xref: /openbmc/qemu/target/hppa/op_helper.c (revision f363d039)
1 /*
2  * Helpers for HPPA instructions.
3  *
4  * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "exec/cpu_ldst.h"
25 #include "qemu/timer.h"
26 #include "sysemu/runstate.h"
27 #include "fpu/softfloat.h"
28 #include "trace.h"
29 
30 void QEMU_NORETURN HELPER(excp)(CPUHPPAState *env, int excp)
31 {
32     CPUState *cs = env_cpu(env);
33 
34     cs->exception_index = excp;
35     cpu_loop_exit(cs);
36 }
37 
38 void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
39 {
40     CPUState *cs = env_cpu(env);
41 
42     cs->exception_index = excp;
43     cpu_loop_exit_restore(cs, ra);
44 }
45 
46 void HELPER(tsv)(CPUHPPAState *env, target_ureg cond)
47 {
48     if (unlikely((target_sreg)cond < 0)) {
49         hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
50     }
51 }
52 
53 void HELPER(tcond)(CPUHPPAState *env, target_ureg cond)
54 {
55     if (unlikely(cond)) {
56         hppa_dynamic_excp(env, EXCP_COND, GETPC());
57     }
58 }
59 
60 static void atomic_store_3(CPUHPPAState *env, target_ulong addr, uint32_t val,
61                            uint32_t mask, uintptr_t ra)
62 {
63 #ifdef CONFIG_USER_ONLY
64     uint32_t old, new, cmp;
65 
66     uint32_t *haddr = g2h(addr - 1);
67     old = *haddr;
68     while (1) {
69         new = (old & ~mask) | (val & mask);
70         cmp = atomic_cmpxchg(haddr, old, new);
71         if (cmp == old) {
72             return;
73         }
74         old = cmp;
75     }
76 #else
77     /* FIXME -- we can do better.  */
78     cpu_loop_exit_atomic(env_cpu(env), ra);
79 #endif
80 }
81 
82 static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val,
83                       bool parallel, uintptr_t ra)
84 {
85     switch (addr & 3) {
86     case 3:
87         cpu_stb_data_ra(env, addr, val, ra);
88         break;
89     case 2:
90         cpu_stw_data_ra(env, addr, val, ra);
91         break;
92     case 1:
93         /* The 3 byte store must appear atomic.  */
94         if (parallel) {
95             atomic_store_3(env, addr, val, 0x00ffffffu, ra);
96         } else {
97             cpu_stb_data_ra(env, addr, val >> 16, ra);
98             cpu_stw_data_ra(env, addr + 1, val, ra);
99         }
100         break;
101     default:
102         cpu_stl_data_ra(env, addr, val, ra);
103         break;
104     }
105 }
106 
107 void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val)
108 {
109     do_stby_b(env, addr, val, false, GETPC());
110 }
111 
112 void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
113                              target_ureg val)
114 {
115     do_stby_b(env, addr, val, true, GETPC());
116 }
117 
118 static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val,
119                       bool parallel, uintptr_t ra)
120 {
121     switch (addr & 3) {
122     case 3:
123         /* The 3 byte store must appear atomic.  */
124         if (parallel) {
125             atomic_store_3(env, addr - 3, val, 0xffffff00u, ra);
126         } else {
127             cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
128             cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
129         }
130         break;
131     case 2:
132         cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
133         break;
134     case 1:
135         cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
136         break;
137     default:
138         /* Nothing is stored, but protection is checked and the
139            cacheline is marked dirty.  */
140         probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
141         break;
142     }
143 }
144 
145 void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val)
146 {
147     do_stby_e(env, addr, val, false, GETPC());
148 }
149 
150 void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
151                              target_ureg val)
152 {
153     do_stby_e(env, addr, val, true, GETPC());
154 }
155 
156 target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr,
157                           uint32_t level, uint32_t want)
158 {
159 #ifdef CONFIG_USER_ONLY
160     return page_check_range(addr, 1, want);
161 #else
162     int prot, excp;
163     hwaddr phys;
164 
165     trace_hppa_tlb_probe(addr, level, want);
166     /* Fail if the requested privilege level is higher than current.  */
167     if (level < (env->iaoq_f & 3)) {
168         return 0;
169     }
170 
171     excp = hppa_get_physical_address(env, addr, level, 0, &phys, &prot);
172     if (excp >= 0) {
173         if (env->psw & PSW_Q) {
174             /* ??? Needs tweaking for hppa64.  */
175             env->cr[CR_IOR] = addr;
176             env->cr[CR_ISR] = addr >> 32;
177         }
178         if (excp == EXCP_DTLB_MISS) {
179             excp = EXCP_NA_DTLB_MISS;
180         }
181         hppa_dynamic_excp(env, excp, GETPC());
182     }
183     return (want & prot) != 0;
184 #endif
185 }
186 
187 void HELPER(loaded_fr0)(CPUHPPAState *env)
188 {
189     uint32_t shadow = env->fr[0] >> 32;
190     int rm, d;
191 
192     env->fr0_shadow = shadow;
193 
