xref: /openbmc/qemu/target/hppa/mem_helper.c (revision 72fa42cf)
1 /*
2  *  HPPA memory access helper routines
3  *
4  *  Copyright (c) 2017 Helge Deller
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/page-protection.h"
25 #include "exec/helper-proto.h"
26 #include "hw/core/cpu.h"
27 #include "trace.h"
28 
29 hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr)
30 {
31     /*
32      * Figure H-8 "62-bit Absolute Accesses when PSW W-bit is 1" describes
33      * an algorithm in which a 62-bit absolute address is transformed to
34      * a 64-bit physical address.  This must then be combined with that
35      * pictured in Figure H-11 "Physical Address Space Mapping", in which
36      * the full physical address is truncated to the N-bit physical address
37      * supported by the implementation.
38      *
39      * Since the supported physical address space is below 54 bits, the
40      * H-8 algorithm is moot and all that is left is to truncate.
41      */
42     QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 54);
43     return sextract64(addr, 0, TARGET_PHYS_ADDR_SPACE_BITS);
44 }
45 
46 hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr)
47 {
48     /*
49      * See Figure H-10, "Absolute Accesses when PSW W-bit is 0",
50      * combined with Figure H-11, as above.
51      */
52     if (likely(extract32(addr, 28, 4) != 0xf)) {
53         /* Memory address space */
54         addr = (uint32_t)addr;
55     } else if (extract32(addr, 24, 4) != 0) {
56         /* I/O address space */
57         addr = (int32_t)addr;
58     } else {
59         /*
60          * PDC address space:
61          * Figures H-10 and H-11 of the parisc2.0 spec do not specify
62          * where to map into the 64-bit PDC address space.
63          * We map with an offset which equals the 32-bit address, which
64          * is what can be seen on physical machines too.
65          */
66         addr = (uint32_t)addr;
67         addr |= -1ull << (TARGET_PHYS_ADDR_SPACE_BITS - 4);
68     }
69     return addr;
70 }
71 
72 static HPPATLBEntry *hppa_find_tlb(CPUHPPAState *env, vaddr addr)
73 {
74     IntervalTreeNode *i = interval_tree_iter_first(&env->tlb_root, addr, addr);
75 
76     if (i) {
77         HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
78         trace_hppa_tlb_find_entry(env, ent, ent->entry_valid,
79                                   ent->itree.start, ent->itree.last, ent->pa);
80         return ent;
81     }
82     trace_hppa_tlb_find_entry_not_found(env, addr);
83     return NULL;
84 }
85 
86 static void hppa_flush_tlb_ent(CPUHPPAState *env, HPPATLBEntry *ent,
87                                bool force_flush_btlb)
88 {
89     CPUState *cs = env_cpu(env);
90     bool is_btlb;
91 
92     if (!ent->entry_valid) {
93         return;
94     }
95 
96     trace_hppa_tlb_flush_ent(env, ent, ent->itree.start,
97                              ent->itree.last, ent->pa);
98 
99     tlb_flush_range_by_mmuidx(cs, ent->itree.start,
100                               ent->itree.last - ent->itree.start + 1,
101                               HPPA_MMU_FLUSH_MASK, TARGET_LONG_BITS);
102 
103     /* Never clear BTLBs, unless forced to do so. */
104     is_btlb = ent < &env->tlb[HPPA_BTLB_ENTRIES(env)];
105     if (is_btlb && !force_flush_btlb) {
106         return;
107     }
108 
109     interval_tree_remove(&ent->itree, &env->tlb_root);
110     memset(ent, 0, sizeof(*ent));
111 
112     if (!is_btlb) {
113         ent->unused_next = env->tlb_unused;
114         env->tlb_unused = ent;
115     }
116 }
117 
118 static void hppa_flush_tlb_range(CPUHPPAState *env, vaddr va_b, vaddr va_e)
119 {
120     IntervalTreeNode *i, *n;
121 
122     i = interval_tree_iter_first(&env->tlb_root, va_b, va_e);
123     for (; i ; i = n) {
124         HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
125 
126         /*
127          * Find the next entry now: In the normal case the current entry
128          * will be removed, but in the BTLB case it will remain.
