xref: /openbmc/qemu/target/hppa/mem_helper.c (revision f7214f99)
1 /*
2  *  HPPA memory access helper routines
3  *
4  *  Copyright (c) 2017 Helge Deller
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/page-protection.h"
25 #include "exec/helper-proto.h"
26 #include "hw/core/cpu.h"
27 #include "trace.h"
28 
29 hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr)
30 {
31     /*
32      * Figure H-8 "62-bit Absolute Accesses when PSW W-bit is 1" describes
33      * an algorithm in which a 62-bit absolute address is transformed to
34      * a 64-bit physical address.  This must then be combined with that
35      * pictured in Figure H-11 "Physical Address Space Mapping", in which
36      * the full physical address is truncated to the N-bit physical address
37      * supported by the implementation.
38      *
39      * Since the supported physical address space is below 54 bits, the
40      * H-8 algorithm is moot and all that is left is to truncate.
41      */
42     QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 54);
43     return sextract64(addr, 0, TARGET_PHYS_ADDR_SPACE_BITS);
44 }
45 
46 hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr)
47 {
48     /*
49      * See Figure H-10, "Absolute Accesses when PSW W-bit is 0",
50      * combined with Figure H-11, as above.
51      */
52     if (likely(extract32(addr, 28, 4) != 0xf)) {
53         /* Memory address space */
54         addr = (uint32_t)addr;
55     } else if (extract32(addr, 24, 4) != 0) {
56         /* I/O address space */
57         addr = (int32_t)addr;
58     } else {
59         /*
60          * PDC address space:
61          * Figures H-10 and H-11 of the parisc2.0 spec do not specify
62          * where to map into the 64-bit PDC address space.
63          * We map with an offset which equals the 32-bit address, which
64          * is what can be seen on physical machines too.
65          */
66         addr = (uint32_t)addr;
67         addr |= -1ull << (TARGET_PHYS_ADDR_SPACE_BITS - 4);
68     }
69     return addr;
70 }
71 
72 static HPPATLBEntry *hppa_find_tlb(CPUHPPAState *env, vaddr addr)
73 {
74     IntervalTreeNode *i = interval_tree_iter_first(&env->tlb_root, addr, addr);
75 
76     if (i) {
77         HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
78         trace_hppa_tlb_find_entry(env, ent, ent->entry_valid,
79                                   ent->itree.start, ent->itree.last, ent->pa);
80         return ent;
81     }
82     trace_hppa_tlb_find_entry_not_found(env, addr);
83     return NULL;
84 }
85 
86 static void hppa_flush_tlb_ent(CPUHPPAState *env, HPPATLBEntry *ent,
87                                bool force_flush_btlb)
88 {
89     CPUState *cs = env_cpu(env);
90     bool is_btlb;
91 
92     if (!ent->entry_valid) {
93         return;
94     }
95 
96     trace_hppa_tlb_flush_ent(env, ent, ent->itree.start,
97                              ent->itree.last, ent->pa);
98 
99     tlb_flush_range_by_mmuidx(cs, ent->itree.start,
100                               ent->itree.last - ent->itree.start + 1,
101                               HPPA_MMU_FLUSH_MASK, TARGET_LONG_BITS);
102 
103     /* Never clear BTLBs, unless forced to do so. */
104     is_btlb = ent < &env->tlb[HPPA_BTLB_ENTRIES(env)];
105     if (is_btlb && !force_flush_btlb) {
106         return;
107     }
108 
109     interval_tree_remove(&ent->itree, &env->tlb_root);
110     memset(ent, 0, sizeof(*ent));
111 
112     if (!is_btlb) {
113         ent->unused_next = env->tlb_unused;
114         env->tlb_unused = ent;
115     }
116 }
117 
118 static void hppa_flush_tlb_range(CPUHPPAState *env, vaddr va_b, vaddr va_e)
119 {
120     IntervalTreeNode *i, *n;
121 
122     i = interval_tree_iter_first(&env->tlb_root, va_b, va_e);
123     for (; i ; i = n) {
124         HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
125 
126         /*
127          * Find the next entry now: In the normal case the current entry
128          * will be removed, but in the BTLB case it will remain.
