xref: /openbmc/qemu/target/hppa/op_helper.c (revision 10df8ff1)
1 /*
2  * Helpers for HPPA instructions.
3  *
4  * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "exec/cpu_ldst.h"
25 #include "sysemu/sysemu.h"
26 #include "qemu/timer.h"
27 #include "fpu/softfloat.h"
28 
29 void QEMU_NORETURN HELPER(excp)(CPUHPPAState *env, int excp)
30 {
31     HPPACPU *cpu = hppa_env_get_cpu(env);
32     CPUState *cs = CPU(cpu);
33 
34     cs->exception_index = excp;
35     cpu_loop_exit(cs);
36 }
37 
38 void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
39 {
40     HPPACPU *cpu = hppa_env_get_cpu(env);
41     CPUState *cs = CPU(cpu);
42 
43     cs->exception_index = excp;
44     cpu_loop_exit_restore(cs, ra);
45 }
46 
47 void HELPER(tsv)(CPUHPPAState *env, target_ureg cond)
48 {
49     if (unlikely((target_sreg)cond < 0)) {
50         hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
51     }
52 }
53 
54 void HELPER(tcond)(CPUHPPAState *env, target_ureg cond)
55 {
56     if (unlikely(cond)) {
57         hppa_dynamic_excp(env, EXCP_COND, GETPC());
58     }
59 }
60 
61 static void atomic_store_3(CPUHPPAState *env, target_ulong addr, uint32_t val,
62                            uint32_t mask, uintptr_t ra)
63 {
64 #ifdef CONFIG_USER_ONLY
65     uint32_t old, new, cmp;
66 
67     uint32_t *haddr = g2h(addr - 1);
68     old = *haddr;
69     while (1) {
70         new = (old & ~mask) | (val & mask);
71         cmp = atomic_cmpxchg(haddr, old, new);
72         if (cmp == old) {
73             return;
74         }
75         old = cmp;
76     }
77 #else
78     /* FIXME -- we can do better.  */
79     cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
80 #endif
81 }
82 
83 static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val,
84                       bool parallel)
85 {
86     uintptr_t ra = GETPC();
87 
88     switch (addr & 3) {
89     case 3:
90         cpu_stb_data_ra(env, addr, val, ra);
91         break;
92     case 2:
93         cpu_stw_data_ra(env, addr, val, ra);
94         break;
95     case 1:
96         /* The 3 byte store must appear atomic.  */
97         if (parallel) {
98             atomic_store_3(env, addr, val, 0x00ffffffu, ra);
99         } else {
100             cpu_stb_data_ra(env, addr, val >> 16, ra);
101             cpu_stw_data_ra(env, addr + 1, val, ra);
102         }
103         break;
104     default:
105         cpu_stl_data_ra(env, addr, val, ra);
106         break;
107     }
108 }
109 
110 void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val)
111 {
112     do_stby_b(env, addr, val, false);
113 }
114 
115 void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
116                              target_ureg val)
117 {
118     do_stby_b(env, addr, val, true);
119 }
120 
121 static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val,
122                       bool parallel)
123 {
124     uintptr_t ra = GETPC();
125 
126     switch (addr & 3) {
127     case 3:
128         /* The 3 byte store must appear atomic.  */
129         if (parallel) {
130             atomic_store_3(env, addr - 3, val, 0xffffff00u, ra);
131         } else {
132             cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
133             cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
134         }
135         break;
136     case 2:
137         cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
138         break;
139     case 1:
140         cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
141         break;
142     default:
143         /* Nothing is stored, but protection is checked and the
144            cacheline is marked dirty.  */
145 #ifndef CONFIG_USER_ONLY
146         probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
147 #endif
148         break;
149     }
150 }
151 
152 void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val)
153 {
154     do_stby_e(env, addr, val, false);
155 }
156 
157 void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
158                              target_ureg val)
159 {
160     do_stby_e(env, addr, val, true);
161 }
162 
163 target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr,
164                           uint32_t level, uint32_t want)
165 {
166 #ifdef CONFIG_USER_ONLY
167     return page_check_range(addr, 1, want);
168 #else
169     int prot, excp;
170     hwaddr phys;
171 
172     /* Fail if the requested privilege level is higher than current.  */
173     if (level < (env->iaoq_f & 3)) {
174         return 0;
175     }
176 
177     excp = hppa_get_physical_address(env, addr, level, 0, &phys, &prot);
178     if (excp >= 0) {
179         if (env->psw & PSW_Q) {
180             /* ??? Needs tweaking for hppa64.  */
181             env->cr[CR_IOR] = addr;
182             env->cr[CR_ISR] = addr >> 32;
183         }
184         if (excp == EXCP_DTLB_MISS) {
185             excp = EXCP_NA_DTLB_MISS;
186         }
187         hppa_dynamic_excp(env, excp, GETPC());
188     }
189     return (want & prot) != 0;
190 #endif
191 }
192 
193 void HELPER(loaded_fr0)(CPUHPPAState *env)
194 {
195     uint32_t shadow = env->fr[0] >> 32;
196     int rm, d;
197 
