xref: /openbmc/qemu/target/hppa/op_helper.c (revision 19f70347)
1 /*
2  * Helpers for HPPA instructions.
3  *
4  * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "exec/cpu_ldst.h"
25 #include "qemu/timer.h"
26 #include "sysemu/runstate.h"
27 #include "fpu/softfloat.h"
28 #include "trace.h"
29 
30 void QEMU_NORETURN HELPER(excp)(CPUHPPAState *env, int excp)
31 {
32     CPUState *cs = env_cpu(env);
33 
34     cs->exception_index = excp;
35     cpu_loop_exit(cs);
36 }
37 
38 void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
39 {
40     CPUState *cs = env_cpu(env);
41 
42     cs->exception_index = excp;
43     cpu_loop_exit_restore(cs, ra);
44 }
45 
46 void HELPER(tsv)(CPUHPPAState *env, target_ureg cond)
47 {
48     if (unlikely((target_sreg)cond < 0)) {
49         hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
50     }
51 }
52 
53 void HELPER(tcond)(CPUHPPAState *env, target_ureg cond)
54 {
55     if (unlikely(cond)) {
56         hppa_dynamic_excp(env, EXCP_COND, GETPC());
57     }
58 }
59 
60 static void atomic_store_3(CPUHPPAState *env, target_ulong addr, uint32_t val,
61                            uint32_t mask, uintptr_t ra)
62 {
63 #ifdef CONFIG_USER_ONLY
64     uint32_t old, new, cmp;
65 
66     uint32_t *haddr = g2h(addr - 1);
67     old = *haddr;
68     while (1) {
69         new = (old & ~mask) | (val & mask);
70         cmp = atomic_cmpxchg(haddr, old, new);
71         if (cmp == old) {
72             return;
73         }
74         old = cmp;
75     }
76 #else
77     /* FIXME -- we can do better.  */
78     cpu_loop_exit_atomic(env_cpu(env), ra);
79 #endif
80 }
81 
82 static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val,
83                       bool parallel, uintptr_t ra)
84 {
85     switch (addr & 3) {
86     case 3:
87         cpu_stb_data_ra(env, addr, val, ra);
88         break;
89     case 2:
90         cpu_stw_data_ra(env, addr, val, ra);
91         break;
92     case 1:
93         /* The 3 byte store must appear atomic.  */
94         if (parallel) {
95             atomic_store_3(env, addr, val, 0x00ffffffu, ra);
96         } else {
97             cpu_stb_data_ra(env, addr, val >> 16, ra);
98             cpu_stw_data_ra(env, addr + 1, val, ra);
99         }
100         break;
101     default:
102         cpu_stl_data_ra(env, addr, val, ra);
103         break;
104     }
105 }
106 
107 void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val)
108 {
109     do_stby_b(env, addr, val, false, GETPC());
110 }
111 
112 void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
113                              target_ureg val)
114 {
115     do_stby_b(env, addr, val, true, GETPC());
116 }
117 
118 static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val,
119                       bool parallel, uintptr_t ra)
120 {
121     switch (addr & 3) {
122     case 3:
123         /* The 3 byte store must appear atomic.  */
124         if (parallel) {
125             atomic_store_3(env, addr - 3, val, 0xffffff00u, ra);
126         } else {
127             cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
128             cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
129         }
130         break;
131     case 2:
132         cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
133         break;
134     case 1:
135         cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
136         break;
137     default:
138         /* Nothing is stored, but protection is checked and the
139            cacheline is marked dirty.  */
140         probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
141         break;
142     }
143 }
144 
145 void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val)
146 {
147     do_stby_e(env, addr, val, false, GETPC());
148 }
149 
150 void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
151                              target_ureg val)
152 {
153     do_stby_e(env, addr, val, true, GETPC());
154 }
155 
156 void HELPER(ldc_check)(target_ulong addr)
157 {
158     if (unlikely(addr & 0xf)) {
159         qemu_log_mask(LOG_GUEST_ERROR,
160                       "Undefined ldc to unaligned address mod 16: "
