_v, cpu_psw_v, in2); 2868 2869 /* Install the new nullification. */ 2870 if (a->cf) { 2871 TCGv_reg sv = NULL; 2872 if (cond_need_sv(a->cf >> 1)) { 2873 /* ??? The lshift is supposed to contribute to overflow. */ 2874 sv = do_add_sv(ctx, dest, add1, add2); 2875 } 2876 ctx->null_cond = do_cond(a->cf, dest, cpu_psw_cb_msb, sv); 2877 } 2878 2879 tcg_temp_free(add1); 2880 tcg_temp_free(add2); 2881 tcg_temp_free(dest); 2882 2883 return nullify_end(ctx); 2884 } 2885 2886 static bool trans_addi(DisasContext *ctx, arg_rri_cf *a) 2887 { 2888 return do_add_imm(ctx, a, false, false); 2889 } 2890 2891 static bool trans_addi_tsv(DisasContext *ctx, arg_rri_cf *a) 2892 { 2893 return do_add_imm(ctx, a, true, false); 2894 } 2895 2896 static bool trans_addi_tc(DisasContext *ctx, arg_rri_cf *a) 2897 { 2898 return do_add_imm(ctx, a, false, true); 2899 } 2900 2901 static bool trans_addi_tc_tsv(DisasContext *ctx, arg_rri_cf *a) 2902 { 2903 return do_add_imm(ctx, a, true, true); 2904 } 2905 2906 static bool trans_subi(DisasContext *ctx, arg_rri_cf *a) 2907 { 2908 return do_sub_imm(ctx, a, false); 2909 } 2910 2911 static bool trans_subi_tsv(DisasContext *ctx, arg_rri_cf *a) 2912 { 2913 return do_sub_imm(ctx, a, true); 2914 } 2915 2916 static bool trans_cmpiclr(DisasContext *ctx, arg_rri_cf *a) 2917 { 2918 TCGv_reg tcg_im, tcg_r2; 2919 2920 if (a->cf) { 2921 nullify_over(ctx); 2922 } 2923 2924 tcg_im = load_const(ctx, a->i); 2925 tcg_r2 = load_gpr(ctx, a->r); 2926 do_cmpclr(ctx, a->t, tcg_im, tcg_r2, a->cf); 2927 2928 return nullify_end(ctx); 2929 } 2930 2931 static bool trans_ld(DisasContext *ctx, arg_ldst *a) 2932 { 2933 return do_load(ctx, a->t, a->b, a->x, a->scale ? a->size : 0, 2934 a->disp, a->sp, a->m, a->size | MO_TE); 2935 } 2936 2937 static bool trans_st(DisasContext *ctx, arg_ldst *a) 2938 { 2939 assert(a->x == 0 && a->scale == 0); 2940 return do_store(ctx, a->t, a->b, a->disp, a->sp, a->m, a->size | MO_TE); 2941 } 2942 2943 static bool trans_ldc(DisasContext *ctx, arg_ldst *a) 2944 { 2945 MemOp mop = MO_TEUL | MO_ALIGN_16 | a->size; 2946 TCGv_reg zero, dest, ofs; 2947 TCGv_tl addr; 2948 2949 nullify_over(ctx); 2950 2951 if (a->m) { 2952 /* Base register modification. Make sure if RT == RB, 2953 we see the result of the load. */ 2954 dest = get_temp(ctx); 2955 } else { 2956 dest = dest_gpr(ctx, a->t); 2957 } 2958 2959 form_gva(ctx, &addr, &ofs, a->b, a->x, a->scale ? a->size : 0, 2960 a->disp, a->sp, a->m, ctx->mmu_idx == MMU_PHYS_IDX); 2961 zero = tcg_const_reg(0); 2962 tcg_gen_atomic_xchg_reg(dest, addr, zero, ctx->mmu_idx, mop); 2963 if (a->m) { 2964 save_gpr(ctx, a->b, ofs); 2965 } 2966 save_gpr(ctx, a->t, dest); 2967 2968 return nullify_end(ctx); 2969 } 2970 2971 static bool trans_stby(DisasContext *ctx, arg_stby *a) 2972 { 2973 TCGv_reg ofs, val; 2974 TCGv_tl addr; 2975 2976 nullify_over(ctx); 2977 2978 form_gva(ctx, &addr, &ofs, a->b, 0, 0, a->disp, a->sp, a->m, 2979 ctx->mmu_idx == MMU_PHYS_IDX); 2980 val = load_gpr(ctx, a->r); 2981 if (a->a) { 2982 if (tb_cflags(ctx->base.tb) & CF_PARALLEL) { 2983 gen_helper_stby_e_parallel(cpu_env, addr, val); 2984 } else { 2985 gen_helper_stby_e(cpu_env, addr, val); 2986 } 2987 } else { 2988 if (tb_cflags(ctx->base.tb) & CF_PARALLEL) { 2989 gen_helper_stby_b_parallel(cpu_env, addr, val); 2990 } else { 2991 gen_helper_stby_b(cpu_env, addr, val); 2992 } 2993 } 2994 if (a->m) { 2995 tcg_gen_andi_reg(ofs, ofs, ~3); 2996 save_gpr(ctx, a->b, ofs); 2997 } 2998 2999 return nullify_end(ctx); 3000 } 3001 3002 static bool trans_lda(DisasContext *ctx, arg_ldst *a) 3003 { 3004 int hold_mmu_idx = ctx->mmu_idx; 3005 3006 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 3007 ctx->mmu_idx = MMU_PHYS_IDX; 3008 trans_ld(ctx, a); 3009 ctx->mmu_idx = hold_mmu_idx; 3010 return true; 3011 } 3012 3013 static bool trans_sta(DisasContext *ctx, arg_ldst *a) 3014 { 3015 int hold_mmu_idx = ctx->mmu_idx; 3016 3017 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 3018 ctx->mmu_idx = MMU_PHYS_IDX; 3019 trans_st(ctx, a); 3020 ctx->mmu_idx = hold_mmu_idx; 3021 return true; 3022 } 3023 3024 static bool trans_ldil(DisasContext *ctx, arg_ldil *a) 3025 { 3026 TCGv_reg tcg_rt = dest_gpr(ctx, a->t); 3027 3028 tcg_gen_movi_reg(tcg_rt, a->i); 3029 save_gpr(ctx, a->t, tcg_rt); 3030 cond_free(&ctx->null_cond); 3031 return true; 3032 } 3033 3034 static bool trans_addil(DisasContext *ctx, arg_addil *a) 3035 { 3036 TCGv_reg tcg_rt = load_gpr(ctx, a->r); 3037 TCGv_reg tcg_r1 = dest_gpr(ctx, 1); 3038 3039 tcg_gen_addi_reg(tcg_r1, tcg_rt, a->i); 3040 save_gpr(ctx, 1, tcg_r1); 3041 cond_free(&ctx->null_cond); 3042 return true; 3043 } 3044 3045 static bool trans_ldo(DisasContext *ctx, arg_ldo *a) 3046 { 3047 TCGv_reg tcg_rt = dest_gpr(ctx, a->t); 3048 3049 /* Special case rb == 0, for the LDI pseudo-op. 3050 The COPY pseudo-op is handled for free within tcg_gen_addi_tl. */ 3051 if (a->b == 0) { 3052 tcg_gen_movi_reg(tcg_rt, a->i); 3053 } else { 3054 tcg_gen_addi_reg(tcg_rt, cpu_gr[a->b], a->i); 3055 } 3056 save_gpr(ctx, a->t, tcg_rt); 3057 cond_free(&ctx->null_cond); 3058 return true; 3059 } 3060 3061 static bool do_cmpb(DisasContext *ctx, unsigned r, TCGv_reg in1, 3062 unsigned c, unsigned f, unsigned n, int disp) 3063 { 3064 TCGv_reg dest, in2, sv; 3065 DisasCond cond; 3066 3067 in2 = load_gpr(ctx, r); 