1 /* 2 * Helpers for HPPA instructions. 3 * 4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "exec/helper-proto.h" 24 #include "exec/cpu_ldst.h" 25 #include "qemu/timer.h" 26 #include "sysemu/runstate.h" 27 #include "fpu/softfloat.h" 28 #include "trace.h" 29 30 void QEMU_NORETURN HELPER(excp)(CPUHPPAState *env, int excp) 31 { 32 CPUState *cs = env_cpu(env); 33 34 cs->exception_index = excp; 35 cpu_loop_exit(cs); 36 } 37 38 void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra) 39 { 40 CPUState *cs = env_cpu(env); 41 42 cs->exception_index = excp; 43 cpu_loop_exit_restore(cs, ra); 44 } 45 46 void HELPER(tsv)(CPUHPPAState *env, target_ureg cond) 47 { 48 if (unlikely((target_sreg)cond < 0)) { 49 hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC()); 50 } 51 } 52 53 void HELPER(tcond)(CPUHPPAState *env, target_ureg cond) 54 { 55 if (unlikely(cond)) { 56 hppa_dynamic_excp(env, EXCP_COND, GETPC()); 57 } 58 } 59 60 static void atomic_store_3(CPUHPPAState *env, target_ulong addr, uint32_t val, 61 uint32_t mask, uintptr_t ra) 62 { 63 #ifdef CONFIG_USER_ONLY 64 uint32_t old, new, cmp; 65 66 uint32_t *haddr = g2h(addr - 1); 67 old = *haddr; 68 while (1) { 69 new = (old & ~mask) | (val & mask); 70 cmp = atomic_cmpxchg(haddr, old, new); 71 if (cmp == old) { 72 return; 73 } 74 old = cmp; 75 } 76 #else 77 /* FIXME -- we can do better. */ 78 cpu_loop_exit_atomic(env_cpu(env), ra); 79 #endif 80 } 81 82 static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val, 83 bool parallel, uintptr_t ra) 84 { 85 switch (addr & 3) { 86 case 3: 87 cpu_stb_data_ra(env, addr, val, ra); 88 break; 89 case 2: 90 cpu_stw_data_ra(env, addr, val, ra); 91 break; 92 case 1: 93 /* The 3 byte store must appear atomic. */ 94 if (parallel) { 95 atomic_store_3(env, addr, val, 0x00ffffffu, ra); 96 } else { 97 cpu_stb_data_ra(env, addr, val >> 16, ra); 98 cpu_stw_data_ra(env, addr + 1, val, ra); 99 } 100 break; 101 default: 102 cpu_stl_data_ra(env, addr, val, ra); 103 break; 104 } 105 } 106 107 void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val) 108 { 109 do_stby_b(env, addr, val, false, GETPC()); 110 } 111 112 void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr, 113 target_ureg val) 114 { 115 do_stby_b(env, addr, val, true, GETPC()); 116 } 117 118 static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val, 119 bool parallel, uintptr_t ra) 120 { 121 switch (addr & 3) { 122 case 3: 123 /* The 3 byte store must appear atomic. */ 124 if (parallel) { 125 atomic_store_3(env, addr - 3, val, 0xffffff00u, ra); 126 } else { 127 cpu_stw_data_ra(env, addr - 3, val >> 16, ra); 128 cpu_stb_data_ra(env, addr - 1, val >> 8, ra); 129 } 130 break; 131 case 2: 132 cpu_stw_data_ra(env, addr - 2, val >> 16, ra); 133 break; 134 case 1: 135 cpu_stb_data_ra(env, addr - 1, val >> 24, ra); 136 break; 137 default: 138 /* Nothing is stored, but protection is checked and the 139 cacheline is marked dirty. */ 140 probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra); 141 break; 142 } 143 } 144 145 void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val) 146 { 147 do_stby_e(env, addr, val, false, GETPC()); 148 } 149 150 void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr, 151 target_ureg val) 152 { 153 do_stby_e(env, addr, val, true, GETPC()); 154 } 155 156 void HELPER(ldc_check)(target_ulong addr) 157 { 158 if (unlikely(addr & 0xf)) { 159 qemu_log_mask(LOG_GUEST_ERROR, 160 "Undefined ldc to unaligned address mod 16: " 161 TARGET_FMT_lx "\n", addr); 162 } 163 } 164 165 target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr, 166 uint32_t level, uint32_t want) 167 { 168 #ifdef CONFIG_USER_ONLY 169 return page_check_range(addr, 