129          */
130         n = interval_tree_iter_next(i, va_b, va_e);
131         hppa_flush_tlb_ent(env, ent, false);
132     }
133 }
134 
135 static HPPATLBEntry *hppa_alloc_tlb_ent(CPUHPPAState *env)
136 {
137     HPPATLBEntry *ent = env->tlb_unused;
138 
139     if (ent == NULL) {
140         uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
141         uint32_t i = env->tlb_last;
142 
143         if (i < btlb_entries || i >= ARRAY_SIZE(env->tlb)) {
144             i = btlb_entries;
145         }
146         env->tlb_last = i + 1;
147 
148         ent = &env->tlb[i];
149         hppa_flush_tlb_ent(env, ent, false);
150     }
151 
152     env->tlb_unused = ent->unused_next;
153     return ent;
154 }
155 
156 #define ACCESS_ID_MASK 0xffff
157 
158 /* Return the set of protections allowed by a PID match. */
159 static int match_prot_id_1(uint32_t access_id, uint32_t prot_id)
160 {
161     if (((access_id ^ (prot_id >> 1)) & ACCESS_ID_MASK) == 0) {
162         return (prot_id & 1
163                 ? PAGE_EXEC | PAGE_READ
164                 : PAGE_EXEC | PAGE_READ | PAGE_WRITE);
165     }
166     return 0;
167 }
168 
169 static int match_prot_id32(CPUHPPAState *env, uint32_t access_id)
170 {
171     int r, i;
172 
173     for (i = CR_PID1; i <= CR_PID4; ++i) {
174         r = match_prot_id_1(access_id, env->cr[i]);
175         if (r) {
176             return r;
177         }
178     }
179     return 0;
180 }
181 
182 static int match_prot_id64(CPUHPPAState *env, uint32_t access_id)
183 {
184     int r, i;
185 
186     for (i = CR_PID1; i <= CR_PID4; ++i) {
187         r = match_prot_id_1(access_id, env->cr[i]);
188         if (r) {
189             return r;
190         }
191         r = match_prot_id_1(access_id, env->cr[i] >> 32);
192         if (r) {
193             return r;
194         }
195     }
196     return 0;
197 }
198 
199 int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
200                               int type, MemOp mop, hwaddr *pphys, int *pprot)
201 {
202     hwaddr phys;
203     int prot, r_prot, w_prot, x_prot, priv;
204     HPPATLBEntry *ent;
205     int ret = -1;
206 
207     /* Virtual translation disabled.  Map absolute to physical.  */
208     if (MMU_IDX_MMU_DISABLED(mmu_idx)) {
209         switch (mmu_idx) {
210         case MMU_ABS_W_IDX:
211             phys = hppa_abs_to_phys_pa2_w1(addr);
212             break;
213         case MMU_ABS_IDX:
214             if (hppa_is_pa20(env)) {
215                 phys = hppa_abs_to_phys_pa2_w0(addr);
216             } else {
217                 phys = (uint32_t)addr;
218             }
219             break;
220         default:
221             g_assert_not_reached();
222         }
223         prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
224         goto egress_align;
225     }
226 
227     /* Find a valid tlb entry that matches the virtual address.  */
228     ent = hppa_find_tlb(env, addr);
229     if (ent == NULL) {
230         phys = 0;
231         prot = 0;
232         ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS;
233         goto egress;
234     }
235 
236     /* We now know the physical address.  */
237     phys = ent->pa + (addr - ent->itree.start);
238 
239     /* Map TLB access_rights field to QEMU protection.  */
240     priv = MMU_IDX_TO_PRIV(mmu_idx);
241     r_prot = (priv <= ent->ar_pl1) * PAGE_READ;
242     w_prot = (priv <= ent->ar_pl2) * PAGE_WRITE;
243     x_prot = (ent->ar_pl2 <= priv && priv <= ent->ar_pl1) * PAGE_EXEC;
244     switch (ent->ar_type) {
245     case 0: /* read-only: data page */
246         prot = r_prot;
247         break;
248     case 1: /* read/write: dynamic data page */
249         prot = r_prot | w_prot;
250         break;
251     case 2: /* read/execute: normal code page */
252         prot = r_prot | x_prot;
253         break;
254     case 3: /* read/write/execute: dynamic code page */
255         prot = r_prot | w_prot | x_prot;
256         break;
257     default: /* execute: promote to privilege level type & 3 */
258         prot = x_prot;
259         break;
260     }
261 
262     /*
263      * No guest access type indicates a non-architectural access from
264      * within QEMU.  Bypass checks for access, D, B, P and T bits.