3068 dest = get_temp(ctx); 3069 3070 tcg_gen_sub_reg(dest, in1, in2); 3071 3072 sv = NULL; 3073 if (cond_need_sv(c)) { 3074 sv = do_sub_sv(ctx, dest, in1, in2); 3075 } 3076 3077 cond = do_sub_cond(c * 2 + f, dest, in1, in2, sv); 3078 return do_cbranch(ctx, disp, n, &cond); 3079 } 3080 3081 static bool trans_cmpb(DisasContext *ctx, arg_cmpb *a) 3082 { 3083 nullify_over(ctx); 3084 return do_cmpb(ctx, a->r2, load_gpr(ctx, a->r1), a->c, a->f, a->n, a->disp); 3085 } 3086 3087 static bool trans_cmpbi(DisasContext *ctx, arg_cmpbi *a) 3088 { 3089 nullify_over(ctx); 3090 return do_cmpb(ctx, a->r, load_const(ctx, a->i), a->c, a->f, a->n, a->disp); 3091 } 3092 3093 static bool do_addb(DisasContext *ctx, unsigned r, TCGv_reg in1, 3094 unsigned c, unsigned f, unsigned n, int disp) 3095 { 3096 TCGv_reg dest, in2, sv, cb_msb; 3097 DisasCond cond; 3098 3099 in2 = load_gpr(ctx, r); 3100 dest = tcg_temp_new(); 3101 sv = NULL; 3102 cb_msb = NULL; 3103 3104 if (cond_need_cb(c)) { 3105 cb_msb = get_temp(ctx); 3106 tcg_gen_movi_reg(cb_msb, 0); 3107 tcg_gen_add2_reg(dest, cb_msb, in1, cb_msb, in2, cb_msb); 3108 } else { 3109 tcg_gen_add_reg(dest, in1, in2); 3110 } 3111 if (cond_need_sv(c)) { 3112 sv = do_add_sv(ctx, dest, in1, in2); 3113 } 3114 3115 cond = do_cond(c * 2 + f, dest, cb_msb, sv); 3116 save_gpr(ctx, r, dest); 3117 tcg_temp_free(dest); 3118 return do_cbranch(ctx, disp, n, &cond); 3119 } 3120 3121 static bool trans_addb(DisasContext *ctx, arg_addb *a) 3122 { 3123 nullify_over(ctx); 3124 return do_addb(ctx, a->r2, load_gpr(ctx, a->r1), a->c, a->f, a->n, a->disp); 3125 } 3126 3127 static bool trans_addbi(DisasContext *ctx, arg_addbi *a) 3128 { 3129 nullify_over(ctx); 3130 return do_addb(ctx, a->r, load_const(ctx, a->i), a->c, a->f, a->n, a->disp); 3131 } 3132 3133 static bool trans_bb_sar(DisasContext *ctx, arg_bb_sar *a) 3134 { 3135 TCGv_reg tmp, tcg_r; 3136 DisasCond cond; 3137 3138 nullify_over(ctx); 3139 3140 tmp = tcg_temp_new(); 3141 tcg_r = load_gpr(ctx, a->r); 3142 tcg_gen_shl_reg(tmp, tcg_r, cpu_sar); 3143 3144 cond = cond_make_0(a->c ? TCG_COND_GE : TCG_COND_LT, tmp); 3145 tcg_temp_free(tmp); 3146 return do_cbranch(ctx, a->disp, a->n, &cond); 3147 } 3148 3149 static bool trans_bb_imm(DisasContext *ctx, arg_bb_imm *a) 3150 { 3151 TCGv_reg tmp, tcg_r; 3152 DisasCond cond; 3153 3154 nullify_over(ctx); 3155 3156 tmp = tcg_temp_new(); 3157 tcg_r = load_gpr(ctx, a->r); 3158 tcg_gen_shli_reg(tmp, tcg_r, a->p); 3159 3160 cond = cond_make_0(a->c ? TCG_COND_GE : TCG_COND_LT, tmp); 3161 tcg_temp_free(tmp); 3162 return do_cbranch(ctx, a->disp, a->n, &cond); 3163 } 3164 3165 static bool trans_movb(DisasContext *ctx, arg_movb *a) 3166 { 3167 TCGv_reg dest; 3168 DisasCond cond; 3169 3170 nullify_over(ctx); 3171 3172 dest = dest_gpr(ctx, a->r2); 3173 if (a->r1 == 0) { 3174 tcg_gen_movi_reg(dest, 0); 3175 } else { 3176 tcg_gen_mov_reg(dest, cpu_gr[a->r1]); 3177 } 3178 3179 cond = do_sed_cond(a->c, dest); 3180 return do_cbranch(ctx, a->disp, a->n, &cond); 3181 } 3182 3183 static bool trans_movbi(DisasContext *ctx, arg_movbi *a) 3184 { 3185 TCGv_reg dest; 3186 DisasCond cond; 3187 3188 nullify_over(ctx); 3189 3190 dest = dest_gpr(ctx, a->r); 3191 tcg_gen_movi_reg(dest, a->i); 3192 3193 cond = do_sed_cond(a->c, dest); 3194 return do_cbranch(ctx, a->disp, a->n, &cond); 3195 } 3196 3197 static bool trans_shrpw_sar(DisasContext *ctx, arg_shrpw_sar *a) 3198 { 3199 TCGv_reg dest; 3200 3201 if (a->c) { 3202 nullify_over(ctx); 3203 } 3204 3205 dest = dest_gpr(ctx, a->t); 3206 if (a->r1 == 0) { 3207 tcg_gen_ext32u_reg(dest, load_gpr(ctx, a->r2)); 3208 tcg_gen_shr_reg(dest, dest, cpu_sar); 3209 } else if (a->r1 == a->r2) { 3210 TCGv_i32 t32 = tcg_temp_new_i32(); 3211 tcg_gen_trunc_reg_i32(t32, load_gpr(ctx, a->r2)); 3212 tcg_gen_rotr_i32(t32, t32, cpu_sar); 3213 tcg_gen_extu_i32_reg(dest, t32); 3214 tcg_temp_free_i32(t32); 3215 } else { 3216 TCGv_i64 t = tcg_temp_new_i64(); 3217 TCGv_i64 s = tcg_temp_new_i64(); 3218 3219 tcg_gen_concat_reg_i64(t, load_gpr(ctx, a->r2), load_gpr(ctx, a->r1)); 3220 tcg_gen_extu_reg_i64(s, cpu_sar); 3221 tcg_gen_shr_i64(t, t, s); 3222 tcg_gen_trunc_i64_reg(dest, t); 3223 3224 tcg_temp_free_i64(t); 3225 tcg_temp_free_i64(s); 3226 } 3227 save_gpr(ctx, a->t, dest); 3228 3229 /* Install the new nullification. */ 3230 cond_free(&ctx->null_cond); 3231 if (a->c) { 3232 ctx->null_cond = do_sed_cond(a->c, dest); 3233 } 3234 return nullify_end(ctx); 3235 } 3236 3237 static bool trans_shrpw_imm(DisasContext *ctx, arg_shrpw_imm *a) 3238 { 3239 unsigned sa = 31 - a->cpos; 3240 TCGv_reg dest, t2; 3241 3242 if (a->c) { 3243 nullify_over(ctx); 3244 } 3245 3246 dest = dest_gpr(ctx, a->t); 3247 t2 = load_gpr(ctx, a->r2); 3248 if (a->r1 == a->r2) { 3249 TCGv_i32 t32 = tcg_temp_new_i32(); 3250 tcg_gen_trunc_reg_i32(t32, t2); 3251 tcg_gen_rotri_i32(t32, t32, sa); 3252 tcg_gen_extu_i32_reg(dest, t32); 3253 tcg_temp_free_i32(t32); 3254 } else if (a->r1 == 0) { 3255 tcg_gen_extract_reg(dest, t2, sa, 32 - sa); 3256 } else { 3257 TCGv_reg t0 = tcg_temp_new(); 3258 tcg_gen_extract_reg(t0, t2, sa, 32 - sa); 3259 tcg_gen_deposit_reg(dest, t0, cpu_gr[a->r1], 32 - sa, sa); 3260 tcg_temp_free(t0); 3261 } 3262 save_gpr(ctx, a->t, dest); 3263 3264 /* Install the new nullification. */ 3265 cond_free(&ctx->null_cond); 3266 if (a->c) { 