198     env->fr0_shadow = shadow;
199 
200     switch (extract32(shadow, 9, 2)) {
201     default:
202         rm = float_round_nearest_even;
203         break;
204     case 1:
205         rm = float_round_to_zero;
206         break;
207     case 2:
208         rm = float_round_up;
209         break;
210     case 3:
211         rm = float_round_down;
212         break;
213     }
214     set_float_rounding_mode(rm, &env->fp_status);
215 
216     d = extract32(shadow, 5, 1);
217     set_flush_to_zero(d, &env->fp_status);
218     set_flush_inputs_to_zero(d, &env->fp_status);
219 }
220 
221 void cpu_hppa_loaded_fr0(CPUHPPAState *env)
222 {
223     helper_loaded_fr0(env);
224 }
225 
226 #define CONVERT_BIT(X, SRC, DST)        \
227     ((SRC) > (DST)                      \
228      ? (X) / ((SRC) / (DST)) & (DST)    \
229      : ((X) & (SRC)) * ((DST) / (SRC)))
230 
231 static void update_fr0_op(CPUHPPAState *env, uintptr_t ra)
232 {
233     uint32_t soft_exp = get_float_exception_flags(&env->fp_status);
234     uint32_t hard_exp = 0;
235     uint32_t shadow = env->fr0_shadow;
236 
237     if (likely(soft_exp == 0)) {
238         env->fr[0] = (uint64_t)shadow << 32;
239         return;
240     }
241     set_float_exception_flags(0, &env->fp_status);
242 
243     hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact,   1u << 0);
244     hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1);
245     hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow,  1u << 2);
246     hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3);
247     hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid,   1u << 4);
248     shadow |= hard_exp << (32 - 5);
249     env->fr0_shadow = shadow;
250     env->fr[0] = (uint64_t)shadow << 32;
251 
252     if (hard_exp & shadow) {
253         hppa_dynamic_excp(env, EXCP_ASSIST, ra);
254     }
255 }
256 
257 float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg)
258 {
259     float32 ret = float32_sqrt(arg, &env->fp_status);
260     update_fr0_op(env, GETPC());
261     return ret;
262 }
263 
264 float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg)
265 {
266     float32 ret = float32_round_to_int(arg, &env->fp_status);
267     update_fr0_op(env, GETPC());
268     return ret;
269 }
270 
271 float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b)
272 {
273     float32 ret = float32_add(a, b, &env->fp_status);
274     update_fr0_op(env, GETPC());
275     return ret;
276 }
277 
278 float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b)
279 {
280     float32 ret = float32_sub(a, b, &env->fp_status);
281     update_fr0_op(env, GETPC());
282     return ret;
283 }
284 
285 float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b)
286 {
287     float32 ret = float32_mul(a, b, &env->fp_status);
288     update_fr0_op(env, GETPC());
289     return ret;
290 }
291 
292 float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b)
293 {
294     float32 ret = float32_div(a, b, &env->fp_status);
295     update_fr0_op(env, GETPC());
296     return ret;
297 }
298 
299 float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg)
300 {
301     float64 ret = float64_sqrt(arg, &env->fp_status);
302     update_fr0_op(env, GETPC());
303     return ret;
304 }
305 
306 float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg)
307 {
308     float64 ret = float64_round_to_int(arg, &env->fp_status);
309     update_fr0_op(env, GETPC());
310     return ret;
311 }
312 
313 float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b)
314 {
315     float64 ret = float64_add(a, b, &env->fp_status);
316     update_fr0_op(env, GETPC());
317     return ret;
318 }
319 
320 float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b)
321 {
322     float64 ret = float64_sub(a, b, &env->fp_status);
323     update_fr0_op(env, GETPC());
324     return ret;
325 }
326 
327 float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b)
328 {
329     float64 ret = float64_mul(a, b, &env->fp_status);
330     update_fr0_op(env, GETPC());
331     return ret;
332 }
333 
334 float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b)
335 {
336     float64 ret = float64_div(a, b, &env->fp_status);
337     update_fr0_op(env, GETPC());
338     return ret;
339 }
340 
341 float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg)
342 {
343     float64 ret = float32_to_float64(arg, &env->fp_status);
344     update_fr0_op(env, GETPC());
345     return ret;
346 }
347 
348 float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg)
349 {
350     float32 ret = float64_to_float32(arg, &env->fp_status);
351     update_fr0_op(env, GETPC());
352     return ret;
353 }
354 
355 float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg)
356 {
357     float32 ret = int32_to_float32(arg, &env->fp_status);
358     update_fr0_op(env, GETPC());
359     return ret;
360 }
361 
362 float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg)
363 {
364     float32 ret = int64_to_float32(arg, &env->fp_status);
365     update_fr0_op(env, GETPC());
366     return ret;
367 }
368 
369 float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg)
370 {