265      */
266     if (type == 0) {
267         goto egress;
268     }
269 
270     if (unlikely(!(prot & type))) {
271         /* Not allowed -- Inst/Data Memory Access Rights Fault. */
272         ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR;
273         goto egress;
274     }
275 
276     /* access_id == 0 means public page and no check is performed */
277     if (ent->access_id && MMU_IDX_TO_P(mmu_idx)) {
278         int access_prot = (hppa_is_pa20(env)
279                            ? match_prot_id64(env, ent->access_id)
280                            : match_prot_id32(env, ent->access_id));
281         if (unlikely(!(type & access_prot))) {
282             /* Not allowed -- Inst/Data Memory Protection Id Fault. */
283             ret = type & PAGE_EXEC ? EXCP_IMP : EXCP_DMPI;
284             goto egress;
285         }
286         /* Otherwise exclude permissions not allowed (i.e WD). */
287         prot &= access_prot;
288     }
289 
290     /*
291      * In reverse priority order, check for conditions which raise faults.
292      * Remove PROT bits that cover the condition we want to check,
293      * so that the resulting PROT will force a re-check of the
294      * architectural TLB entry for the next access.
295      */
296     if (unlikely(ent->t)) {
297         prot &= PAGE_EXEC;
298         if (!(type & PAGE_EXEC)) {
299             /* The T bit is set -- Page Reference Fault.  */
300             ret = EXCP_PAGE_REF;
301         }
302     }
303     if (unlikely(!ent->d)) {
304         prot &= PAGE_READ | PAGE_EXEC;
305         if (type & PAGE_WRITE) {
306             /* The D bit is not set -- TLB Dirty Bit Fault.  */
307             ret = EXCP_TLB_DIRTY;
308         }
309     }
310     if (unlikely(ent->b)) {
311         prot &= PAGE_READ | PAGE_EXEC;
312         if (type & PAGE_WRITE) {
313             /*
314              * The B bit is set -- Data Memory Break Fault.
315              * Except when PSW_X is set, allow this single access to succeed.
316              * The write bit will be invalidated for subsequent accesses.
317              */
318             if (env->psw_xb & PSW_X) {
319                 prot |= PAGE_WRITE_INV;
320             } else {
321                 ret = EXCP_DMB;
322             }
323         }
324     }
325 
326  egress_align:
327     if (addr & ((1u << memop_alignment_bits(mop)) - 1)) {
328         ret = EXCP_UNALIGN;
329     }
330 
331  egress:
332     *pphys = phys;
333     *pprot = prot;
334     trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys);
335     return ret;
336 }
337 
338 hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
339 {
340     HPPACPU *cpu = HPPA_CPU(cs);
341     hwaddr phys;
342     int prot, excp, mmu_idx;
343 
344     /* If the (data) mmu is disabled, bypass translation.  */
345     /* ??? We really ought to know if the code mmu is disabled too,
346        in order to get the correct debugging dumps.  */
347     mmu_idx = (cpu->env.psw & PSW_D ? MMU_KERNEL_IDX :
348                cpu->env.psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX);
349 
350     excp = hppa_get_physical_address(&cpu->env, addr, mmu_idx, 0, 0,
351                                      &phys, &prot);
352 
353     /* Since we're translating for debugging, the only error that is a
354        hard error is no translation at all.  Otherwise, while a real cpu
355        access might not have permission, the debugger does.  */
356     return excp == EXCP_DTLB_MISS ? -1 : phys;
357 }
358 
359 void hppa_set_ior_and_isr(CPUHPPAState *env, vaddr addr, bool mmu_disabled)
360 {
361     if (env->psw & PSW_Q) {
362         /*
363          * For pa1.x, the offset and space never overlap, and so we
364          * simply extract the high and low part of the virtual address.
365          *
366          * For pa2.0, the formation of these are described in section
367          * "Interruption Parameter Registers", page 2-15.
368          */
369         env->cr[CR_IOR] = (uint32_t)addr;
370         env->cr[CR_ISR] = addr >> 32;
371 
372         if (hppa_is_pa20(env)) {
373             if (mmu_disabled) {
374                 /*
375                  * If data translation was disabled, the ISR contains
376                  * the upper portion of the abs address, zero-extended.