3267 ctx->null_cond = do_sed_cond(a->c, dest); 3268 } 3269 return nullify_end(ctx); 3270 } 3271 3272 static bool trans_extrw_sar(DisasContext *ctx, arg_extrw_sar *a) 3273 { 3274 unsigned len = 32 - a->clen; 3275 TCGv_reg dest, src, tmp; 3276 3277 if (a->c) { 3278 nullify_over(ctx); 3279 } 3280 3281 dest = dest_gpr(ctx, a->t); 3282 src = load_gpr(ctx, a->r); 3283 tmp = tcg_temp_new(); 3284 3285 /* Recall that SAR is using big-endian bit numbering. */ 3286 tcg_gen_xori_reg(tmp, cpu_sar, TARGET_REGISTER_BITS - 1); 3287 if (a->se) { 3288 tcg_gen_sar_reg(dest, src, tmp); 3289 tcg_gen_sextract_reg(dest, dest, 0, len); 3290 } else { 3291 tcg_gen_shr_reg(dest, src, tmp); 3292 tcg_gen_extract_reg(dest, dest, 0, len); 3293 } 3294 tcg_temp_free(tmp); 3295 save_gpr(ctx, a->t, dest); 3296 3297 /* Install the new nullification. */ 3298 cond_free(&ctx->null_cond); 3299 if (a->c) { 3300 ctx->null_cond = do_sed_cond(a->c, dest); 3301 } 3302 return nullify_end(ctx); 3303 } 3304 3305 static bool trans_extrw_imm(DisasContext *ctx, arg_extrw_imm *a) 3306 { 3307 unsigned len = 32 - a->clen; 3308 unsigned cpos = 31 - a->pos; 3309 TCGv_reg dest, src; 3310 3311 if (a->c) { 3312 nullify_over(ctx); 3313 } 3314 3315 dest = dest_gpr(ctx, a->t); 3316 src = load_gpr(ctx, a->r); 3317 if (a->se) { 3318 tcg_gen_sextract_reg(dest, src, cpos, len); 3319 } else { 3320 tcg_gen_extract_reg(dest, src, cpos, len); 3321 } 3322 save_gpr(ctx, a->t, dest); 3323 3324 /* Install the new nullification. */ 3325 cond_free(&ctx->null_cond); 3326 if (a->c) { 3327 ctx->null_cond = do_sed_cond(a->c, dest); 3328 } 3329 return nullify_end(ctx); 3330 } 3331 3332 static bool trans_depwi_imm(DisasContext *ctx, arg_depwi_imm *a) 3333 { 3334 unsigned len = 32 - a->clen; 3335 target_sreg mask0, mask1; 3336 TCGv_reg dest; 3337 3338 if (a->c) { 3339 nullify_over(ctx); 3340 } 3341 if (a->cpos + len > 32) { 3342 len = 32 - a->cpos; 3343 } 3344 3345 dest = dest_gpr(ctx, a->t); 3346 mask0 = deposit64(0, a->cpos, len, a->i); 3347 mask1 = deposit64(-1, a->cpos, len, a->i); 3348 3349 if (a->nz) { 3350 TCGv_reg src = load_gpr(ctx, a->t); 3351 if (mask1 != -1) { 3352 tcg_gen_andi_reg(dest, src, mask1); 3353 src = dest; 3354 } 3355 tcg_gen_ori_reg(dest, src, mask0); 3356 } else { 3357 tcg_gen_movi_reg(dest, mask0); 3358 } 3359 save_gpr(ctx, a->t, dest); 3360 3361 /* Install the new nullification. */ 3362 cond_free(&ctx->null_cond); 3363 if (a->c) { 3364 ctx->null_cond = do_sed_cond(a->c, dest); 3365 } 3366 return nullify_end(ctx); 3367 } 3368 3369 static bool trans_depw_imm(DisasContext *ctx, arg_depw_imm *a) 3370 { 3371 unsigned rs = a->nz ? a->t : 0; 3372 unsigned len = 32 - a->clen; 3373 TCGv_reg dest, val; 3374 3375 if (a->c) { 3376 nullify_over(ctx); 3377 } 3378 if (a->cpos + len > 32) { 3379 len = 32 - a->cpos; 3380 } 3381 3382 dest = dest_gpr(ctx, a->t); 3383 val = load_gpr(ctx, a->r); 3384 if (rs == 0) { 3385 tcg_gen_deposit_z_reg(dest, val, a->cpos, len); 3386 } else { 3387 tcg_gen_deposit_reg(dest, cpu_gr[rs], val, a->cpos, len); 3388 } 3389 save_gpr(ctx, a->t, dest); 3390 3391 /* Install the new nullification. */ 3392 cond_free(&ctx->null_cond); 3393 if (a->c) { 3394 ctx->null_cond = do_sed_cond(a->c, dest); 3395 } 3396 return nullify_end(ctx); 3397 } 3398 3399 static bool do_depw_sar(DisasContext *ctx, unsigned rt, unsigned c, 3400 unsigned nz, unsigned clen, TCGv_reg val) 3401 { 3402 unsigned rs = nz ? rt : 0; 3403 unsigned len = 32 - clen; 3404 TCGv_reg mask, tmp, shift, dest; 3405 unsigned msb = 1U << (len - 1); 3406 3407 dest = dest_gpr(ctx, rt); 3408 shift = tcg_temp_new(); 3409 tmp = tcg_temp_new(); 3410 3411 /* Convert big-endian bit numbering in SAR to left-shift. */ 3412 tcg_gen_xori_reg(shift, cpu_sar, TARGET_REGISTER_BITS - 1); 3413 3414 mask = tcg_const_reg(msb + (msb - 1)); 3415 tcg_gen_and_reg(tmp, val, mask); 3416 if (rs) { 3417 tcg_gen_shl_reg(mask, mask, shift); 3418 tcg_gen_shl_reg(tmp, tmp, shift); 3419 tcg_gen_andc_reg(dest, cpu_gr[rs], mask); 3420 tcg_gen_or_reg(dest, dest, tmp); 3421 } else { 3422 tcg_gen_shl_reg(dest, tmp, shift); 3423 } 3424 tcg_temp_free(shift); 3425 tcg_temp_free(mask); 3426 tcg_temp_free(tmp); 3427 save_gpr(ctx, rt, dest); 3428 3429 /* Install the new nullification. */ 3430 cond_free(&ctx->null_cond); 3431 if (c) { 3432 ctx->null_cond = do_sed_cond(c, dest); 3433 } 3434 return nullify_end(ctx); 3435 } 3436 3437 static bool trans_depw_sar(DisasContext *ctx, arg_depw_sar *a) 3438 { 3439 if (a->c) { 3440 nullify_over(ctx); 3441 } 3442 return do_depw_sar(ctx, a->t, a->c, a->nz, a->clen, load_gpr(ctx, a->r)); 3443 } 3444 3445 static bool trans_depwi_sar(DisasContext *ctx, arg_depwi_sar *a) 3446 { 3447 if (a->c) { 3448 nullify_over(ctx); 3449 } 3450 return do_depw_sar(ctx, a->t, a->c, a->nz, a->clen, load_const(ctx, a->i)); 3451 } 3452 3453 static bool trans_be(DisasContext *ctx, arg_be *a) 3454 { 3455 TCGv_reg tmp; 3456 3457 #ifdef CONFIG_USER_ONLY 3458 /* ??? It seems like there should be a good way of using 3459 "be disp(sr2, r0)", the canonical gateway entry mechanism 3460 to our advantage. But that appears to be inconvenient to 3461 manage along side branch delay slots. Therefore we handle 3462 entry into the gateway page via absolute address. */ 3463 /* Since we don't implement spaces, just branch. Do notice the