xref: /openbmc/qemu/target/hppa/op_helper.c (revision 1a7c00bb3aa4cf5501343fe041e93227ec33e66f)
1 /*
2  * Helpers for HPPA instructions.
3  *
4  * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "exec/cpu_ldst.h"
25 #include "sysemu/sysemu.h"
26 #include "qemu/timer.h"
27 #include "fpu/softfloat.h"
28 #include "trace.h"
29 
30 void QEMU_NORETURN HELPER(excp)(CPUHPPAState *env, int excp)
31 {
32     HPPACPU *cpu = hppa_env_get_cpu(env);
33     CPUState *cs = CPU(cpu);
34 
35     cs->exception_index = excp;
36     cpu_loop_exit(cs);
37 }
38 
39 void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
40 {
41     HPPACPU *cpu = hppa_env_get_cpu(env);
42     CPUState *cs = CPU(cpu);
43 
44     cs->exception_index = excp;
45     cpu_loop_exit_restore(cs, ra);
46 }
47 
48 void HELPER(tsv)(CPUHPPAState *env, target_ureg cond)
49 {
50     if (unlikely((target_sreg)cond < 0)) {
51         hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
52     }
53 }
54 
55 void HELPER(tcond)(CPUHPPAState *env, target_ureg cond)
56 {
57     if (unlikely(cond)) {
58         hppa_dynamic_excp(env, EXCP_COND, GETPC());
59     }
60 }
61 
62 static void atomic_store_3(CPUHPPAState *env, target_ulong addr, uint32_t val,
63                            uint32_t mask, uintptr_t ra)
64 {
65 #ifdef CONFIG_USER_ONLY
66     uint32_t old, new, cmp;
67 
68     uint32_t *haddr = g2h(addr - 1);
69     old = *haddr;
70     while (1) {
71         new = (old & ~mask) | (val & mask);
72         cmp = atomic_cmpxchg(haddr, old, new);
73         if (cmp == old) {
74             return;
75         }
76         old = cmp;
77     }
78 #else
79     /* FIXME -- we can do better.  */
80     cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
81 #endif
82 }
83 
84 static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val,
85                       bool parallel, uintptr_t ra)
86 {
87     switch (addr & 3) {
88     case 3:
89         cpu_stb_data_ra(env, addr, val, ra);
90         break;
91     case 2:
92         cpu_stw_data_ra(env, addr, val, ra);
93         break;
94     case 1:
95         /* The 3 byte store must appear atomic.  */
96         if (parallel) {
97             atomic_store_3(env, addr, val, 0x00ffffffu, ra);
98         } else {
99             cpu_stb_data_ra(env, addr, val >> 16, ra);
100             cpu_stw_data_ra(env, addr + 1, val, ra);
101         }
102         break;
103     default:
104         cpu_stl_data_ra(env, addr, val, ra);
105         break;
106     }
107 }
108 
109 void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val)
110 {
111     do_stby_b(env, addr, val, false, GETPC());
112 }
113 
114 void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
115                              target_ureg val)
116 {
117     do_stby_b(env, addr, val, true, GETPC());
118 }
119 
120 static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val,
121                       bool parallel, uintptr_t ra)
122 {
123     switch (addr & 3) {
124     case 3:
125         /* The 3 byte store must appear atomic.  */
126         if (parallel) {
127             atomic_store_3(env, addr - 3, val, 0xffffff00u, ra);
128         } else {
129             cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
130             cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
131         }
132         break;
133     case 2:
134         cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
135         break;
136     case 1:
137         cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
138         break;
139     default:
140         /* Nothing is stored, but protection is checked and the
141            cacheline is marked dirty.  */
142 #ifndef CONFIG_USER_ONLY
143         probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
144 #endif
145         break;
146     }
147 }
148 
149 void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val)
150 {
151     do_stby_e(env, addr, val, false, GETPC());
152 }
153 
154 void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
155                              target_ureg val)
156 {
157     do_stby_e(env, addr, val, true, GETPC());
158 }
159 
160 target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr,
161                           uint32_t level, uint32_t want)
162 {
163 #ifdef CONFIG_USER_ONLY
164     return page_check_range(addr, 1, want);
165 #else
166     int prot, excp;
167     hwaddr phys;
168 
169     trace_hppa_tlb_probe(addr, level, want);
170     /* Fail if the requested privilege level is higher than current.  */
171     if (level < (env->iaoq_f & 3)) {
172         return 0;
173     }
174 
175     excp = hppa_get_physical_address(env, addr, level, 0, &phys, &prot);
176     if (excp >= 0) {
177         if (env->psw & PSW_Q) {
178             /* ??? Needs tweaking for hppa64.  */
179             env->cr[CR_IOR] = addr;
180             env->cr[CR_ISR] = addr >> 32;
181         }
182         if (excp == EXCP_DTLB_MISS) {
183             excp = EXCP_NA_DTLB_MISS;
184         }
185         hppa_dynamic_excp(env, excp, GETPC());
186     }
187     return (want & prot) != 0;
188 #endif
189 }
190 
191 void HELPER(loaded_fr0)(CPUHPPAState *env)