377                  */
378                 env->cr[CR_ISR] &= 0x3fffffff;
379             } else {
380                 /*
381                  * If data translation was enabled, the upper two bits
382                  * of the IOR (the b field) are equal to the two space
383                  * bits from the base register used to form the gva.
384                  */
385                 uint64_t b;
386 
387                 b = env->unwind_breg ? env->gr[env->unwind_breg] : 0;
388                 b >>= (env->psw & PSW_W ? 62 : 30);
389                 env->cr[CR_IOR] |= b << 62;
390             }
391         }
392     }
393 }
394 
395 G_NORETURN static void
396 raise_exception_with_ior(CPUHPPAState *env, int excp, uintptr_t retaddr,
397                          vaddr addr, bool mmu_disabled)
398 {
399     CPUState *cs = env_cpu(env);
400 
401     cs->exception_index = excp;
402     cpu_restore_state(cs, retaddr);
403     hppa_set_ior_and_isr(env, addr, mmu_disabled);
404 
405     cpu_loop_exit(cs);
406 }
407 
408 void hppa_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
409                                      vaddr addr, unsigned size,
410                                      MMUAccessType access_type,
411                                      int mmu_idx, MemTxAttrs attrs,
412                                      MemTxResult response, uintptr_t retaddr)
413 {
414     CPUHPPAState *env = cpu_env(cs);
415 
416     qemu_log_mask(LOG_GUEST_ERROR, "HPMC at " TARGET_FMT_lx ":" TARGET_FMT_lx
417                 " while accessing I/O at %#08" HWADDR_PRIx "\n",
418                 env->iasq_f, env->iaoq_f, physaddr);
419 
420     /* FIXME: Enable HPMC exceptions when firmware has clean device probing */
421     if (0) {
422         raise_exception_with_ior(env, EXCP_HPMC, retaddr, addr,
423                                  MMU_IDX_MMU_DISABLED(mmu_idx));
424     }
425 }
426 
427 bool hppa_cpu_tlb_fill_align(CPUState *cs, CPUTLBEntryFull *out, vaddr addr,
428                              MMUAccessType type, int mmu_idx,
429                              MemOp memop, int size, bool probe, uintptr_t ra)
430 {
431     CPUHPPAState *env = cpu_env(cs);
432     int prot, excp, a_prot;
433     hwaddr phys;
434 
435     switch (type) {
436     case MMU_INST_FETCH:
437         a_prot = PAGE_EXEC;
438         break;
439     case MMU_DATA_STORE:
440         a_prot = PAGE_WRITE;
441         break;
442     default:
443         a_prot = PAGE_READ;
444         break;
445     }
446 
447     excp = hppa_get_physical_address(env, addr, mmu_idx, a_prot, memop,
448                                      &phys, &prot);
449     if (unlikely(excp >= 0)) {
450         if (probe) {
451             return false;
452         }
453         trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx);
454 
455         /* Failure.  Raise the indicated exception.  */
456         raise_exception_with_ior(env, excp, ra, addr,
457                                  MMU_IDX_MMU_DISABLED(mmu_idx));
458     }
459 
460     trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK,
461                                 phys & TARGET_PAGE_MASK, size, type, mmu_idx);
462 
463     /*
464      * Success!  Store the translation into the QEMU TLB.
465      * Note that we always install a single-page entry, because that
466      * is what works best with softmmu -- anything else will trigger
467      * the large page protection mask.  We do not require this,
468      * because we record the large page here in the hppa tlb.