161                       TARGET_FMT_lx "\n", addr);
162     }
163 }
164 
165 target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr,
166                           uint32_t level, uint32_t want)
167 {
168 #ifdef CONFIG_USER_ONLY
169     return page_check_range(addr, 1, want);
170 #else
171     int prot, excp;
172     hwaddr phys;
173 
174     trace_hppa_tlb_probe(addr, level, want);
175     /* Fail if the requested privilege level is higher than current.  */
176     if (level < (env->iaoq_f & 3)) {
177         return 0;
178     }
179 
180     excp = hppa_get_physical_address(env, addr, level, 0, &phys, &prot);
181     if (excp >= 0) {
182         if (env->psw & PSW_Q) {
183             /* ??? Needs tweaking for hppa64.  */
184             env->cr[CR_IOR] = addr;
185             env->cr[CR_ISR] = addr >> 32;
186         }
187         if (excp == EXCP_DTLB_MISS) {
188             excp = EXCP_NA_DTLB_MISS;
189         }
190         hppa_dynamic_excp(env, excp, GETPC());
191     }
192     return (want & prot) != 0;
193 #endif
194 }
195 
196 void HELPER(loaded_fr0)(CPUHPPAState *env)
197 {
198     uint32_t shadow = env->fr[0] >> 32;
199     int rm, d;
200 
201     env->fr0_shadow = shadow;
202 
203     switch (extract32(shadow, 9, 2)) {
204     default:
205         rm = float_round_nearest_even;
206         break;
207     case 1:
208         rm = float_round_to_zero;
209         break;
210     case 2:
211         rm = float_round_up;
212         break;
213     case 3:
214         rm = float_round_down;
215         break;
216     }
217     set_float_rounding_mode(rm, &env->fp_status);
218 
219     d = extract32(shadow, 5, 1);
220     set_flush_to_zero(d, &env->fp_status);
221     set_flush_inputs_to_zero(d, &env->fp_status);
222 }
223 
224 void cpu_hppa_loaded_fr0(CPUHPPAState *env)
225 {
226     helper_loaded_fr0(env);
227 }
228 
229 #define CONVERT_BIT(X, SRC, DST)        \
230     ((SRC) > (DST)                      \
231      ? (X) / ((SRC) / (DST)) & (DST)    \
232      : ((X) & (SRC)) * ((DST) / (SRC)))
233 
234 static void update_fr0_op(CPUHPPAState *env, uintptr_t ra)
235 {
236     uint32_t soft_exp = get_float_exception_flags(&env->fp_status);
237     uint32_t hard_exp = 0;
238     uint32_t shadow = env->fr0_shadow;
239 
240     if (likely(soft_exp == 0)) {
241         env->fr[0] = (uint64_t)shadow << 32;
242         return;
243     }
244     set_float_exception_flags(0, &env->fp_status);
245 
246     hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact,   1u << 0);
247     hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1);
248     hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow,  1u << 2);
249     hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3);
250     hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid,   1u << 4);
251     shadow |= hard_exp << (32 - 5);
252     env->fr0_shadow = shadow;
253     env->fr[0] = (uint64_t)shadow << 32;
254 
255     if (hard_exp & shadow) {
256         hppa_dynamic_excp(env, EXCP_ASSIST, ra);
257     }
258 }
259 
260 float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg)
261 {
262     float32 ret = float32_sqrt(arg, &env->fp_status);
263     update_fr0_op(env, GETPC());
264     return ret;
265 }
266 
267 float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg)
268 {
269     float32 ret = float32_round_to_int(arg, &env->fp_status);
270     update_fr0_op(env, GETPC());
271     return ret;
272 }
273 
274 float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b)
275 {
276     float32 ret = float32_add(a, b, &env->fp_status);
277     update_fr0_op(env, GETPC());
278     return ret;
279 }
280 
281 float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b)
282 {
283     float32 ret = float32_sub(a, b, &env->fp_status);
284     update_fr0_op(env, GETPC());
285     return ret;
286 }
287 
288 float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b)
289 {
290     float32 ret = float32_mul(a, b, &env->fp_status);
291     update_fr0_op(env, GETPC());
292     return ret;
293 }
294 
295 float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b)
296 {