special 3464 case of "be disp(*,r0)" using a direct branch to disp, so that we can 3465 goto_tb to the TB containing the syscall. */ 3466 if (a->b == 0) { 3467 return do_dbranch(ctx, a->disp, a->l, a->n); 3468 } 3469 #else 3470 nullify_over(ctx); 3471 #endif 3472 3473 tmp = get_temp(ctx); 3474 tcg_gen_addi_reg(tmp, load_gpr(ctx, a->b), a->disp); 3475 tmp = do_ibranch_priv(ctx, tmp); 3476 3477 #ifdef CONFIG_USER_ONLY 3478 return do_ibranch(ctx, tmp, a->l, a->n); 3479 #else 3480 TCGv_i64 new_spc = tcg_temp_new_i64(); 3481 3482 load_spr(ctx, new_spc, a->sp); 3483 if (a->l) { 3484 copy_iaoq_entry(cpu_gr[31], ctx->iaoq_n, ctx->iaoq_n_var); 3485 tcg_gen_mov_i64(cpu_sr[0], cpu_iasq_f); 3486 } 3487 if (a->n && use_nullify_skip(ctx)) { 3488 tcg_gen_mov_reg(cpu_iaoq_f, tmp); 3489 tcg_gen_addi_reg(cpu_iaoq_b, cpu_iaoq_f, 4); 3490 tcg_gen_mov_i64(cpu_iasq_f, new_spc); 3491 tcg_gen_mov_i64(cpu_iasq_b, cpu_iasq_f); 3492 } else { 3493 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b); 3494 if (ctx->iaoq_b == -1) { 3495 tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b); 3496 } 3497 tcg_gen_mov_reg(cpu_iaoq_b, tmp); 3498 tcg_gen_mov_i64(cpu_iasq_b, new_spc); 3499 nullify_set(ctx, a->n); 3500 } 3501 tcg_temp_free_i64(new_spc); 3502 tcg_gen_lookup_and_goto_ptr(); 3503 ctx->base.is_jmp = DISAS_NORETURN; 3504 return nullify_end(ctx); 3505 #endif 3506 } 3507 3508 static bool trans_bl(DisasContext *ctx, arg_bl *a) 3509 { 3510 return do_dbranch(ctx, iaoq_dest(ctx, a->disp), a->l, a->n); 3511 } 3512 3513 static bool trans_b_gate(DisasContext *ctx, arg_b_gate *a) 3514 { 3515 target_ureg dest = iaoq_dest(ctx, a->disp); 3516 3517 nullify_over(ctx); 3518 3519 /* Make sure the caller hasn't done something weird with the queue. 3520 * ??? This is not quite the same as the PSW[B] bit, which would be 3521 * expensive to track. Real hardware will trap for 3522 * b gateway 3523 * b gateway+4 (in delay slot of first branch) 3524 * However, checking for a non-sequential instruction queue *will* 3525 * diagnose the security hole 3526 * b gateway 3527 * b evil 3528 * in which instructions at evil would run with increased privs. 3529 */ 3530 if (ctx->iaoq_b == -1 || ctx->iaoq_b != ctx->iaoq_f + 4) { 3531 return gen_illegal(ctx); 3532 } 3533 3534 #ifndef CONFIG_USER_ONLY 3535 if (ctx->tb_flags & PSW_C) { 3536 CPUHPPAState *env = ctx->cs->env_ptr; 3537 int type = hppa_artype_for_page(env, ctx->base.pc_next); 3538 /* If we could not find a TLB entry, then we need to generate an 3539 ITLB miss exception so the kernel will provide it. 3540 The resulting TLB fill operation will invalidate this TB and 3541 we will re-translate, at which point we *will* be able to find 3542 the TLB entry and determine if this is in fact a gateway page. */ 3543 if (type < 0) { 3544 gen_excp(ctx, EXCP_ITLB_MISS); 3545 return true; 3546 } 3547 /* No change for non-gateway pages or for priv decrease. */ 3548 if (type >= 4 && type - 4 < ctx->privilege) { 3549 dest = deposit32(dest, 0, 2, type - 4); 3550 } 3551 } else { 3552 dest &= -4; /* priv = 0 */ 3553 } 3554 #endif 3555 3556 if (a->l) { 3557 TCGv_reg tmp = dest_gpr(ctx, a->l); 3558 if (ctx->privilege < 3) { 3559 tcg_gen_andi_reg(tmp, tmp, -4); 3560 } 3561 tcg_gen_ori_reg(tmp, tmp, ctx->privilege); 3562 save_gpr(ctx, a->l, tmp); 3563 } 3564 3565 return do_dbranch(ctx, dest, 0, a->n); 3566 } 3567 3568 static bool trans_blr(DisasContext *ctx, arg_blr *a) 3569 { 3570 if (a->x) { 3571 TCGv_reg tmp = get_temp(ctx); 3572 tcg_gen_shli_reg(tmp, load_gpr(ctx, a->x), 3); 3573 tcg_gen_addi_reg(tmp, tmp, ctx->iaoq_f + 8); 3574 /* The computation here never changes privilege level. */ 3575 return do_ibranch(ctx, tmp, a->l, a->n); 3576 } else { 3577 /* BLR R0,RX is a good way to load PC+8 into RX. */ 3578 return do_dbranch(ctx, ctx->iaoq_f + 8, a->l, a->n); 3579 } 3580 } 3581 3582 static bool trans_bv(DisasContext *ctx, arg_bv *a) 3583 { 3584 TCGv_reg dest; 3585 3586 if (a->x == 0) { 3587 dest = load_gpr(ctx, a->b); 3588 } else { 3589 dest = get_temp(ctx); 3590 tcg_gen_shli_reg(dest, load_gpr(ctx, a->x), 3); 3591 tcg_gen_add_reg(dest, dest, load_gpr(ctx, a->b)); 3592 } 3593 dest = do_ibranch_priv(ctx, dest); 3594 return do_ibranch(ctx, dest, 0, a->n); 3595 } 3596 3597 static bool trans_bve(DisasContext *ctx, arg_bve *a) 3598 { 3599 TCGv_reg dest; 3600 3601 #ifdef CONFIG_USER_ONLY 3602 dest = do_ibranch_priv(ctx, load_gpr(ctx, a->b)); 3603 return do_ibranch(ctx, dest, a->l, a->n); 3604 #else 3605 nullify_over(ctx); 3606 dest = do_ibranch_priv(ctx, load_gpr(ctx, a->b)); 3607 3608 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b); 3609 if (ctx->iaoq_b == -1) { 3610 tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b); 3611 } 3612 copy_iaoq_entry(cpu_iaoq_b, -1, dest); 3613 tcg_gen_mov_i64(cpu_iasq_b, space_select(ctx, 0, dest)); 3614 if (a->l) { 3615 copy_iaoq_entry(cpu_gr[a->l], ctx->iaoq_n, ctx->iaoq_n_var); 3616 } 3617 nullify_set(ctx, a->n); 3618 tcg_gen_lookup_and_goto_ptr(); 3619 ctx->base.is_jmp = DISAS_NORETURN; 3620 return nullify_end(ctx); 3621 #endif 3622 } 3623 3624 /* 3625 * Float class 0 3626 */ 3627 3628 static void gen_fcpy_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) 3629 { 3630 tcg_gen_mov_i32(dst, src); 3631 } 3632 3633 static bool trans_fcpy_f(DisasContext *ctx, arg_fclass01 *a) 3634 { 3635 return do_fop_wew(ctx, a->t, a->r, gen_fcpy_f); 3636 } 3637 3638 static void gen_fcpy_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) 3639 { 3640 tcg_gen_mov_i64(dst, src); 3641 } 3642 3643 static bool trans_fcpy_d(DisasContext *ctx, arg_fclass01 *a) 3644 { 3645 return do_fop_ded(ctx, a->t, a->r, gen_fcpy_d); 3646 } 3647 3648 static void gen_fabs_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) 3649 { 3650 tcg_gen_andi_i32(dst, src, INT32_MAX); 3651 } 3652 3653 static bool trans_fabs_f(DisasContext *ctx, arg_fclass01 *a) 3654 { 3655 return do_fop_wew(ctx, a->t, a->r, gen_fabs_f); 3656 } 3657 3658 static void gen_fabs_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) 3659 { 3660 tcg_gen_andi_i64(dst, src, INT64_MAX); 3661 } 3662 3663 static bool trans_fabs_d(DisasContext *ctx, arg_fclass01 *a) 3664 { 3665 return do_fop_ded(ctx, a->t, a->r, gen_fabs_d); 3666 } 3667 3668 static bool trans_fsqrt_f(DisasContext *ctx, arg_fclass01 *a) 3669 { 3670 return do_fop_wew(ctx, a->t, a->r, gen_helper_fsqrt_s); 3671 } 3672 3673 static bool trans_fsqrt_d(DisasContext *ctx, arg_fclass01 *a) 3674 { 3675 return do_fop_ded(ctx, a->t, a->r, gen_helper_fsqrt_d); 3676 } 3677 3678 static bool trans_frnd_f(DisasContext *ctx, arg_fclass01 *a) 3679 { 3680 return do_fop_wew(ctx, a->t, a->r, gen_helper_frnd_s); 3681 } 3682 3683 static bool trans_frnd_d(DisasContext *ctx, arg_fclass01 *a) 3684 { 3685 return do_fop_ded(ctx, a->t, a->r, gen_helper_frnd_d); 3686 } 3687 3688 static void gen_fneg_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) 3689 { 3690 tcg_gen_xori_i32(dst, src, INT32_MIN); 3691 } 3692 3693 static bool trans_fneg_f(DisasContext *ctx, arg_fclass01 *a) 3694 { 3695 return do_fop_wew(ctx, a->t, a->r, gen_fneg_f); 3696 } 3697 3698 static void gen_fneg_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) 3699 { 3700 tcg_gen_xori_i64(dst, src, INT64_MIN); 3701 } 3702 3703 static bool trans_fneg_d(DisasContext *ctx, arg_fclass01 *a) 3704 { 3705 return do_fop_ded(ctx, a->t, a->r, gen_fneg_d); 3706 } 3707 3708 static void gen_fnegabs_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) 3709 { 3710 tcg_gen_ori_i32(dst, src, INT32_MIN); 3711 } 3712 3713 static bool trans_fnegabs_f(DisasContext *ctx, arg_fclass01 *a) 3714 { 3715 return do_fop_wew(ctx, a->t, a->r, gen_fnegabs_f); 3716 } 3717 3718 static void gen_fnegabs_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) 3719 { 3720 tcg_gen_ori_i64(dst, src, INT64_MIN); 3721 } 3722 3723 static bool trans_fnegabs_d(DisasContext *ctx, arg_fclass01 *a) 3724 { 3725 return do_fop_ded(ctx, a->t, a->r, gen_fnegabs_d); 3726 } 3727 3728 /* 3729 * Float class 1 3730 */ 3731 3732 static bool trans_fcnv_d_f(DisasContext *ctx, arg_fclass01 *a) 3733 { 3734 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_d_s); 3735 } 3736 3737 static bool trans_fcnv_f_d(DisasContext *ctx, arg_fclass01 *a) 3738 { 3739 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_s_d); 3740 } 3741 3742 static bool trans_fcnv_w_f(DisasContext *ctx, arg_fclass01 *a) 3743 { 3744 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_w_s); 3745 } 3746 3747 static bool trans_fcnv_q_f(DisasContext *ctx, arg_fclass01 *a) 3748 { 3749 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_dw_s); 3750 } 3751 3752 static bool trans_fcnv_w_d(DisasContext *ctx, arg_fclass01 *a) 3753 { 3754 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_w_d); 3755 } 3756 3757 static bool trans_fcnv_q_d(DisasContext *ctx, arg_fclass01 *a) 3758 { 3759 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_dw_d); 3760 } 3761 3762 static bool trans_fcnv_f_w(DisasContext *ctx, arg_fclass01 *a) 3763 { 3764 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_s_w); 3765 } 3766 3767 static bool trans_fcnv_d_w(DisasContext *ctx, arg_fclass01 *a) 3768 { 3769 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_d_w); 3770 } 3771 3772 static bool trans_fcnv_f_q(DisasContext *ctx, arg_fclass01 *a) 3773 { 3774 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_s_dw); 3775 } 3776 3777 static bool trans_fcnv_d_q(DisasContext *ctx, arg_fclass01 *a) 3778 { 3779 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_d_dw); 3780 } 3781 3782 static bool trans_fcnv_t_f_w(DisasContext *ctx, arg_fclass01 *a) 3783 { 3784 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_t_s_w); 3785 } 3786 3787 static bool trans_fcnv_t_d_w(DisasContext *ctx, arg_fclass01 *a) 3788 { 3789 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_t_d_w); 3790 } 3791 3792 static bool trans_fcnv_t_f_q(DisasContext *ctx, arg_fclass01 *a) 3793 { 3794 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_t_s_dw); 3795 } 3796 3797 static bool trans_fcnv_t_d_q(DisasContext *ctx, arg_fclass01 *a) 3798 { 3799 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_t_d_dw); 3800 } 3801 3802 static bool trans_fcnv_uw_f(DisasContext *ctx, arg_fclass01 *a) 3803 { 3804 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_uw_s); 3805 } 3806 3807 static bool trans_fcnv_uq_f(DisasContext *ctx, arg_fclass01 *a) 3808 { 3809 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_udw_s); 3810 } 3811 3812 static bool trans_fcnv_uw_d(DisasContext *ctx, arg_fclass01 *a) 3813 { 3814 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_uw_d); 3815 } 3816 3817 