1, want); 170 #else 171 int prot, excp; 172 hwaddr phys; 173 174 trace_hppa_tlb_probe(addr, level, want); 175 /* Fail if the requested privilege level is higher than current. */ 176 if (level < (env->iaoq_f & 3)) { 177 return 0; 178 } 179 180 excp = hppa_get_physical_address(env, addr, level, 0, &phys, &prot); 181 if (excp >= 0) { 182 if (env->psw & PSW_Q) { 183 /* ??? Needs tweaking for hppa64. */ 184 env->cr[CR_IOR] = addr; 185 env->cr[CR_ISR] = addr >> 32; 186 } 187 if (excp == EXCP_DTLB_MISS) { 188 excp = EXCP_NA_DTLB_MISS; 189 } 190 hppa_dynamic_excp(env, excp, GETPC()); 191 } 192 return (want & prot) != 0; 193 #endif 194 } 195 196 void HELPER(loaded_fr0)(CPUHPPAState *env) 197 { 198 uint32_t shadow = env->fr[0] >> 32; 199 int rm, d; 200 201 env->fr0_shadow = shadow; 202 203 switch (extract32(shadow, 9, 2)) { 204 default: 205 rm = float_round_nearest_even; 206 break; 207 case 1: 208 rm = float_round_to_zero; 209 break; 210 case 2: 211 rm = float_round_up; 212 break; 213 case 3: 214 rm = float_round_down; 215 break; 216 } 217 set_float_rounding_mode(rm, &env->fp_status); 218 219 d = extract32(shadow, 5, 1); 220 set_flush_to_zero(d, &env->fp_status); 221 set_flush_inputs_to_zero(d, &env->fp_status); 222 } 223 224 void cpu_hppa_loaded_fr0(CPUHPPAState *env) 225 { 226 helper_loaded_fr0(env); 227 } 228 229 #define CONVERT_BIT(X, SRC, DST) \ 230 ((SRC) > (DST) \ 231 ? (X) / ((SRC) / (DST)) & (DST) \ 232 : ((X) & (SRC)) * ((DST) / (SRC))) 233 234 static void update_fr0_op(CPUHPPAState *env, uintptr_t ra) 235 { 236 uint32_t soft_exp = get_float_exception_flags(&env->fp_status); 237 uint32_t hard_exp = 0; 238 uint32_t shadow = env->fr0_shadow; 239 240 if (likely(soft_exp == 0)) { 241 env->fr[0] = (uint64_t)shadow << 32; 242 return; 243 } 244 set_float_exception_flags(0, &env->fp_status); 245 246 hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact, 1u << 0); 247 hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1); 248 hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow, 1u << 2); 249 hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3); 250 hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid, 1u << 4); 251 shadow |= hard_exp << (32 - 5); 252 env->fr0_shadow = shadow; 253 env->fr[0] = (uint64_t)shadow << 32; 254 255 if (hard_exp & shadow) { 256 hppa_dynamic_excp(env, EXCP_ASSIST, ra); 257 } 258 } 259 260 float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg) 261 { 262 float32 ret = float32_sqrt(arg, &env->fp_status); 263 update_fr0_op(env, GETPC()); 264 return ret; 265 } 266 267 float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg) 268 { 269 float32 ret = float32_round_to_int(arg, &env->fp_status); 270 update_fr0_op(env, GETPC()); 271 return ret; 272 } 273 274 float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b) 275 { 276 float32 ret = float32_add(a, b, &env->fp_status); 277 update_fr0_op(env, GETPC()); 278 return ret; 279 } 280 281 float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b) 282 { 283 float32 ret = float32_sub(a, b, &env->fp_status); 284 update_fr0_op(env, GETPC()); 285 return ret; 286 } 287 288 float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b) 289 { 290 float32 ret = float32_mul(a, b, &env->fp_status); 291 update_fr0_op(env, GETPC()); 292 return ret; 293 } 294 295 float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b) 296 { 297 float32 ret = float32_div(a, b, &env->fp_status); 298 update_fr0_op(env, GETPC()); 299 return ret; 300 } 301 302 float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg) 303 { 304 float64 ret = float64_sqrt(arg, &env->fp_status); 305 update_fr0_op(env, GETPC()); 306 return ret; 307 } 308 309 