469      */
470     memset(out, 0, sizeof(*out));
471     out->phys_addr = phys;
472     out->prot = prot;
473     out->attrs = MEMTXATTRS_UNSPECIFIED;
474     out->lg_page_size = TARGET_PAGE_BITS;
475 
476     return true;
477 }
478 
479 /* Insert (Insn/Data) TLB Address.  Note this is PA 1.1 only.  */
480 void HELPER(itlba_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
481 {
482     HPPATLBEntry *ent;
483 
484     /* Zap any old entries covering ADDR. */
485     addr &= TARGET_PAGE_MASK;
486     hppa_flush_tlb_range(env, addr, addr + TARGET_PAGE_SIZE - 1);
487 
488     ent = env->tlb_partial;
489     if (ent == NULL) {
490         ent = hppa_alloc_tlb_ent(env);
491         env->tlb_partial = ent;
492     }
493 
494     /* Note that ent->entry_valid == 0 already.  */
495     ent->itree.start = addr;
496     ent->itree.last = addr + TARGET_PAGE_SIZE - 1;
497     ent->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS;
498     trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
499 }
500 
501 static void set_access_bits_pa11(CPUHPPAState *env, HPPATLBEntry *ent,
502                                  target_ulong reg)
503 {
504     ent->access_id = extract32(reg, 1, 18);
505     ent->u = extract32(reg, 19, 1);
506     ent->ar_pl2 = extract32(reg, 20, 2);
507     ent->ar_pl1 = extract32(reg, 22, 2);
508     ent->ar_type = extract32(reg, 24, 3);
509     ent->b = extract32(reg, 27, 1);
510     ent->d = extract32(reg, 28, 1);
511     ent->t = extract32(reg, 29, 1);
512     ent->entry_valid = 1;
513 
514     interval_tree_insert(&ent->itree, &env->tlb_root);
515     trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2,
516                          ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t);
517 }
518 
519 /* Insert (Insn/Data) TLB Protection.  Note this is PA 1.1 only.  */
520 void HELPER(itlbp_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
521 {
522     HPPATLBEntry *ent = env->tlb_partial;
523 
524     if (ent) {
525         env->tlb_partial = NULL;
526         if (ent->itree.start <= addr && addr <= ent->itree.last) {
527             set_access_bits_pa11(env, ent, reg);
528             return;
529         }
530     }
531     qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n");
532 }
533 
534 static void itlbt_pa20(CPUHPPAState *env, target_ulong r1,
535                        target_ulong r2, vaddr va_b)
536 {
537     HPPATLBEntry *ent;
538     vaddr va_e;
539     uint64_t va_size;
540     int mask_shift;
541 
542     mask_shift = 2 * (r1 & 0xf);
543     va_size = (uint64_t)TARGET_PAGE_SIZE << mask_shift;
544     va_b &= -va_size;
545     va_e = va_b + va_size - 1;
546 
547     hppa_flush_tlb_range(env, va_b, va_e);
548     ent = hppa_alloc_tlb_ent(env);
549 
550     ent->itree.start = va_b;
551     ent->itree.last = va_e;
552 
553     /* Extract all 52 bits present in the page table entry. */
554     ent->pa = r1 << (TARGET_PAGE_BITS - 5);
555     /* Align per the page size. */
556     ent->pa &= TARGET_PAGE_MASK << mask_shift;
557     /* Ignore the bits beyond physical address space. */
558     ent->pa = sextract64(ent->pa, 0, TARGET_PHYS_ADDR_SPACE_BITS);
559 
560     ent->t = extract64(r2, 61, 1);
561     ent->d = extract64(r2, 60, 1);
562     ent->b = extract64(r2, 59, 1);
563     ent->ar_type = extract64(r2, 56, 3);
564     ent->ar_pl1 = extract64(r2, 54, 2);
565     ent->ar_pl2 = extract64(r2, 52, 2);
566     ent->u = extract64(r2, 51, 1);
567     /* o = bit 50 */
568     /* p = bit 49 */
569     ent->access_id = extract64(r2, 1, 31);
570     ent->entry_valid = 1;
571 
572     interval_tree_insert(&ent->itree, &env->tlb_root);
573     trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
574     trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u,
575                          ent->ar_pl2, ent->ar_pl1, ent->ar_type,
576                          ent->b, ent->d, ent->t);
577 }
578 
579 void HELPER(idtlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
580 {
581     vaddr va_b = deposit64(env->cr[CR_IOR], 32, 32, env->cr[CR_ISR]);
582     itlbt_pa20(env, r1, r2, va_b);
583 }
584 
585 void HELPER(iitlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
586 {
587     vaddr va_b = deposit64(env->cr[CR_IIAOQ], 32, 32, env->cr[CR_IIASQ]);
588     itlbt_pa20(env, r1, r2, va_b);
589 }
590 
591 /* Purge (Insn/Data) TLB. */
592 static void ptlb_work(CPUState *cpu, run_on_cpu_data data)
593 {
594     vaddr start = data.target_ptr;
595     vaddr end;
596 
597     /*
598      * PA2.0 allows a range of pages encoded into GR[b], which we have
599      * copied into the bottom bits of the otherwise page-aligned address.
600      * PA1.x will always provide zero here, for a single page flush.