static bool trans_fcnv_uq_d(DisasContext *ctx, arg_fclass01 *a) 3818 { 3819 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_udw_d); 3820 } 3821 3822 static bool trans_fcnv_f_uw(DisasContext *ctx, arg_fclass01 *a) 3823 { 3824 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_s_uw); 3825 } 3826 3827 static bool trans_fcnv_d_uw(DisasContext *ctx, arg_fclass01 *a) 3828 { 3829 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_d_uw); 3830 } 3831 3832 static bool trans_fcnv_f_uq(DisasContext *ctx, arg_fclass01 *a) 3833 { 3834 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_s_udw); 3835 } 3836 3837 static bool trans_fcnv_d_uq(DisasContext *ctx, arg_fclass01 *a) 3838 { 3839 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_d_udw); 3840 } 3841 3842 static bool trans_fcnv_t_f_uw(DisasContext *ctx, arg_fclass01 *a) 3843 { 3844 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_t_s_uw); 3845 } 3846 3847 static bool trans_fcnv_t_d_uw(DisasContext *ctx, arg_fclass01 *a) 3848 { 3849 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_t_d_uw); 3850 } 3851 3852 static bool trans_fcnv_t_f_uq(DisasContext *ctx, arg_fclass01 *a) 3853 { 3854 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_t_s_udw); 3855 } 3856 3857 static bool trans_fcnv_t_d_uq(DisasContext *ctx, arg_fclass01 *a) 3858 { 3859 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_t_d_udw); 3860 } 3861 3862 /* 3863 * Float class 2 3864 */ 3865 3866 static bool trans_fcmp_f(DisasContext *ctx, arg_fclass2 *a) 3867 { 3868 TCGv_i32 ta, tb, tc, ty; 3869 3870 nullify_over(ctx); 3871 3872 ta = load_frw0_i32(a->r1); 3873 tb = load_frw0_i32(a->r2); 3874 ty = tcg_const_i32(a->y); 3875 tc = tcg_const_i32(a->c); 3876 3877 gen_helper_fcmp_s(cpu_env, ta, tb, ty, tc); 3878 3879 tcg_temp_free_i32(ta); 3880 tcg_temp_free_i32(tb); 3881 tcg_temp_free_i32(ty); 3882 tcg_temp_free_i32(tc); 3883 3884 return nullify_end(ctx); 3885 } 3886 3887 static bool trans_fcmp_d(DisasContext *ctx, arg_fclass2 *a) 3888 { 3889 TCGv_i64 ta, tb; 3890 TCGv_i32 tc, ty; 3891 3892 nullify_over(ctx); 3893 3894 ta = load_frd0(a->r1); 3895 tb = load_frd0(a->r2); 3896 ty = tcg_const_i32(a->y); 3897 tc = tcg_const_i32(a->c); 3898 3899 gen_helper_fcmp_d(cpu_env, ta, tb, ty, tc); 3900 3901 tcg_temp_free_i64(ta); 3902 tcg_temp_free_i64(tb); 3903 tcg_temp_free_i32(ty); 3904 tcg_temp_free_i32(tc); 3905 3906 return nullify_end(ctx); 3907 } 3908 3909 static bool trans_ftest(DisasContext *ctx, arg_ftest *a) 3910 { 3911 TCGv_reg t; 3912 3913 nullify_over(ctx); 3914 3915 t = get_temp(ctx); 3916 tcg_gen_ld32u_reg(t, cpu_env, offsetof(CPUHPPAState, fr0_shadow)); 3917 3918 if (a->y == 1) { 3919 int mask; 3920 bool inv = false; 3921 3922 switch (a->c) { 3923 case 0: /* simple */ 3924 tcg_gen_andi_reg(t, t, 0x4000000); 3925 ctx->null_cond = cond_make_0(TCG_COND_NE, t); 3926 goto done; 3927 case 2: /* rej */ 3928 inv = true; 3929 /* fallthru */ 3930 case 1: /* acc */ 3931 mask = 0x43ff800; 3932 break; 3933 case 6: /* rej8 */ 3934 inv = true; 3935 /* fallthru */ 3936 case 5: /* acc8 */ 3937 mask = 0x43f8000; 3938 break; 3939 case 9: /* acc6 */ 3940 mask = 0x43e0000; 3941 break; 3942 case 13: /* acc4 */ 3943 mask = 0x4380000; 3944 break; 3945 case 17: /* acc2 */ 3946 mask = 0x4200000; 3947 break; 3948 default: 3949 gen_illegal(ctx); 3950 return true; 3951 } 3952 if (inv) { 3953 TCGv_reg c = load_const(ctx, mask); 3954 tcg_gen_or_reg(t, t, c); 3955 ctx->null_cond = cond_make(TCG_COND_EQ, t, c); 3956 } else { 3957 tcg_gen_andi_reg(t, t, mask); 3958 ctx->null_cond = cond_make_0(TCG_COND_EQ, t); 3959 } 3960 } else { 3961 unsigned cbit = (a->y ^ 1) - 1; 3962 3963 tcg_gen_extract_reg(t, t, 21 - cbit, 1); 3964 ctx->null_cond = cond_make_0(TCG_COND_NE, t); 3965 tcg_temp_free(t); 3966 } 3967 3968 done: 3969 return nullify_end(ctx); 3970 } 3971 3972 /* 3973 * Float class 2 3974 */ 3975 3976 static bool trans_fadd_f(DisasContext *ctx, arg_fclass3 *a) 3977 { 3978 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fadd_s); 3979 } 3980 3981 static bool trans_fadd_d(DisasContext *ctx, arg_fclass3 *a) 3982 { 3983 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fadd_d); 3984 } 3985 3986 static bool trans_fsub_f(DisasContext *ctx, arg_fclass3 *a) 3987 { 3988 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fsub_s); 3989 } 3990 3991 static bool trans_fsub_d(DisasContext *ctx, arg_fclass3 *a) 3992 { 3993 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fsub_d); 3994 } 3995 3996 static bool trans_fmpy_f(DisasContext *ctx, arg_fclass3 *a) 3997 { 3998 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fmpy_s); 3999 } 4000 4001 static bool trans_fmpy_d(DisasContext *ctx, arg_fclass3 *a) 4002 { 4003 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fmpy_d); 4004 } 4005 4006 static bool trans_fdiv_f(DisasContext *ctx, arg_fclass3 *a) 4007 { 4008 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fdiv_s); 4009 } 4010 4011 static bool trans_fdiv_d(DisasContext *ctx, arg_fclass3 *a) 4012 { 4013 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fdiv_d); 4014 } 4015 4016 static bool trans_xmpyu(DisasContext *ctx, arg_xmpyu *a) 4017 { 4018 TCGv_i64 x, y; 4019 4020 nullify_over(ctx); 4021 4022 x = load_frw0_i64(a->r1); 4023 y = load_frw0_i64(a->r2); 4024 tcg_gen_mul_i64(x, x, y); 4025 