194     switch (extract32(shadow, 9, 2)) {
195     default:
196         rm = float_round_nearest_even;
197         break;
198     case 1:
199         rm = float_round_to_zero;
200         break;
201     case 2:
202         rm = float_round_up;
203         break;
204     case 3:
205         rm = float_round_down;
206         break;
207     }
208     set_float_rounding_mode(rm, &env->fp_status);
209 
210     d = extract32(shadow, 5, 1);
211     set_flush_to_zero(d, &env->fp_status);
212     set_flush_inputs_to_zero(d, &env->fp_status);
213 }
214 
215 void cpu_hppa_loaded_fr0(CPUHPPAState *env)
216 {
217     helper_loaded_fr0(env);
218 }
219 
220 #define CONVERT_BIT(X, SRC, DST)        \
221     ((SRC) > (DST)                      \
222      ? (X) / ((SRC) / (DST)) & (DST)    \
223      : ((X) & (SRC)) * ((DST) / (SRC)))
224 
225 static void update_fr0_op(CPUHPPAState *env, uintptr_t ra)
226 {
227     uint32_t soft_exp = get_float_exception_flags(&env->fp_status);
228     uint32_t hard_exp = 0;
229     uint32_t shadow = env->fr0_shadow;
230 
231     if (likely(soft_exp == 0)) {
232         env->fr[0] = (uint64_t)shadow << 32;
233         return;
234     }
235     set_float_exception_flags(0, &env->fp_status);
236 
237     hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact,   1u << 0);
238     hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1);
239     hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow,  1u << 2);
240     hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3);
241     hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid,   1u << 4);
242     shadow |= hard_exp << (32 - 5);
243     env->fr0_shadow = shadow;
244     env->fr[0] = (uint64_t)shadow << 32;
245 
246     if (hard_exp & shadow) {
247         hppa_dynamic_excp(env, EXCP_ASSIST, ra);
248     }
249 }
250 
251 float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg)
252 {
253     float32 ret = float32_sqrt(arg, &env->fp_status);
254     update_fr0_op(env, GETPC());
255     return ret;
256 }
257 
258 float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg)
259 {
260     float32 ret = float32_round_to_int(arg, &env->fp_status);
261     update_fr0_op(env, GETPC());
262     return ret;
263 }
264 
265 float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b)
266 {
267     float32 ret = float32_add(a, b, &env->fp_status);
268     update_fr0_op(env, GETPC());
269     return ret;
270 }
271 
272 float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b)
273 {
274     float32 ret = float32_sub(a, b, &env->fp_status);
275     update_fr0_op(env, GETPC());
276     return ret;
277 }
278 
279 float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b)
280 {
281     float32 ret = float32_mul(a, b, &env->fp_status);
282     update_fr0_op(env, GETPC());
283     return ret;
284 }
285 
286 float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b)
287 {
288     float32 ret = float32_div(a, b, &env->fp_status);
289     update_fr0_op(env, GETPC());
290     return ret;
291 }
292 
293 float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg)
294 {
295     float64 ret = float64_sqrt(arg, &env->fp_status);
296     update_fr0_op(env, GETPC());
297     return ret;
298 }
299 
300 float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg)
301 {
302     float64 ret = float64_round_to_int(arg, &env->fp_status);
303     update_fr0_op(env, GETPC());
304     return ret;
305 }
306 
307 float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b)
308 {
309     float64 ret = float64_add(a, b, &env->fp_status);
310     update_fr0_op(env, GETPC());
311     return ret;
312 }
313 
314 float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b)
315 {
316     float64 ret = float64_sub(a, b, &env->fp_status);
317     update_fr0_op(env, GETPC());
318     return ret;
319 }
320 
321 float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b)
322 {
323     float64 ret = float64_mul(a, b, &env->fp_status);
324     update_fr0_op(env, GETPC());
325     return ret;
326 }
327 
328 float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b)
329 {
330     float64 ret = float64_div(a, b, &env->fp_status);
331     update_fr0_op(env, GETPC());
332     return ret;
333 }
334 
335 float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg)
336 {
337     float64 ret = float32_to_float64(arg, &env->fp_status);
338     update_fr0_op(env, GETPC());
339     return ret;
340 }
341 
342 float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg)
343 {
344     float32 ret = float64_to_float32(arg, &env->fp_status);
345     update_fr0_op(env, GETPC());
346     return ret;
347 }
348 
349 float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg)
350 {
351     float32 ret = int32_to_float32(arg, &env->fp_status);
352     update_fr0_op(env, GETPC());
353     return ret;
354 }
355 
356 float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg)
357 {
358     float32 ret = int64_to_float32(arg, &env->fp_status);
359     update_fr0_op(env, GETPC());
360     return ret;
361 }
362 
363 float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg)
364 {