371     float64 ret = int32_to_float64(arg, &env->fp_status);
372     update_fr0_op(env, GETPC());
373     return ret;
374 }
375 
376 float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg)
377 {
378     float64 ret = int64_to_float64(arg, &env->fp_status);
379     update_fr0_op(env, GETPC());
380     return ret;
381 }
382 
383 int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg)
384 {
385     int32_t ret = float32_to_int32(arg, &env->fp_status);
386     update_fr0_op(env, GETPC());
387     return ret;
388 }
389 
390 int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg)
391 {
392     int32_t ret = float64_to_int32(arg, &env->fp_status);
393     update_fr0_op(env, GETPC());
394     return ret;
395 }
396 
397 int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg)
398 {
399     int64_t ret = float32_to_int64(arg, &env->fp_status);
400     update_fr0_op(env, GETPC());
401     return ret;
402 }
403 
404 int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg)
405 {
406     int64_t ret = float64_to_int64(arg, &env->fp_status);
407     update_fr0_op(env, GETPC());
408     return ret;
409 }
410 
411 int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg)
412 {
413     int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status);
414     update_fr0_op(env, GETPC());
415     return ret;
416 }
417 
418 int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg)
419 {
420     int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status);
421     update_fr0_op(env, GETPC());
422     return ret;
423 }
424 
425 int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg)
426 {
427     int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status);
428     update_fr0_op(env, GETPC());
429     return ret;
430 }
431 
432 int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg)
433 {
434     int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status);
435     update_fr0_op(env, GETPC());
436     return ret;
437 }
438 
439 float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg)
440 {
441     float32 ret = uint32_to_float32(arg, &env->fp_status);
442     update_fr0_op(env, GETPC());
443     return ret;
444 }
445 
446 float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg)
447 {
448     float32 ret = uint64_to_float32(arg, &env->fp_status);
449     update_fr0_op(env, GETPC());
450     return ret;
451 }
452 
453 float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg)
454 {
455     float64 ret = uint32_to_float64(arg, &env->fp_status);
456     update_fr0_op(env, GETPC());
457     return ret;
458 }
459 
460 float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg)
461 {
462     float64 ret = uint64_to_float64(arg, &env->fp_status);
463     update_fr0_op(env, GETPC());
464     return ret;
465 }
466 
467 uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg)
468 {
469     uint32_t ret = float32_to_uint32(arg, &env->fp_status);
470     update_fr0_op(env, GETPC());
471     return ret;
472 }
473 
474 uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg)
475 {
476     uint32_t ret = float64_to_uint32(arg, &env->fp_status);
477     update_fr0_op(env, GETPC());
478     return ret;
479 }
480 
481 uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg)
482 {
483     uint64_t ret = float32_to_uint64(arg, &env->fp_status);
484     update_fr0_op(env, GETPC());
485     return ret;
486 }
487 
488 uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg)
489 {
490     uint64_t ret = float64_to_uint64(arg, &env->fp_status);
491     update_fr0_op(env, GETPC());
492     return ret;
493 }
494 
495 uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg)
496 {
497     uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status);
498     update_fr0_op(env, GETPC());
499     return ret;
500 }
501 
502 uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg)
503 {
504     uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status);
505     update_fr0_op(env, GETPC());
506     return ret;
507 }
508 
509 uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg)
510 {
511     uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status);
512     update_fr0_op(env, GETPC());
513     return ret;
514 }
515 
516 uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg)
517 {
518     uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status);
519     update_fr0_op(env, GETPC());
520     return ret;
521 }
522 
523 static void update_fr0_cmp(CPUHPPAState *env, uint32_t y, uint32_t c, int r)
524 {
525     uint32_t shadow = env->fr0_shadow;
526 
527     switch (r) {
528     case float_relation_greater:
529         c = extract32(c, 4, 1);
530         break;
531     case float_relation_less:
532         c = extract32(c, 3, 1);
533         break;
534     case float_relation_equal:
535         c = extract32(c, 2, 1);
536         break;
537     case float_relation_unordered:
538         c = extract32(c, 1, 1);
539         break;
540     default:
541         g_assert_not_reached();
542     }
543 
544     if (y) {
545         /* targeted comparison */
546         /* set fpsr[ca[y - 1]] to current compare */
547         shadow = deposit32(shadow, 21 - (y - 1), 1, c);
548     } else {