save_frd(a->t, x); 4026 tcg_temp_free_i64(x); 4027 tcg_temp_free_i64(y); 4028 4029 return nullify_end(ctx); 4030 } 4031 4032 /* Convert the fmpyadd single-precision register encodings to standard. */ 4033 static inline int fmpyadd_s_reg(unsigned r) 4034 { 4035 return (r & 16) * 2 + 16 + (r & 15); 4036 } 4037 4038 static bool do_fmpyadd_s(DisasContext *ctx, arg_mpyadd *a, bool is_sub) 4039 { 4040 int tm = fmpyadd_s_reg(a->tm); 4041 int ra = fmpyadd_s_reg(a->ra); 4042 int ta = fmpyadd_s_reg(a->ta); 4043 int rm2 = fmpyadd_s_reg(a->rm2); 4044 int rm1 = fmpyadd_s_reg(a->rm1); 4045 4046 nullify_over(ctx); 4047 4048 do_fop_weww(ctx, tm, rm1, rm2, gen_helper_fmpy_s); 4049 do_fop_weww(ctx, ta, ta, ra, 4050 is_sub ? gen_helper_fsub_s : gen_helper_fadd_s); 4051 4052 return nullify_end(ctx); 4053 } 4054 4055 static bool trans_fmpyadd_f(DisasContext *ctx, arg_mpyadd *a) 4056 { 4057 return do_fmpyadd_s(ctx, a, false); 4058 } 4059 4060 static bool trans_fmpysub_f(DisasContext *ctx, arg_mpyadd *a) 4061 { 4062 return do_fmpyadd_s(ctx, a, true); 4063 } 4064 4065 static bool do_fmpyadd_d(DisasContext *ctx, arg_mpyadd *a, bool is_sub) 4066 { 4067 nullify_over(ctx); 4068 4069 do_fop_dedd(ctx, a->tm, a->rm1, a->rm2, gen_helper_fmpy_d); 4070 do_fop_dedd(ctx, a->ta, a->ta, a->ra, 4071 is_sub ? gen_helper_fsub_d : gen_helper_fadd_d); 4072 4073 return nullify_end(ctx); 4074 } 4075 4076 static bool trans_fmpyadd_d(DisasContext *ctx, arg_mpyadd *a) 4077 { 4078 return do_fmpyadd_d(ctx, a, false); 4079 } 4080 4081 static bool trans_fmpysub_d(DisasContext *ctx, arg_mpyadd *a) 4082 { 4083 return do_fmpyadd_d(ctx, a, true); 4084 } 4085 4086 static bool trans_fmpyfadd_f(DisasContext *ctx, arg_fmpyfadd_f *a) 4087 { 4088 TCGv_i32 x, y, z; 4089 4090 nullify_over(ctx); 4091 x = load_frw0_i32(a->rm1); 4092 y = load_frw0_i32(a->rm2); 4093 z = load_frw0_i32(a->ra3); 4094 4095 if (a->neg) { 4096 gen_helper_fmpynfadd_s(x, cpu_env, x, y, z); 4097 } else { 4098 gen_helper_fmpyfadd_s(x, cpu_env, x, y, z); 4099 } 4100 4101 tcg_temp_free_i32(y); 4102 tcg_temp_free_i32(z); 4103 save_frw_i32(a->t, x); 4104 tcg_temp_free_i32(x); 4105 return nullify_end(ctx); 4106 } 4107 4108 static bool trans_fmpyfadd_d(DisasContext *ctx, arg_fmpyfadd_d *a) 4109 { 4110 TCGv_i64 x, y, z; 4111 4112 nullify_over(ctx); 4113 x = load_frd0(a->rm1); 4114 y = load_frd0(a->rm2); 4115 z = load_frd0(a->ra3); 4116 4117 if (a->neg) { 4118 gen_helper_fmpynfadd_d(x, cpu_env, x, y, z); 4119 } else { 4120 gen_helper_fmpyfadd_d(x, cpu_env, x, y, z); 4121 } 4122 4123 tcg_temp_free_i64(y); 4124 tcg_temp_free_i64(z); 4125 save_frd(a->t, x); 4126 tcg_temp_free_i64(x); 4127 return nullify_end(ctx); 4128 } 4129 4130 static bool trans_diag(DisasContext *ctx, arg_diag *a) 4131 { 4132 qemu_log_mask(LOG_UNIMP, "DIAG opcode ignored\n"); 4133 cond_free(&ctx->null_cond); 4134 return true; 4135 } 4136 4137 static void hppa_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) 4138 { 4139 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4140 int bound; 4141 4142 ctx->cs = cs; 4143 ctx->tb_flags = ctx->base.tb->flags; 4144 4145 #ifdef CONFIG_USER_ONLY 4146 ctx->privilege = MMU_USER_IDX; 4147 ctx->mmu_idx = MMU_USER_IDX; 4148 ctx->iaoq_f = ctx->base.pc_first | MMU_USER_IDX; 4149 ctx->iaoq_b = ctx->base.tb->cs_base | MMU_USER_IDX; 4150 #else 4151 ctx->privilege = (ctx->tb_flags >> TB_FLAG_PRIV_SHIFT) & 3; 4152 ctx->mmu_idx = (ctx->tb_flags & PSW_D ? ctx->privilege : MMU_PHYS_IDX); 4153 4154 /* Recover the IAOQ values from the GVA + PRIV. */ 4155 uint64_t cs_base = ctx->base.tb->cs_base; 4156 uint64_t iasq_f = cs_base & ~0xffffffffull; 4157 int32_t diff = cs_base; 4158 4159 ctx->iaoq_f = (ctx->base.pc_first & ~iasq_f) + ctx->privilege; 4160 ctx->iaoq_b = (diff ? ctx->iaoq_f + diff : -1); 4161 #endif 4162 ctx->iaoq_n = -1; 4163 ctx->iaoq_n_var = NULL; 4164 4165 /* Bound the number of instructions by those left on the page. */ 4166 bound = -(ctx->base.pc_first | TARGET_PAGE_MASK) / 4; 4167 ctx->base.max_insns = MIN(ctx->base.max_insns, bound); 4168 4169 ctx->ntempr = 0; 4170 ctx->ntempl = 0; 4171 memset(ctx->tempr, 0, sizeof(ctx->tempr)); 4172 memset(ctx->templ, 0, sizeof(ctx->templ)); 4173 } 4174 4175 static void hppa_tr_tb_start(DisasContextBase *dcbase, CPUState *cs) 4176 { 4177 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4178 4179 /* Seed the nullification status from PSW[N], as saved in TB->FLAGS. */ 4180 ctx->null_cond = cond_make_f(); 4181 ctx->psw_n_nonzero = false; 4182 if (ctx->tb_flags & PSW_N) { 4183 ctx->null_cond.c = TCG_COND_ALWAYS; 4184 ctx->psw_n_nonzero = true; 4185 } 4186 ctx->null_lab = NULL; 4187 } 4188 4189 static void hppa_tr_insn_start(DisasContextBase *dcbase, CPUState *cs) 4190 { 4191 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4192 4193 tcg_gen_insn_start(ctx->iaoq_f, ctx->iaoq_b); 4194 } 4195 4196 static bool hppa_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cs, 4197 const CPUBreakpoint *bp) 4198 { 4199 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4200 4201 gen_excp(ctx, EXCP_DEBUG); 4202 ctx->base.pc_next += 4; 4203 return true; 4204 } 4205 4206 static void hppa_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs) 4207 { 4208 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4209 CPUHPPAState *env = cs->env_ptr; 4210 DisasJumpType ret; 