297     float32 ret = float32_div(a, b, &env->fp_status);
298     update_fr0_op(env, GETPC());
299     return ret;
300 }
301 
302 float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg)
303 {
304     float64 ret = float64_sqrt(arg, &env->fp_status);
305     update_fr0_op(env, GETPC());
306     return ret;
307 }
308 
309 float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg)
310 {
311     float64 ret = float64_round_to_int(arg, &env->fp_status);
312     update_fr0_op(env, GETPC());
313     return ret;
314 }
315 
316 float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b)
317 {
318     float64 ret = float64_add(a, b, &env->fp_status);
319     update_fr0_op(env, GETPC());
320     return ret;
321 }
322 
323 float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b)
324 {
325     float64 ret = float64_sub(a, b, &env->fp_status);
326     update_fr0_op(env, GETPC());
327     return ret;
328 }
329 
330 float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b)
331 {
332     float64 ret = float64_mul(a, b, &env->fp_status);
333     update_fr0_op(env, GETPC());
334     return ret;
335 }
336 
337 float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b)
338 {
339     float64 ret = float64_div(a, b, &env->fp_status);
340     update_fr0_op(env, GETPC());
341     return ret;
342 }
343 
344 float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg)
345 {
346     float64 ret = float32_to_float64(arg, &env->fp_status);
347     update_fr0_op(env, GETPC());
348     return ret;
349 }
350 
351 float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg)
352 {
353     float32 ret = float64_to_float32(arg, &env->fp_status);
354     update_fr0_op(env, GETPC());
355     return ret;
356 }
357 
358 float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg)
359 {
360     float32 ret = int32_to_float32(arg, &env->fp_status);
361     update_fr0_op(env, GETPC());
362     return ret;
363 }
364 
365 float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg)
366 {
367     float32 ret = int64_to_float32(arg, &env->fp_status);
368     update_fr0_op(env, GETPC());
369     return ret;
370 }
371 
372 float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg)
373 {
374     float64 ret = int32_to_float64(arg, &env->fp_status);
375     update_fr0_op(env, GETPC());
376     return ret;
377 }
378 
379 float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg)
380 {
381     float64 ret = int64_to_float64(arg, &env->fp_status);
382     update_fr0_op(env, GETPC());
383     return ret;
384 }
385 
386 int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg)
387 {
388     int32_t ret = float32_to_int32(arg, &env->fp_status);
389     update_fr0_op(env, GETPC());
390     return ret;
391 }
392 
393 int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg)
394 {
395     int32_t ret = float64_to_int32(arg, &env->fp_status);
396     update_fr0_op(env, GETPC());
397     return ret;
398 }
399 
400 int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg)
401 {
402     int64_t ret = float32_to_int64(arg, &env->fp_status);
403     update_fr0_op(env, GETPC());
404     return ret;
405 }
406 
407 int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg)
408 {
409     int64_t ret = float64_to_int64(arg, &env->fp_status);
410     update_fr0_op(env, GETPC());
411     return ret;
412 }
413 
414 int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg)
415 {
416     int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status);
417     update_fr0_op(env, GETPC());
418     return ret;
419 }
420 
421 int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg)
422 {
423     int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status);
424     update_fr0_op(env, GETPC());
425     return ret;
426 }
427 
428 int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg)
429 {
430     int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status);
431     update_fr0_op(env, GETPC());
432     return ret;
433 }
434 
435 int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg)
436 {
437     int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status);
438     update_fr0_op(env, GETPC());
439     return ret;
440 }