192 {
193     uint32_t shadow = env->fr[0] >> 32;
194     int rm, d;
195 
196     env->fr0_shadow = shadow;
197 
198     switch (extract32(shadow, 9, 2)) {
199     default:
200         rm = float_round_nearest_even;
201         break;
202     case 1:
203         rm = float_round_to_zero;
204         break;
205     case 2:
206         rm = float_round_up;
207         break;
208     case 3:
209         rm = float_round_down;
210         break;
211     }
212     set_float_rounding_mode(rm, &env->fp_status);
213 
214     d = extract32(shadow, 5, 1);
215     set_flush_to_zero(d, &env->fp_status);
216     set_flush_inputs_to_zero(d, &env->fp_status);
217 }
218 
219 void cpu_hppa_loaded_fr0(CPUHPPAState *env)
220 {
221     helper_loaded_fr0(env);
222 }
223 
224 #define CONVERT_BIT(X, SRC, DST)        \
225     ((SRC) > (DST)                      \
226      ? (X) / ((SRC) / (DST)) & (DST)    \
227      : ((X) & (SRC)) * ((DST) / (SRC)))
228 
229 static void update_fr0_op(CPUHPPAState *env, uintptr_t ra)
230 {
231     uint32_t soft_exp = get_float_exception_flags(&env->fp_status);
232     uint32_t hard_exp = 0;
233     uint32_t shadow = env->fr0_shadow;
234 
235     if (likely(soft_exp == 0)) {
236         env->fr[0] = (uint64_t)shadow << 32;
237         return;
238     }
239     set_float_exception_flags(0, &env->fp_status);
240 
241     hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact,   1u << 0);
242     hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1);
243     hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow,  1u << 2);
244     hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3);
245     hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid,   1u << 4);
246     shadow |= hard_exp << (32 - 5);
247     env->fr0_shadow = shadow;
248     env->fr[0] = (uint64_t)shadow << 32;
249 
250     if (hard_exp & shadow) {
251         hppa_dynamic_excp(env, EXCP_ASSIST, ra);
252     }
253 }
254 
255 float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg)
256 {
257     float32 ret = float32_sqrt(arg, &env->fp_status);
258     update_fr0_op(env, GETPC());
259     return ret;
260 }
261 
262 float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg)
263 {
264     float32 ret = float32_round_to_int(arg, &env->fp_status);
265     update_fr0_op(env, GETPC());
266     return ret;
267 }
268 
269 float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b)
270 {
271     float32 ret = float32_add(a, b, &env->fp_status);
272     update_fr0_op(env, GETPC());
273     return ret;
274 }
275 
276 float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b)
277 {
278     float32 ret = float32_sub(a, b, &env->fp_status);
279     update_fr0_op(env, GETPC());
280     return ret;
281 }
282 
283 float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b)
284 {
285     float32 ret = float32_mul(a, b, &env->fp_status);
286     update_fr0_op(env, GETPC());
287     return ret;
288 }
289 
290 float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b)
291 {
292     float32 ret = float32_div(a, b, &env->fp_status);
293     update_fr0_op(env, GETPC());
294     return ret;
295 }
296 
297 float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg)
298 {
299     float64 ret = float64_sqrt(arg, &env->fp_status);
300     update_fr0_op(env, GETPC());
301     return ret;
302 }
303 
304 float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg)
305 {
306     float64 ret = float64_round_to_int(arg, &env->fp_status);
307     update_fr0_op(env, GETPC());
308     return ret;
309 }
310 
311 float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b)
312 {
313     float64 ret = float64_add(a, b, &env->fp_status);
314     update_fr0_op(env, GETPC());
315     return ret;
316 }
317 
318 float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b)
319 {
320     float64 ret = float64_sub(a, b, &env->fp_status);
321     update_fr0_op(env, GETPC());
322     return ret;
323 }
324 
325 float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b)
326 {
327     float64 ret = float64_mul(a, b, &env->fp_status);
328     update_fr0_op(env, GETPC());
329     return ret;
330 }
331 
332 float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b)
333 {
334     float64 ret = float64_div(a, b, &env->fp_status);
335     update_fr0_op(env, GETPC());
336     return ret;
337 }
338 
339 float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg)
340 {
341     float64 ret = float32_to_float64(arg, &env->fp_status);
342     update_fr0_op(env, GETPC());
343     return ret;
344 }
345 
346 float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg)
347 {
348     float32 ret = float64_to_float32(arg, &env->fp_status);
349     update_fr0_op(env, GETPC());
350     return ret;
351 }
352 
353 float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg)
354 {
355     float32 ret = int32_to_float32(arg, &env->fp_status);
356     update_fr0_op(env, GETPC());
357     return ret;
358 }
359 
360 float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg)
361 {
362     float32 ret = int64_to_float32(arg, &env->fp_status);
363     update_fr0_op(env, GETPC());
364     return ret;
365 }
366 