129          */
130         n = interval_tree_iter_next(i, va_b, va_e);
131         hppa_flush_tlb_ent(env, ent, false);
132     }
133 }
134 
135 static HPPATLBEntry *hppa_alloc_tlb_ent(CPUHPPAState *env)
136 {
137     HPPATLBEntry *ent = env->tlb_unused;
138 
139     if (ent == NULL) {
140         uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
141         uint32_t i = env->tlb_last;
142 
143         if (i < btlb_entries || i >= ARRAY_SIZE(env->tlb)) {
144             i = btlb_entries;
145         }
146         env->tlb_last = i + 1;
147 
148         ent = &env->tlb[i];
149         hppa_flush_tlb_ent(env, ent, false);
150     }
151 
152     env->tlb_unused = ent->unused_next;
153     return ent;
154 }
155 
156 #define ACCESS_ID_MASK 0xffff
157 
158 /* Return the set of protections allowed by a PID match. */
159 static int match_prot_id_1(uint32_t access_id, uint32_t prot_id)
160 {
161     if (((access_id ^ (prot_id >> 1)) & ACCESS_ID_MASK) == 0) {
162         return (prot_id & 1
163                 ? PAGE_EXEC | PAGE_READ
164                 : PAGE_EXEC | PAGE_READ | PAGE_WRITE);
165     }
166     return 0;
167 }
168 
169 static int match_prot_id32(CPUHPPAState *env, uint32_t access_id)
170 {
171     int r, i;
172 
173     for (i = CR_PID1; i <= CR_PID4; ++i) {
174         r = match_prot_id_1(access_id, env->cr[i]);
175         if (r) {
176             return r;
177         }
178     }
179     return 0;
180 }
181 
182 static int match_prot_id64(CPUHPPAState *env, uint32_t access_id)
183 {
184     int r, i;
185 
186     for (i = CR_PID1; i <= CR_PID4; ++i) {
187         r = match_prot_id_1(access_id, env->cr[i]);
188         if (r) {
189             return r;
190         }
191         r = match_prot_id_1(access_id, env->cr[i] >> 32);
192         if (r) {
193             return r;
194         }
195     }
196     return 0;
197 }
198 
199 int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
200                               int type, hwaddr *pphys, int *pprot)
201 {
202     hwaddr phys;
203     int prot, r_prot, w_prot, x_prot, priv;
204     HPPATLBEntry *ent;
205     int ret = -1;
206 
207     /* Virtual translation disabled.  Map absolute to physical.  */
208     if (MMU_IDX_MMU_DISABLED(mmu_idx)) {
209         switch (mmu_idx) {
210         case MMU_ABS_W_IDX:
211             phys = hppa_abs_to_phys_pa2_w1(addr);
212             break;
213         case MMU_ABS_IDX:
214             if (hppa_is_pa20(env)) {
215                 phys = hppa_abs_to_phys_pa2_w0(addr);
216             } else {
217                 phys = (uint32_t)addr;
218             }
219             break;
220         default:
221             g_assert_not_reached();
222         }
223         prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
224         goto egress;
225     }
226 
227     /* Find a valid tlb entry that matches the virtual address.  */
228     ent = hppa_find_tlb(env, addr);
229     if (ent == NULL) {
230         phys = 0;
231         prot = 0;
232         ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS;
233         goto egress;
234     }
235 
236     /* We now know the physical address.  */
237     phys = ent->pa + (addr - ent->itree.start);
238 
239     /* Map TLB access_rights field to QEMU protection.  */
240     priv = MMU_IDX_TO_PRIV(mmu_idx);
241     r_prot = (priv <= ent->ar_pl1) * PAGE_READ;
242     w_prot = (priv <= ent->ar_pl2) * PAGE_WRITE;
243     x_prot = (ent->ar_pl2 <= priv && priv <= ent->ar_pl1) * PAGE_EXEC;
244     switch (ent->ar_type) {
245     case 0: /* read-only: data page */
246         prot = r_prot;
247         break;
248     case 1: /* read/write: dynamic data page */
249         prot = r_prot | w_prot;
250         break;
251     case 2: /* read/execute: normal code page */
252         prot = r_prot | x_prot;
253         break;
254     case 3: /* read/write/execute: dynamic code page */
255         prot = r_prot | w_prot | x_prot;
256         break;
257     default: /* execute: promote to privilege level type & 3 */
258         prot = x_prot;
259         break;
260     }
261 
262     /*
263      * No guest access type indicates a non-architectural access from
264      * within QEMU.  Bypass checks for access, D, B, P and T bits.