float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg) 310 { 311 float64 ret = float64_round_to_int(arg, &env->fp_status); 312 update_fr0_op(env, GETPC()); 313 return ret; 314 } 315 316 float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b) 317 { 318 float64 ret = float64_add(a, b, &env->fp_status); 319 update_fr0_op(env, GETPC()); 320 return ret; 321 } 322 323 float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b) 324 { 325 float64 ret = float64_sub(a, b, &env->fp_status); 326 update_fr0_op(env, GETPC()); 327 return ret; 328 } 329 330 float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b) 331 { 332 float64 ret = float64_mul(a, b, &env->fp_status); 333 update_fr0_op(env, GETPC()); 334 return ret; 335 } 336 337 float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b) 338 { 339 float64 ret = float64_div(a, b, &env->fp_status); 340 update_fr0_op(env, GETPC()); 341 return ret; 342 } 343 344 float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg) 345 { 346 float64 ret = float32_to_float64(arg, &env->fp_status); 347 update_fr0_op(env, GETPC()); 348 return ret; 349 } 350 351 float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg) 352 { 353 float32 ret = float64_to_float32(arg, &env->fp_status); 354 update_fr0_op(env, GETPC()); 355 return ret; 356 } 357 358 float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg) 359 { 360 float32 ret = int32_to_float32(arg, &env->fp_status); 361 update_fr0_op(env, GETPC()); 362 return ret; 363 } 364 365 float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg) 366 { 367 float32 ret = int64_to_float32(arg, &env->fp_status); 368 update_fr0_op(env, GETPC()); 369 return ret; 370 } 371 372 float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg) 373 { 374 float64 ret = int32_to_float64(arg, &env->fp_status); 375 update_fr0_op(env, GETPC()); 376 return ret; 377 } 378 379 float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg) 380 { 381 float64 ret = int64_to_float64(arg, &env->fp_status); 382 update_fr0_op(env, GETPC()); 383 return ret; 384 } 385 386 int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg) 387 { 388 int32_t ret = float32_to_int32(arg, &env->fp_status); 389 update_fr0_op(env, GETPC()); 390 return ret; 391 } 392 393 int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg) 394 { 395 int32_t ret = float64_to_int32(arg, &env->fp_status); 396 update_fr0_op(env, GETPC()); 397 return ret; 398 } 399 400 int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg) 401 { 402 int64_t ret = float32_to_int64(arg, &env->fp_status); 403 update_fr0_op(env, GETPC()); 404 return ret; 405 } 406 407 int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg) 408 { 409 int64_t ret = float64_to_int64(arg, &env->fp_status); 410 update_fr0_op(env, GETPC()); 411 return ret; 412 } 413 414 int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg) 415 { 416 int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status); 417 update_fr0_op(env, GETPC()); 418 return ret; 419 } 420 421 int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg) 422 { 423 int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status); 424 update_fr0_op(env, GETPC()); 425 return ret; 426 } 427 428 int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg) 429 { 430 int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status); 431 update_fr0_op(env, GETPC()); 432 return ret; 433 } 434 435 int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg) 436 { 437 int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status); 438 update_fr0_op(env, GETPC()); 439 return ret; 440 } 441 442 float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg) 443 { 444 float32 ret = uint32_to_float32(arg, &env->fp_status); 445 update_fr0_op(env, GETPC()); 446 return ret; 447 } 448 449 float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg) 450 { 451 float32 ret = uint64_to_float32(arg, &env->fp_status); 452 update_fr0_op(env, GETPC()); 453 return ret; 454 } 455 456 float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg) 457 { 458 float64 ret = uint32_to_float64(arg, &env->fp_status); 459 update_fr0_op(env, GETPC()); 460 return ret; 461 } 462 463 float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg) 464 { 465 float64 ret = uint64_to_float64(arg, &env->fp_status); 466 update_fr0_op(env, GETPC()); 467 return ret; 468 } 469 470 uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg) 471 { 472 uint32_t ret = float32_to_uint32(arg, &env->fp_status); 473 update_fr0_op(env, GETPC()); 474 return ret; 475 } 476 477 uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg) 478 { 479 uint32_t ret = float64_to_uint32(arg, &env->fp_status); 480 update_fr0_op(env, GETPC()); 481 return ret; 482 } 483 484 uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg) 485 { 486 uint64_t ret = float32_to_uint64(arg, &env->fp_status); 487 update_fr0_op(env, GETPC()); 488 return ret; 489 } 490 491 uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg) 492 { 493 uint64_t ret = float64_to_uint64(arg, &env->fp_status); 494 update_fr0_op(env, GETPC()); 495 return ret; 496 } 497 498 uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg) 499 { 500 uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status); 501 update_fr0_op(env, GETPC()); 502 return ret; 503 } 504 505 uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg) 506 { 507 uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status); 508 update_fr0_op(env, GETPC()); 509 return ret; 510 } 511 512 uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg) 513 { 514 uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status); 515 update_fr0_op(env, GETPC()); 516 return ret; 517 } 518 519 uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg) 520 { 521 uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status); 522 update_fr0_op(env, GETPC()); 523 return ret; 524 } 525 526 static void update_fr0_cmp(CPUHPPAState *env, uint32_t y, uint32_t c, int r) 527 { 528 uint32_t shadow = env->fr0_shadow; 529 530 switch (r) { 531 case float_relation_greater: 532 c = extract32(c, 4, 1); 533 break; 534 case float_relation_less: 535 c = extract32(c, 3, 1); 536 break; 537 case float_relation_equal: 538 c = extract32(c, 2, 1); 539 break; 540 case float_relation_unordered: 541 c = extract32(c, 1, 1); 542 break; 543 default: 544 g_assert_not_reached(); 545 } 546 547 if (y) { 548 /* targeted comparison */ 549 /* set fpsr[ca[y - 1]] to current compare */ 550 shadow = deposit32(shadow, 21 - (y - 1), 1, c); 551 } else { 552 /* queued comparison */ 553 /* shift cq right by one place */ 554 shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10)); 555 /* move fpsr[c] to fpsr[cq[0]] */ 556 shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1)); 557 /* set fpsr[c] to current compare */ 558 shadow = deposit32(shadow, 26, 1, c); 559 } 560 561 env->fr0_shadow = shadow; 562 env->fr[0] = (uint64_t)shadow << 32; 563 } 564 565 void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b, 566 uint32_t y, uint32_t c) 567 { 568 int r; 569 if (c & 1) { 570 r = float32_compare(a, b, &env->fp_status); 571 } else { 572 r = float32_compare_quiet(a, b, &env->fp_status); 573 } 574 update_fr0_op(env, GETPC()); 575 update_fr0_cmp(env, y, c, r); 576 } 577 578 void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b, 579 uint32_t y, uint32_t c) 580 { 581 int r; 582 if (c & 1) { 583 r = float64_compare(a, b, &env->fp_status); 584 } else { 585 r = float64_compare_quiet(a, b, &env->fp_status); 586 } 587 update_fr0_op(env, GETPC()); 588 update_fr0_cmp(env, y, c, r); 589 } 590 591 float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c) 592 { 593 float32 ret = float32_muladd(a, b, c, 0, &env->fp_status); 594 update_fr0_op(env, GETPC()); 595 return ret; 596 } 597 598 float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c) 599 { 600 float32 ret = float32_muladd(a, b, c, float_muladd_negate_product, 601 &env->fp_status); 602 update_fr0_op(env, GETPC()); 603 return ret; 604 } 605 606 float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c) 607 { 608 float64 ret = float64_muladd(a, b, c, 0, &env->fp_status); 609 update_fr0_op(env, GETPC()); 610 return ret; 611 } 612 613 float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c) 614 { 615 float64 ret = float64_muladd(a, b, c, float_muladd_negate_product, 616 &env->fp_status); 617 update_fr0_op(env, GETPC()); 618 return ret; 619 } 620 621 target_ureg HELPER(read_interval_timer)(void) 622 { 623 #ifdef CONFIG_USER_ONLY 624 /* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist. 625 Just pass through the host cpu clock ticks. */ 626 return cpu_get_host_ticks(); 627 #else 628 /* In system mode we have access to a decent high-resolution clock. 629 In order to make OS-level time accounting work with the cr16, 630 present it with a well-timed clock fixed at 250MHz. */ 631 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2; 632 #endif 633 } 634 635 #ifndef CONFIG_USER_ONLY 636 void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val) 637 { 638 HPPACPU *cpu = env_archcpu(env); 639 uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 640 uint64_t timeout; 641 642 /* Even in 64-bit mode, the comparator is always 32-bit. But the 643 value we expose to the guest is 1/4 of the speed of the clock, 644 so moosh in 34 bits. */ 645 timeout = deposit64(current, 0, 34, (uint64_t)val << 2); 646 647 /* If the mooshing puts the clock in the past, advance to next round. */ 648 if (timeout < current + 1000) { 649 timeout += 1ULL << 34; 650 } 651 652 cpu->env.cr[CR_IT] = timeout; 653 timer_mod(cpu->alarm_timer, timeout); 654 } 655 656 void HELPER(halt)(CPUHPPAState *env) 657 { 658 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 659 helper_excp(env, EXCP_HLT); 660 } 661 662 void HELPER(reset)(CPUHPPAState *env) 663 { 664 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 665 helper_excp(env, EXCP_HLT); 666 } 667 668 target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm) 669 { 670 target_ulong psw = env->psw; 671 /* 672 * Setting the PSW Q bit to 1, if it was not already 1, is an 673 * undefined operation. 674 * 675 * However, HP-UX 10.20 does this with the SSM instruction. 676 * Tested this on HP9000/712 and HP9000/785/C3750 and both 677 * machines set the Q bit from 0 to 1 without an exception, 678 * so let this go without comment. 679 */ 680 env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM); 681 return psw & PSW_SM; 682 } 683 684 void HELPER(rfi)(CPUHPPAState *env) 685 { 686 env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32; 687 env->iasq_b = (uint64_t)env->cr_back[0] << 32; 688 env->iaoq_f = env->cr[CR_IIAOQ]; 689 env->iaoq_b = env->cr_back[1]; 690 cpu_hppa_put_psw(env, env->cr[CR_IPSW]); 691 } 692 693 void HELPER(rfi_r)(CPUHPPAState *env) 694 { 695 env->gr[1] = env->shadow[0]; 696 env->gr[8] = env->shadow[1]; 697 env->gr[9] = env->shadow[2]; 698 env->gr[16] = env->shadow[3]; 699 env->gr[17] = env->shadow[4]; 700 env->gr[24] = env->shadow[5]; 701 env->gr[25] = env->shadow[6]; 702 helper_rfi(env); 703 } 704 #endif 705