367 float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg)
368 {
369     float64 ret = int32_to_float64(arg, &env->fp_status);
370     update_fr0_op(env, GETPC());
371     return ret;
372 }
373 
374 float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg)
375 {
376     float64 ret = int64_to_float64(arg, &env->fp_status);
377     update_fr0_op(env, GETPC());
378     return ret;
379 }
380 
381 int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg)
382 {
383     int32_t ret = float32_to_int32(arg, &env->fp_status);
384     update_fr0_op(env, GETPC());
385     return ret;
386 }
387 
388 int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg)
389 {
390     int32_t ret = float64_to_int32(arg, &env->fp_status);
391     update_fr0_op(env, GETPC());
392     return ret;
393 }
394 
395 int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg)
396 {
397     int64_t ret = float32_to_int64(arg, &env->fp_status);
398     update_fr0_op(env, GETPC());
399     return ret;
400 }
401 
402 int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg)
403 {
404     int64_t ret = float64_to_int64(arg, &env->fp_status);
405     update_fr0_op(env, GETPC());
406     return ret;
407 }
408 
409 int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg)
410 {
411     int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status);
412     update_fr0_op(env, GETPC());
413     return ret;
414 }
415 
416 int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg)
417 {
418     int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status);
419     update_fr0_op(env, GETPC());
420     return ret;
421 }
422 
423 int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg)
424 {
425     int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status);
426     update_fr0_op(env, GETPC());
427     return ret;
428 }
429 
430 int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg)
431 {
432     int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status);
433     update_fr0_op(env, GETPC());
434     return ret;
435 }
436 
437 float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg)
438 {
439     float32 ret = uint32_to_float32(arg, &env->fp_status);
440     update_fr0_op(env, GETPC());
441     return ret;
442 }
443 
444 float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg)
445 {
446     float32 ret = uint64_to_float32(arg, &env->fp_status);
447     update_fr0_op(env, GETPC());
448     return ret;
449 }
450 
451 float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg)
452 {
453     float64 ret = uint32_to_float64(arg, &env->fp_status);
454     update_fr0_op(env, GETPC());
455     return ret;
456 }
457 
458 float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg)
459 {
460     float64 ret = uint64_to_float64(arg, &env->fp_status);
461     update_fr0_op(env, GETPC());
462     return ret;
463 }
464 
465 uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg)
466 {
467     uint32_t ret = float32_to_uint32(arg, &env->fp_status);
468     update_fr0_op(env, GETPC());
469     return ret;
470 }
471 
472 uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg)
473 {
474     uint32_t ret = float64_to_uint32(arg, &env->fp_status);
475     update_fr0_op(env, GETPC());
476     return ret;
477 }
478 
479 uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg)
480 {
481     uint64_t ret = float32_to_uint64(arg, &env->fp_status);
482     update_fr0_op(env, GETPC());
483     return ret;
484 }
485 
486 uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg)
487 {
488     uint64_t ret = float64_to_uint64(arg, &env->fp_status);
489     update_fr0_op(env, GETPC());
490     return ret;
491 }
492 
493 uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg)
494 {
495     uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status);
496     update_fr0_op(env, GETPC());
497     return ret;
498 }
499 
500 uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg)
501 {
502     uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status);
503     update_fr0_op(env, GETPC());
504     return ret;
505 }
506 
507 uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg)
508 {
509     uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status);
510     update_fr0_op(env, GETPC());
511     return ret;
512 }
513 
514 uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg)
515 {
516     uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status);
517     update_fr0_op(env, GETPC());
518     return ret;
519 }
520 
521 static void update_fr0_cmp(CPUHPPAState *env, uint32_t y, uint32_t c, int r)
522 {
523     uint32_t shadow = env->fr0_shadow;
524 
525     switch (r) {
526     case float_relation_greater:
527         c = extract32(c, 4, 1);
528         break;
529     case float_relation_less:
530         c = extract32(c, 3, 1);
531         break;
532     case float_relation_equal:
533         c = extract32(c, 2, 1);
534         break;
535     case float_relation_unordered:
536         c = extract32(c, 1, 1);
537         break;
538     default:
539         g_assert_not_reached();
540     }
541 
542     if (y) {
543         /* targeted comparison */
544         /* set fpsr[ca[y - 1]] to current compare */