549         /* queued comparison */
550         /* shift cq right by one place */
551         shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10));
552         /* move fpsr[c] to fpsr[cq[0]] */
553         shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1));
554         /* set fpsr[c] to current compare */
555         shadow = deposit32(shadow, 26, 1, c);
556     }
557 
558     env->fr0_shadow = shadow;
559     env->fr[0] = (uint64_t)shadow << 32;
560 }
561 
562 void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b,
563                     uint32_t y, uint32_t c)
564 {
565     int r;
566     if (c & 1) {
567         r = float32_compare(a, b, &env->fp_status);
568     } else {
569         r = float32_compare_quiet(a, b, &env->fp_status);
570     }
571     update_fr0_op(env, GETPC());
572     update_fr0_cmp(env, y, c, r);
573 }
574 
575 void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b,
576                     uint32_t y, uint32_t c)
577 {
578     int r;
579     if (c & 1) {
580         r = float64_compare(a, b, &env->fp_status);
581     } else {
582         r = float64_compare_quiet(a, b, &env->fp_status);
583     }
584     update_fr0_op(env, GETPC());
585     update_fr0_cmp(env, y, c, r);
586 }
587 
588 float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
589 {
590     float32 ret = float32_muladd(a, b, c, 0, &env->fp_status);
591     update_fr0_op(env, GETPC());
592     return ret;
593 }
594 
595 float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
596 {
597     float32 ret = float32_muladd(a, b, c, float_muladd_negate_product,
598                                  &env->fp_status);
599     update_fr0_op(env, GETPC());
600     return ret;
601 }
602 
603 float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
604 {
605     float64 ret = float64_muladd(a, b, c, 0, &env->fp_status);
606     update_fr0_op(env, GETPC());
607     return ret;
608 }
609 
610 float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
611 {
612     float64 ret = float64_muladd(a, b, c, float_muladd_negate_product,
613                                  &env->fp_status);
614     update_fr0_op(env, GETPC());
615     return ret;
616 }
617 
618 target_ureg HELPER(read_interval_timer)(void)
619 {
620 #ifdef CONFIG_USER_ONLY
621     /* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
622        Just pass through the host cpu clock ticks.  */
623     return cpu_get_host_ticks();
624 #else
625     /* In system mode we have access to a decent high-resolution clock.
626        In order to make OS-level time accounting work with the cr16,
627        present it with a well-timed clock fixed at 250MHz.  */
628     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
629 #endif
630 }
631 
632 #ifndef CONFIG_USER_ONLY
633 void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val)
634 {
635     HPPACPU *cpu = hppa_env_get_cpu(env);
636     uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
637     uint64_t timeout;
638 
639     /* Even in 64-bit mode, the comparator is always 32-bit.  But the
640        value we expose to the guest is 1/4 of the speed of the clock,
641        so moosh in 34 bits.  */
642     timeout = deposit64(current, 0, 34, (uint64_t)val << 2);
643 
644     /* If the mooshing puts the clock in the past, advance to next round.  */
645     if (timeout < current + 1000) {
646         timeout += 1ULL << 34;
647     }
648 
649     cpu->env.cr[CR_IT] = timeout;
650     timer_mod(cpu->alarm_timer, timeout);
651 }
652 
653 void HELPER(halt)(CPUHPPAState *env)
654 {
655     qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
656     helper_excp(env, EXCP_HLT);
657 }
658 
659 void HELPER(reset)(CPUHPPAState *env)
660 {
661     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
662     helper_excp(env, EXCP_HLT);
663 }
664 
665 target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm)
666 {
667     target_ulong psw = env->psw;
668     /* ??? On second reading this condition simply seems
669        to be undefined rather than a diagnosed trap.  */
670     if (nsm & ~psw & PSW_Q) {
671         hppa_dynamic_excp(env, EXCP_ILL, GETPC());
672     }
673     env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM);
674     return psw & PSW_SM;
675 }
676 
677 void HELPER(rfi)(CPUHPPAState *env)
678 {
679     /* ??? On second reading this condition simply seems
680        to be undefined rather than a diagnosed trap.  */
681     if (env->psw & (PSW_I | PSW_R | PSW_Q)) {
682         helper_excp(env, EXCP_ILL);
683     }
684     env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32;
685     env->iasq_b = (uint64_t)env->cr_back[0] << 32;
686     env->iaoq_f = env->cr[CR_IIAOQ];
687     env->iaoq_b = env->cr_back[1];
688     cpu_hppa_put_psw(env, env->cr[CR_IPSW]);
689 }
690 
691 void HELPER(rfi_r)(CPUHPPAState *env)
692 {
693     env->gr[1] = env->shadow[0];
694     env->gr[8] = env->shadow[1];
695     env->gr[9] = env->shadow[2];
696     env->gr[16] = env->shadow[3];
697     env->gr[17] = env->shadow[4];
698     env->gr[24] = env->shadow[5];
699     env->gr[25] = env->shadow[6];
700     helper_rfi(env);
701 }
702 #endif
703