365     float64 ret = int32_to_float64(arg, &env->fp_status);
366     update_fr0_op(env, GETPC());
367     return ret;
368 }
369 
370 float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg)
371 {
372     float64 ret = int64_to_float64(arg, &env->fp_status);
373     update_fr0_op(env, GETPC());
374     return ret;
375 }
376 
377 int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg)
378 {
379     int32_t ret = float32_to_int32(arg, &env->fp_status);
380     update_fr0_op(env, GETPC());
381     return ret;
382 }
383 
384 int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg)
385 {
386     int32_t ret = float64_to_int32(arg, &env->fp_status);
387     update_fr0_op(env, GETPC());
388     return ret;
389 }
390 
391 int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg)
392 {
393     int64_t ret = float32_to_int64(arg, &env->fp_status);
394     update_fr0_op(env, GETPC());
395     return ret;
396 }
397 
398 int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg)
399 {
400     int64_t ret = float64_to_int64(arg, &env->fp_status);
401     update_fr0_op(env, GETPC());
402     return ret;
403 }
404 
405 int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg)
406 {
407     int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status);
408     update_fr0_op(env, GETPC());
409     return ret;
410 }
411 
412 int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg)
413 {
414     int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status);
415     update_fr0_op(env, GETPC());
416     return ret;
417 }
418 
419 int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg)
420 {
421     int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status);
422     update_fr0_op(env, GETPC());
423     return ret;
424 }
425 
426 int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg)
427 {
428     int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status);
429     update_fr0_op(env, GETPC());
430     return ret;
431 }
432 
433 float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg)
434 {
435     float32 ret = uint32_to_float32(arg, &env->fp_status);
436     update_fr0_op(env, GETPC());
437     return ret;
438 }
439 
440 float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg)
441 {
442     float32 ret = uint64_to_float32(arg, &env->fp_status);
443     update_fr0_op(env, GETPC());
444     return ret;
445 }
446 
447 float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg)
448 {
449     float64 ret = uint32_to_float64(arg, &env->fp_status);
450     update_fr0_op(env, GETPC());
451     return ret;
452 }
453 
454 float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg)
455 {
456     float64 ret = uint64_to_float64(arg, &env->fp_status);
457     update_fr0_op(env, GETPC());
458     return ret;
459 }
460 
461 uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg)
462 {
463     uint32_t ret = float32_to_uint32(arg, &env->fp_status);
464     update_fr0_op(env, GETPC());
465     return ret;
466 }
467 
468 uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg)
469 {
470     uint32_t ret = float64_to_uint32(arg, &env->fp_status);
471     update_fr0_op(env, GETPC());
472     return ret;
473 }
474 
475 uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg)
476 {
477     uint64_t ret = float32_to_uint64(arg, &env->fp_status);
478     update_fr0_op(env, GETPC());
479     return ret;
480 }
481 
482 uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg)
483 {
484     uint64_t ret = float64_to_uint64(arg, &env->fp_status);
485     update_fr0_op(env, GETPC());
486     return ret;
487 }
488 
489 uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg)
490 {
491     uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status);
492     update_fr0_op(env, GETPC());
493     return ret;
494 }
495 
496 uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg)
497 {
498     uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status);
499     update_fr0_op(env, GETPC());
500     return ret;
501 }
502 
503 uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg)
504 {
505     uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status);
506     update_fr0_op(env, GETPC());
507     return ret;
508 }
509 
510 uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg)
511 {
512     uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status);
513     update_fr0_op(env, GETPC());
514     return ret;
515 }
516 
517 static void update_fr0_cmp(CPUHPPAState *env, uint32_t y, uint32_t c, int r)
518 {
519     uint32_t shadow = env->fr0_shadow;
520 
521     switch (r) {
522     case float_relation_greater:
523         c = extract32(c, 4, 1);
524         break;
525     case float_relation_less:
526         c = extract32(c, 3, 1);
527         break;
528     case float_relation_equal:
529         c = extract32(c, 2, 1);
530         break;
531     case float_relation_unordered:
532         c = extract32(c, 1, 1);
533         break;
534     default:
535         g_assert_not_reached();
536     }
537 
538     if (y) {
539         /* targeted comparison */
540         /* set fpsr[ca[y - 1]] to current compare */
541         shadow = deposit32(shadow, 21 - (y - 1), 1, c);