545         shadow = deposit32(shadow, 21 - (y - 1), 1, c);
546     } else {
547         /* queued comparison */
548         /* shift cq right by one place */
549         shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10));
550         /* move fpsr[c] to fpsr[cq[0]] */
551         shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1));
552         /* set fpsr[c] to current compare */
553         shadow = deposit32(shadow, 26, 1, c);
554     }
555 
556     env->fr0_shadow = shadow;
557     env->fr[0] = (uint64_t)shadow << 32;
558 }
559 
560 void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b,
561                     uint32_t y, uint32_t c)
562 {
563     int r;
564     if (c & 1) {
565         r = float32_compare(a, b, &env->fp_status);
566     } else {
567         r = float32_compare_quiet(a, b, &env->fp_status);
568     }
569     update_fr0_op(env, GETPC());
570     update_fr0_cmp(env, y, c, r);
571 }
572 
573 void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b,
574                     uint32_t y, uint32_t c)
575 {
576     int r;
577     if (c & 1) {
578         r = float64_compare(a, b, &env->fp_status);
579     } else {
580         r = float64_compare_quiet(a, b, &env->fp_status);
581     }
582     update_fr0_op(env, GETPC());
583     update_fr0_cmp(env, y, c, r);
584 }
585 
586 float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
587 {
588     float32 ret = float32_muladd(a, b, c, 0, &env->fp_status);
589     update_fr0_op(env, GETPC());
590     return ret;
591 }
592 
593 float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
594 {
595     float32 ret = float32_muladd(a, b, c, float_muladd_negate_product,
596                                  &env->fp_status);
597     update_fr0_op(env, GETPC());
598     return ret;
599 }
600 
601 float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
602 {
603     float64 ret = float64_muladd(a, b, c, 0, &env->fp_status);
604     update_fr0_op(env, GETPC());
605     return ret;
606 }
607 
608 float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
609 {
610     float64 ret = float64_muladd(a, b, c, float_muladd_negate_product,
611                                  &env->fp_status);
612     update_fr0_op(env, GETPC());
613     return ret;
614 }
615 
616 target_ureg HELPER(read_interval_timer)(void)
617 {
618 #ifdef CONFIG_USER_ONLY
619     /* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
620        Just pass through the host cpu clock ticks.  */
621     return cpu_get_host_ticks();
622 #else
623     /* In system mode we have access to a decent high-resolution clock.
624        In order to make OS-level time accounting work with the cr16,
625        present it with a well-timed clock fixed at 250MHz.  */
626     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
627 #endif
628 }
629 
630 #ifndef CONFIG_USER_ONLY
631 void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val)
632 {
633     HPPACPU *cpu = hppa_env_get_cpu(env);
634     uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
635     uint64_t timeout;
636 
637     /* Even in 64-bit mode, the comparator is always 32-bit.  But the
638        value we expose to the guest is 1/4 of the speed of the clock,
639        so moosh in 34 bits.  */
640     timeout = deposit64(current, 0, 34, (uint64_t)val << 2);
641 
642     /* If the mooshing puts the clock in the past, advance to next round.  */
643     if (timeout < current + 1000) {
644         timeout += 1ULL << 34;
645     }
646 
647     cpu->env.cr[CR_IT] = timeout;
648     timer_mod(cpu->alarm_timer, timeout);
649 }
650 
651 void HELPER(halt)(CPUHPPAState *env)
652 {
653     qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
654     helper_excp(env, EXCP_HLT);
655 }
656 
657 void HELPER(reset)(CPUHPPAState *env)
658 {
659     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
660     helper_excp(env, EXCP_HLT);
661 }
662 
663 target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm)
664 {
665     target_ulong psw = env->psw;
666     /*
667      * Setting the PSW Q bit to 1, if it was not already 1, is an
668      * undefined operation.
669      *
670      * However, HP-UX 10.20 does this with the SSM instruction.
671      * Tested this on HP9000/712 and HP9000/785/C3750 and both
672      * machines set the Q bit from 0 to 1 without an exception,
673      * so let this go without comment.
674      */
675     env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM);
676     return psw & PSW_SM;
677 }
678 
679 void HELPER(rfi)(CPUHPPAState *env)
680 {
681     env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32;
682     env->iasq_b = (uint64_t)env->cr_back[0] << 32;
683     env->iaoq_f = env->cr[CR_IIAOQ];
684     env->iaoq_b = env->cr_back[1];
685     cpu_hppa_put_psw(env, env->cr[CR_IPSW]);
686 }
687 
688 void HELPER(rfi_r)(CPUHPPAState *env)
689 {
690     env->gr[1] = env->shadow[0];
691     env->gr[8] = env->shadow[1];
692     env->gr[9] = env->shadow[2];
693     env->gr[16] = env->shadow[3];
694     env->gr[17] = env->shadow[4];
695     env->gr[24] = env->shadow[5];
696     env->gr[25] = env->shadow[6];
697     helper_rfi(env);
698 }
699 #endif
700