601      */
602     end = start & 0xf;
603     start &= TARGET_PAGE_MASK;
604     end = (vaddr)TARGET_PAGE_SIZE << (2 * end);
605     end = start + end - 1;
606 
607     hppa_flush_tlb_range(cpu_env(cpu), start, end);
608 }
609 
610 /* This is local to the current cpu. */
611 void HELPER(ptlb_l)(CPUHPPAState *env, target_ulong addr)
612 {
613     trace_hppa_tlb_ptlb_local(env);
614     ptlb_work(env_cpu(env), RUN_ON_CPU_TARGET_PTR(addr));
615 }
616 
617 /* This is synchronous across all processors.  */
618 void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr)
619 {
620     CPUState *src = env_cpu(env);
621     CPUState *cpu;
622     bool wait = false;
623 
624     trace_hppa_tlb_ptlb(env);
625     run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr);
626 
627     CPU_FOREACH(cpu) {
628         if (cpu != src) {
629             async_run_on_cpu(cpu, ptlb_work, data);
630             wait = true;
631         }
632     }
633     if (wait) {
634         async_safe_run_on_cpu(src, ptlb_work, data);
635     } else {
636         ptlb_work(src, data);
637     }
638 }
639 
640 void hppa_ptlbe(CPUHPPAState *env)
641 {
642     uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
643     uint32_t i;
644 
645     /* Zap the (non-btlb) tlb entries themselves. */
646     memset(&env->tlb[btlb_entries], 0,
647            sizeof(env->tlb) - btlb_entries * sizeof(env->tlb[0]));
648     env->tlb_last = btlb_entries;
649     env->tlb_partial = NULL;
650 
651     /* Put them all onto the unused list. */
652     env->tlb_unused = &env->tlb[btlb_entries];
653     for (i = btlb_entries; i < ARRAY_SIZE(env->tlb) - 1; ++i) {
654         env->tlb[i].unused_next = &env->tlb[i + 1];
655     }
656 
657     /* Re-initialize the interval tree with only the btlb entries. */
658     memset(&env->tlb_root, 0, sizeof(env->tlb_root));
659     for (i = 0; i < btlb_entries; ++i) {
660         if (env->tlb[i].entry_valid) {
661             interval_tree_insert(&env->tlb[i].itree, &env->tlb_root);
662         }
663     }
664 
665     tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK);
666 }
667 
668 /* Purge (Insn/Data) TLB entry.  This affects an implementation-defined
669    number of pages/entries (we choose all), and is local to the cpu.  */
670 void HELPER(ptlbe)(CPUHPPAState *env)
671 {
672     trace_hppa_tlb_ptlbe(env);
673     qemu_log_mask(CPU_LOG_MMU, "FLUSH ALL TLB ENTRIES\n");
674     hppa_ptlbe(env);
675 }
676 
677 void cpu_hppa_change_prot_id(CPUHPPAState *env)
678 {
679     tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_P_MASK);
680 }
681 
682 void HELPER(change_prot_id)(CPUHPPAState *env)
683 {
684     cpu_hppa_change_prot_id(env);
685 }
686 
687 target_ulong HELPER(lpa)(CPUHPPAState *env, target_ulong addr)
688 {
689     hwaddr phys;
690     int prot, excp;
691 
692     excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0, 0,
693                                      &phys, &prot);
694     if (excp >= 0) {
695         if (excp == EXCP_DTLB_MISS) {
696             excp = EXCP_NA_DTLB_MISS;
697         }
698         trace_hppa_tlb_lpa_failed(env, addr);
699         raise_exception_with_ior(env, excp, GETPC(), addr, false);
700     }
701     trace_hppa_tlb_lpa_success(env, addr, phys);
702     return phys;
703 }
704 
705 /*
706  * diag_btlb() emulates the PDC PDC_BLOCK_TLB firmware call to
707  * allow operating systems to modify the Block TLB (BTLB) entries.