4211 int i, n; 4212 4213 /* Execute one insn. */ 4214 #ifdef CONFIG_USER_ONLY 4215 if (ctx->base.pc_next < TARGET_PAGE_SIZE) { 4216 do_page_zero(ctx); 4217 ret = ctx->base.is_jmp; 4218 assert(ret != DISAS_NEXT); 4219 } else 4220 #endif 4221 { 4222 /* Always fetch the insn, even if nullified, so that we check 4223 the page permissions for execute. */ 4224 uint32_t insn = cpu_ldl_code(env, ctx->base.pc_next); 4225 4226 /* Set up the IA queue for the next insn. 4227 This will be overwritten by a branch. */ 4228 if (ctx->iaoq_b == -1) { 4229 ctx->iaoq_n = -1; 4230 ctx->iaoq_n_var = get_temp(ctx); 4231 tcg_gen_addi_reg(ctx->iaoq_n_var, cpu_iaoq_b, 4); 4232 } else { 4233 ctx->iaoq_n = ctx->iaoq_b + 4; 4234 ctx->iaoq_n_var = NULL; 4235 } 4236 4237 if (unlikely(ctx->null_cond.c == TCG_COND_ALWAYS)) { 4238 ctx->null_cond.c = TCG_COND_NEVER; 4239 ret = DISAS_NEXT; 4240 } else { 4241 ctx->insn = insn; 4242 if (!decode(ctx, insn)) { 4243 gen_illegal(ctx); 4244 } 4245 ret = ctx->base.is_jmp; 4246 assert(ctx->null_lab == NULL); 4247 } 4248 } 4249 4250 /* Free any temporaries allocated. */ 4251 for (i = 0, n = ctx->ntempr; i < n; ++i) { 4252 tcg_temp_free(ctx->tempr[i]); 4253 ctx->tempr[i] = NULL; 4254 } 4255 for (i = 0, n = ctx->ntempl; i < n; ++i) { 4256 tcg_temp_free_tl(ctx->templ[i]); 4257 ctx->templ[i] = NULL; 4258 } 4259 ctx->ntempr = 0; 4260 ctx->ntempl = 0; 4261 4262 /* Advance the insn queue. Note that this check also detects 4263 a priority change within the instruction queue. */ 4264 if (ret == DISAS_NEXT && ctx->iaoq_b != ctx->iaoq_f + 4) { 4265 if (ctx->iaoq_b != -1 && ctx->iaoq_n != -1 4266 && use_goto_tb(ctx, ctx->iaoq_b) 4267 && (ctx->null_cond.c == TCG_COND_NEVER 4268 || ctx->null_cond.c == TCG_COND_ALWAYS)) { 4269 nullify_set(ctx, ctx->null_cond.c == TCG_COND_ALWAYS); 4270 gen_goto_tb(ctx, 0, ctx->iaoq_b, ctx->iaoq_n); 4271 ctx->base.is_jmp = ret = DISAS_NORETURN; 4272 } else { 4273 ctx->base.is_jmp = ret = DISAS_IAQ_N_STALE; 4274 } 4275 } 4276 ctx->iaoq_f = ctx->iaoq_b; 4277 ctx->iaoq_b = ctx->iaoq_n; 4278 ctx->base.pc_next += 4; 4279 4280 switch (ret) { 4281 case DISAS_NORETURN: 4282 case DISAS_IAQ_N_UPDATED: 4283 break; 4284 4285 case DISAS_NEXT: 4286 case DISAS_IAQ_N_STALE: 4287 case DISAS_IAQ_N_STALE_EXIT: 4288 if (ctx->iaoq_f == -1) { 4289 tcg_gen_mov_reg(cpu_iaoq_f, cpu_iaoq_b); 4290 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_n, ctx->iaoq_n_var); 4291 #ifndef CONFIG_USER_ONLY 4292 tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b); 4293 #endif 4294 nullify_save(ctx); 4295 ctx->base.is_jmp = (ret == DISAS_IAQ_N_STALE_EXIT 4296 ? DISAS_EXIT 4297 : DISAS_IAQ_N_UPDATED); 4298 } else if (ctx->iaoq_b == -1) { 4299 tcg_gen_mov_reg(cpu_iaoq_b, ctx->iaoq_n_var); 4300 } 4301 break; 4302 4303 default: 4304 g_assert_not_reached(); 4305 } 4306 } 4307 4308 static void hppa_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs) 4309 { 4310 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4311 DisasJumpType is_jmp = ctx->base.is_jmp; 4312 4313 switch (is_jmp) { 4314 case DISAS_NORETURN: 4315 break; 4316 case DISAS_TOO_MANY: 4317 case DISAS_IAQ_N_STALE: 4318 case DISAS_IAQ_N_STALE_EXIT: 4319 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_f, cpu_iaoq_f); 4320 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_b, cpu_iaoq_b); 4321 nullify_save(ctx); 4322 /* FALLTHRU */ 4323 case DISAS_IAQ_N_UPDATED: 4324 if (ctx->base.singlestep_enabled) { 4325 gen_excp_1(EXCP_DEBUG); 4326 } else if (is_jmp != DISAS_IAQ_N_STALE_EXIT) { 4327 tcg_gen_lookup_and_goto_ptr(); 4328 } 4329 /* FALLTHRU */ 4330 case DISAS_EXIT: 4331 tcg_gen_exit_tb(NULL, 0); 4332 break; 4333 default: 4334 g_assert_not_reached(); 4335 } 4336 } 4337 4338 static void hppa_tr_disas_log(const DisasContextBase *dcbase, CPUState *cs) 4339 { 4340 target_ulong pc = dcbase->pc_first; 4341 4342 #ifdef CONFIG_USER_ONLY 4343 switch (pc) { 4344 case 0x00: 4345 qemu_log("IN:\n0x00000000: (null)\n"); 4346 return; 4347 case 0xb0: 4348 qemu_log("IN:\n0x000000b0: light-weight-syscall\n"); 4349 return; 4350 case 0xe0: 4351 qemu_log("IN:\n0x000000e0: set-thread-pointer-syscall\n"); 4352 return; 4353 case 0x100: 4354 qemu_log("IN:\n0x00000100: syscall\n"); 4355 return; 4356 } 4357 #endif 4358 4359 qemu_log("IN: %s\n", lookup_symbol(pc)); 4360 log_target_disas(cs, pc, dcbase->tb->size); 4361 } 4362 4363 static const TranslatorOps hppa_tr_ops = { 4364 .init_disas_context = hppa_tr_init_disas_context, 4365 .tb_start = hppa_tr_tb_start, 4366 .insn_start = hppa_tr_insn_start, 4367 .breakpoint_check = hppa_tr_breakpoint_check, 4368 .translate_insn = hppa_tr_translate_insn, 4369 .tb_stop = hppa_tr_tb_stop, 4370 .disas_log = hppa_tr_disas_log, 4371 }; 4372 4373 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns) 4374 { 4375 DisasContext ctx; 4376 translator_loop(&hppa_tr_ops, &ctx.base, cs, tb, max_insns); 4377 } 4378 4379 void restore_state_to_opc(CPUHPPAState *env, TranslationBlock *tb, 4380 target_ulong *data) 4381 { 4382 env->iaoq_f = data[0]; 4383 if (data[1] != (target_ureg)-1) { 4384 env->iaoq_b = data[1]; 4385 } 4386 /* Since we were executing the instruction at IAOQ_F, and took some 4387 sort of action that provoked the cpu_restore_state, we can infer 4388 that the instruction was not nullified. */ 4389 env->psw_n = 0; 4390 } 4391