542     } else {
543         /* queued comparison */
544         /* shift cq right by one place */
545         shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10));
546         /* move fpsr[c] to fpsr[cq[0]] */
547         shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1));
548         /* set fpsr[c] to current compare */
549         shadow = deposit32(shadow, 26, 1, c);
550     }
551 
552     env->fr0_shadow = shadow;
553     env->fr[0] = (uint64_t)shadow << 32;
554 }
555 
556 void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b,
557                     uint32_t y, uint32_t c)
558 {
559     int r;
560     if (c & 1) {
561         r = float32_compare(a, b, &env->fp_status);
562     } else {
563         r = float32_compare_quiet(a, b, &env->fp_status);
564     }
565     update_fr0_op(env, GETPC());
566     update_fr0_cmp(env, y, c, r);
567 }
568 
569 void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b,
570                     uint32_t y, uint32_t c)
571 {
572     int r;
573     if (c & 1) {
574         r = float64_compare(a, b, &env->fp_status);
575     } else {
576         r = float64_compare_quiet(a, b, &env->fp_status);
577     }
578     update_fr0_op(env, GETPC());
579     update_fr0_cmp(env, y, c, r);
580 }
581 
582 float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
583 {
584     float32 ret = float32_muladd(a, b, c, 0, &env->fp_status);
585     update_fr0_op(env, GETPC());
586     return ret;
587 }
588 
589 float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
590 {
591     float32 ret = float32_muladd(a, b, c, float_muladd_negate_product,
592                                  &env->fp_status);
593     update_fr0_op(env, GETPC());
594     return ret;
595 }
596 
597 float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
598 {
599     float64 ret = float64_muladd(a, b, c, 0, &env->fp_status);
600     update_fr0_op(env, GETPC());
601     return ret;
602 }
603 
604 float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
605 {
606     float64 ret = float64_muladd(a, b, c, float_muladd_negate_product,
607                                  &env->fp_status);
608     update_fr0_op(env, GETPC());
609     return ret;
610 }
611 
612 target_ureg HELPER(read_interval_timer)(void)
613 {
614 #ifdef CONFIG_USER_ONLY
615     /* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
616        Just pass through the host cpu clock ticks.  */
617     return cpu_get_host_ticks();
618 #else
619     /* In system mode we have access to a decent high-resolution clock.
620        In order to make OS-level time accounting work with the cr16,
621        present it with a well-timed clock fixed at 250MHz.  */
622     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
623 #endif
624 }
625 
626 #ifndef CONFIG_USER_ONLY
627 void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val)
628 {
629     HPPACPU *cpu = env_archcpu(env);
630     uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
631     uint64_t timeout;
632 
633     /* Even in 64-bit mode, the comparator is always 32-bit.  But the
634        value we expose to the guest is 1/4 of the speed of the clock,
635        so moosh in 34 bits.  */
636     timeout = deposit64(current, 0, 34, (uint64_t)val << 2);
637 
638     /* If the mooshing puts the clock in the past, advance to next round.  */
639     if (timeout < current + 1000) {
640         timeout += 1ULL << 34;
641     }
642 
643     cpu->env.cr[CR_IT] = timeout;
644     timer_mod(cpu->alarm_timer, timeout);
645 }
646 
647 void HELPER(halt)(CPUHPPAState *env)
648 {
649     qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
650     helper_excp(env, EXCP_HLT);
651 }
652 
653 void HELPER(reset)(CPUHPPAState *env)
654 {
655     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
656     helper_excp(env, EXCP_HLT);
657 }
658 
659 target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm)
660 {
661     target_ulong psw = env->psw;
662     /*
663      * Setting the PSW Q bit to 1, if it was not already 1, is an
664      * undefined operation.
665      *
666      * However, HP-UX 10.20 does this with the SSM instruction.
667      * Tested this on HP9000/712 and HP9000/785/C3750 and both
668      * machines set the Q bit from 0 to 1 without an exception,
669      * so let this go without comment.
670      */
671     env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM);
672     return psw & PSW_SM;
673 }
674 
675 void HELPER(rfi)(CPUHPPAState *env)
676 {
677     env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32;
678     env->iasq_b = (uint64_t)env->cr_back[0] << 32;
679     env->iaoq_f = env->cr[CR_IIAOQ];
680     env->iaoq_b = env->cr_back[1];
681     cpu_hppa_put_psw(env, env->cr[CR_IPSW]);
682 }
683 
684 void HELPER(rfi_r)(CPUHPPAState *env)
685 {
686     env->gr[1] = env->shadow[0];
687     env->gr[8] = env->shadow[1];
688     env->gr[9] = env->shadow[2];
689     env->gr[16] = env->shadow[3];
690     env->gr[17] = env->shadow[4];
691     env->gr[24] = env->shadow[5];
692     env->gr[25] = env->shadow[6];
693     helper_rfi(env);
694 }
695 #endif
696