708  * For implementation details see page 1-13 in
709  * https://parisc.wiki.kernel.org/images-parisc/e/ef/Pdc11-v0.96-Ch1-procs.pdf
710  */
711 void HELPER(diag_btlb)(CPUHPPAState *env)
712 {
713     unsigned int phys_page, len, slot;
714     int mmu_idx = cpu_mmu_index(env_cpu(env), 0);
715     uintptr_t ra = GETPC();
716     HPPATLBEntry *btlb;
717     uint64_t virt_page;
718     uint32_t *vaddr;
719     uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
720 
721     /* BTLBs are not supported on 64-bit CPUs */
722     if (btlb_entries == 0) {
723         env->gr[28] = -1; /* nonexistent procedure */
724         return;
725     }
726 
727     env->gr[28] = 0; /* PDC_OK */
728 
729     switch (env->gr[25]) {
730     case 0:
731         /* return BTLB parameters */
732         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INFO\n");
733         vaddr = probe_access(env, env->gr[24], 4 * sizeof(uint32_t),
734                              MMU_DATA_STORE, mmu_idx, ra);
735         if (vaddr == NULL) {
736             env->gr[28] = -10; /* invalid argument */
737         } else {
738             vaddr[0] = cpu_to_be32(1);
739             vaddr[1] = cpu_to_be32(16 * 1024);
740             vaddr[2] = cpu_to_be32(PA10_BTLB_FIXED);
741             vaddr[3] = cpu_to_be32(PA10_BTLB_VARIABLE);
742         }
743         break;
744     case 1:
745         /* insert BTLB entry */
746         virt_page = env->gr[24];        /* upper 32 bits */
747         virt_page <<= 32;
748         virt_page |= env->gr[23];       /* lower 32 bits */
749         phys_page = env->gr[22];
750         len = env->gr[21];
751         slot = env->gr[19];
752         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INSERT "
753                     "0x%08llx-0x%08llx: vpage 0x%llx for phys page 0x%04x len %d "
754                     "into slot %d\n",
755                     (long long) virt_page << TARGET_PAGE_BITS,
756                     (long long) (virt_page + len) << TARGET_PAGE_BITS,
757                     (long long) virt_page, phys_page, len, slot);
758         if (slot < btlb_entries) {
759             btlb = &env->tlb[slot];
760 
761             /* Force flush of possibly existing BTLB entry. */
762             hppa_flush_tlb_ent(env, btlb, true);
763 
764             /* Create new BTLB entry */
765             btlb->itree.start = virt_page << TARGET_PAGE_BITS;
766             btlb->itree.last = btlb->itree.start + len * TARGET_PAGE_SIZE - 1;
767             btlb->pa = phys_page << TARGET_PAGE_BITS;
768             set_access_bits_pa11(env, btlb, env->gr[20]);
769             btlb->t = 0;
770             btlb->d = 1;
771         } else {
772             env->gr[28] = -10; /* invalid argument */
773         }
774         break;
775     case 2:
776         /* Purge BTLB entry */
777         slot = env->gr[22];
778         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE slot %d\n",
779                                     slot);
780         if (slot < btlb_entries) {
781             btlb = &env->tlb[slot];
782             hppa_flush_tlb_ent(env, btlb, true);
783         } else {
784             env->gr[28] = -10; /* invalid argument */
785         }
786         break;
787     case 3:
788         /* Purge all BTLB entries */
789         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE_ALL\n");
790         for (slot = 0; slot < btlb_entries; slot++) {
791             btlb = &env->tlb[slot];
792             hppa_flush_tlb_ent(env, btlb, true);
793         }
794         break;
795     default:
796         env->gr[28] = -2; /* nonexistent option */
797         break;
798     }
799 }
800 
801 uint64_t HELPER(b_gate_priv)(CPUHPPAState *env, uint64_t iaoq_f)
802 {
803     uint64_t gva = hppa_form_gva(env, env->iasq_f, iaoq_f);
804     HPPATLBEntry *ent = hppa_find_tlb(env, gva);
805 
806     if (ent == NULL) {
807         raise_exception_with_ior(env, EXCP_ITLB_MISS, GETPC(), gva, false);
808     }
809 
810     /*
811      * There should be no need to check page permissions, as that will
812      * already have been done by tb_lookup via get_page_addr_code.
813      * All we need at this point is to check the ar_type.
814      *
815      * No change for non-gateway pages or for priv decrease.
816      */
817     if (ent->ar_type & 4) {
818         int old_priv = iaoq_f & 3;
819         int new_priv = ent->ar_type & 3;
820 
821         if (new_priv < old_priv) {
822             iaoq_f = (iaoq_f & -4) | new_priv;
823         }
824     }
825     return iaoq_f;
826 }
827