441 
442 float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg)
443 {
444     float32 ret = uint32_to_float32(arg, &env->fp_status);
445     update_fr0_op(env, GETPC());
446     return ret;
447 }
448 
449 float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg)
450 {
451     float32 ret = uint64_to_float32(arg, &env->fp_status);
452     update_fr0_op(env, GETPC());
453     return ret;
454 }
455 
456 float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg)
457 {
458     float64 ret = uint32_to_float64(arg, &env->fp_status);
459     update_fr0_op(env, GETPC());
460     return ret;
461 }
462 
463 float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg)
464 {
465     float64 ret = uint64_to_float64(arg, &env->fp_status);
466     update_fr0_op(env, GETPC());
467     return ret;
468 }
469 
470 uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg)
471 {
472     uint32_t ret = float32_to_uint32(arg, &env->fp_status);
473     update_fr0_op(env, GETPC());
474     return ret;
475 }
476 
477 uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg)
478 {
479     uint32_t ret = float64_to_uint32(arg, &env->fp_status);
480     update_fr0_op(env, GETPC());
481     return ret;
482 }
483 
484 uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg)
485 {
486     uint64_t ret = float32_to_uint64(arg, &env->fp_status);
487     update_fr0_op(env, GETPC());
488     return ret;
489 }
490 
491 uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg)
492 {
493     uint64_t ret = float64_to_uint64(arg, &env->fp_status);
494     update_fr0_op(env, GETPC());
495     return ret;
496 }
497 
498 uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg)
499 {
500     uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status);
501     update_fr0_op(env, GETPC());
502     return ret;
503 }
504 
505 uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg)
506 {
507     uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status);
508     update_fr0_op(env, GETPC());
509     return ret;
510 }
511 
512 uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg)
513 {
514     uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status);
515     update_fr0_op(env, GETPC());
516     return ret;
517 }
518 
519 uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg)
520 {
521     uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status);
522     update_fr0_op(env, GETPC());
523     return ret;
524 }
525 
526 static void update_fr0_cmp(CPUHPPAState *env, uint32_t y, uint32_t c, int r)
527 {
528     uint32_t shadow = env->fr0_shadow;
529 
530     switch (r) {
531     case float_relation_greater:
532         c = extract32(c, 4, 1);
533         break;
534     case float_relation_less:
535         c = extract32(c, 3, 1);
536         break;
537     case float_relation_equal:
538         c = extract32(c, 2, 1);
539         break;
540     case float_relation_unordered:
541         c = extract32(c, 1, 1);
542         break;
543     default:
544         g_assert_not_reached();
545     }
546 
547     if (y) {
548         /* targeted comparison */
549         /* set fpsr[ca[y - 1]] to current compare */
550         shadow = deposit32(shadow, 21 - (y - 1), 1, c);
551     } else {
552         /* queued comparison */
553         /* shift cq right by one place */
554         shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10));
555         /* move fpsr[c] to fpsr[cq[0]] */
556         shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1));
557         /* set fpsr[c] to current compare */
558         shadow = deposit32(shadow, 26, 1, c);
559     }
560 
561     env->fr0_shadow = shadow;
562     env->fr[0] = (uint64_t)shadow << 32;
563 }
564 
565 void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b,
566                     uint32_t y, uint32_t c)
567 {
568     int r;
569     if (c & 1) {
570         r = float32_compare(a, b, &env->fp_status);
571     } else {
572         r = float32_compare_quiet(a, b, &env->fp_status);
573     }
574     update_fr0_op(env, GETPC());
575     update_fr0_cmp(env, y, c, r);
576 }
577 
578 void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b,
579                     uint32_t y, uint32_t c)
580 {
581     int r;
582     if (c & 1) {
583         r = float64_compare(a, b, &env->fp_status);
584     } else {
585         r = float64_compare_quiet(a, b, &env->fp_status);
586     }
587     update_fr0_op(env, GETPC());
588     update_fr0_cmp(env, y, c, r);
589 }
590 
591 float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
592 {
593     float32 ret = float32_muladd(a, b, c, 0, &env->fp_status);
594     update_fr0_op(env, GETPC());
595     return ret;
596 }
597 
598 float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
599 {
600     float32 ret = float32_muladd(a, b, c, float_muladd_negate_product,
601                                  &env->fp_status);
602     update_fr0_op(env, GETPC());
603     return ret;
604 }
605 
606 float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
607 {
608     float64 ret = float64_muladd(a, b, c, 0, &env->fp_status);
609     update_fr0_op(env, GETPC());
610     return ret;
611 }
612 
613 float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
614 {
615     float64 ret = float64_muladd(a, b, c, float_muladd_negate_product,
616                                  &env->fp_status);
617     update_fr0_op(env, GETPC());
618     return ret;
619 }
620 
621 target_ureg HELPER(read_interval_timer)(void)
622 {
623 #ifdef CONFIG_USER_ONLY
624     /* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
625        Just pass through the host cpu clock ticks.  */
626     return cpu_get_host_ticks();
627 #else
628     /* In system mode we have access to a decent high-resolution clock.
629        In order to make OS-level time accounting work with the cr16,
630        present it with a well-timed clock fixed at 250MHz.  */
631     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
632 #endif
633 }
634 
635 #ifndef CONFIG_USER_ONLY
636 void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val)
637 {
638     HPPACPU *cpu = env_archcpu(env);
639     uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
640     uint64_t timeout;
641 
642     /* Even in 64-bit mode, the comparator is always 32-bit.  But the
643        value we expose to the guest is 1/4 of the speed of the clock,
644        so moosh in 34 bits.  */
645     timeout = deposit64(current, 0, 34, (uint64_t)val << 2);
646 
647     /* If the mooshing puts the clock in the past, advance to next round.  */
648     if (timeout < current + 1000) {
649         timeout += 1ULL << 34;
650     }
651 
652     cpu->env.cr[CR_IT] = timeout;
653     timer_mod(cpu->alarm_timer, timeout);
654 }
655 
656 void HELPER(halt)(CPUHPPAState *env)
657 {
658     qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
659     helper_excp(env, EXCP_HLT);
660 }
661 
662 void HELPER(reset)(CPUHPPAState *env)
663 {
664     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
665     helper_excp(env, EXCP_HLT);
666 }
667 
668 target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm)
669 {
670     target_ulong psw = env->psw;
671     /*
672      * Setting the PSW Q bit to 1, if it was not already 1, is an
673      * undefined operation.
674      *
675      * However, HP-UX 10.20 does this with the SSM instruction.
676      * Tested this on HP9000/712 and HP9000/785/C3750 and both
677      * machines set the Q bit from 0 to 1 without an exception,
678      * so let this go without comment.
679      */
680     env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM);
681     return psw & PSW_SM;
682 }
683 
684 void HELPER(rfi)(CPUHPPAState *env)
685 {
686     env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32;
687     env->iasq_b = (uint64_t)env->cr_back[0] << 32;
688     env->iaoq_f = env->cr[CR_IIAOQ];
689     env->iaoq_b = env->cr_back[1];
690     cpu_hppa_put_psw(env, env->cr[CR_IPSW]);
691 }
692 
693 void HELPER(rfi_r)(CPUHPPAState *env)
694 {
695     env->gr[1] = env->shadow[0];
696     env->gr[8] = env->shadow[1];
697     env->gr[9] = env->shadow[2];
698     env->gr[16] = env->shadow[3];
699     env->gr[17] = env->shadow[4];
700     env->gr[24] = env->shadow[5];
701     env->gr[25] = env->shadow[6];
702     helper_rfi(env);
703 }
704 #endif
705