265      */
266     if (type == 0) {
267         goto egress;
268     }
269 
270     /* access_id == 0 means public page and no check is performed */
271     if (ent->access_id && MMU_IDX_TO_P(mmu_idx)) {
272         int access_prot = (hppa_is_pa20(env)
273                            ? match_prot_id64(env, ent->access_id)
274                            : match_prot_id32(env, ent->access_id));
275         if (unlikely(!(type & access_prot))) {
276             /* Not allowed -- Inst/Data Memory Protection Id Fault. */
277             ret = type & PAGE_EXEC ? EXCP_IMP : EXCP_DMPI;
278             goto egress;
279         }
280         /* Otherwise exclude permissions not allowed (i.e WD). */
281         prot &= access_prot;
282     }
283 
284     if (unlikely(!(prot & type))) {
285         /* Not allowed -- Inst/Data Memory Access Rights Fault. */
286         ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR;
287         goto egress;
288     }
289 
290     /*
291      * In priority order, check for conditions which raise faults.
292      * Remove PROT bits that cover the condition we want to check,
293      * so that the resulting PROT will force a re-check of the
294      * architectural TLB entry for the next access.
295      */
296     if (unlikely(ent->t)) {
297         prot &= PAGE_EXEC;
298         if (!(type & PAGE_EXEC)) {
299             /* The T bit is set -- Page Reference Fault.  */
300             ret = EXCP_PAGE_REF;
301         }
302     } else if (!ent->d) {
303         prot &= PAGE_READ | PAGE_EXEC;
304         if (type & PAGE_WRITE) {
305             /* The D bit is not set -- TLB Dirty Bit Fault.  */
306             ret = EXCP_TLB_DIRTY;
307         }
308     } else if (unlikely(ent->b)) {
309         prot &= PAGE_READ | PAGE_EXEC;
310         if (type & PAGE_WRITE) {
311             /*
312              * The B bit is set -- Data Memory Break Fault.
313              * Except when PSW_X is set, allow this single access to succeed.
314              * The write bit will be invalidated for subsequent accesses.
315              */
316             if (env->psw_xb & PSW_X) {
317                 prot |= PAGE_WRITE_INV;
318             } else {
319                 ret = EXCP_DMB;
320             }
321         }
322     }
323 
324  egress:
325     *pphys = phys;
326     *pprot = prot;
327     trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys);
328     return ret;
329 }
330 
331 hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
332 {
333     HPPACPU *cpu = HPPA_CPU(cs);
334     hwaddr phys;
335     int prot, excp, mmu_idx;
336 
337     /* If the (data) mmu is disabled, bypass translation.  */
338     /* ??? We really ought to know if the code mmu is disabled too,
339        in order to get the correct debugging dumps.  */
340     mmu_idx = (cpu->env.psw & PSW_D ? MMU_KERNEL_IDX :
341                cpu->env.psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX);
342 
343     excp = hppa_get_physical_address(&cpu->env, addr, mmu_idx, 0,
344                                      &phys, &prot);
345 
346     /* Since we're translating for debugging, the only error that is a
347        hard error is no translation at all.  Otherwise, while a real cpu
348        access might not have permission, the debugger does.  */
349     return excp == EXCP_DTLB_MISS ? -1 : phys;
350 }
351 
352 void hppa_set_ior_and_isr(CPUHPPAState *env, vaddr addr, bool mmu_disabled)
353 {
354     if (env->psw & PSW_Q) {
355         /*
356          * For pa1.x, the offset and space never overlap, and so we
357          * simply extract the high and low part of the virtual address.
358          *
359          * For pa2.0, the formation of these are described in section
360          * "Interruption Parameter Registers", page 2-15.
361          */
362         env->cr[CR_IOR] = (uint32_t)addr;
363         env->cr[CR_ISR] = addr >> 32;
364 
365         if (hppa_is_pa20(env)) {
366             if (mmu_disabled) {
367                 /*
368                  * If data translation was disabled, the ISR contains
369                  * the upper portion of the abs address, zero-extended.
370                  */
371                 env->cr[CR_ISR] &= 0x3fffffff;
372             } else {
373                 /*
374                  * If data translation was enabled, the upper two bits
375                  * of the IOR (the b field) are equal to the two space
376                  * bits from the base register used to form the gva.
377                  */
378                 uint64_t b;
379 
380                 b = env->unwind_breg ? env->gr[env->unwind_breg] : 0;
381                 b >>= (env->psw & PSW_W ? 62 : 30);
382                 env->cr[CR_IOR] |= b << 62;
383             }
384         }
385     }
386 }
387 
388 G_NORETURN static void
389 raise_exception_with_ior(CPUHPPAState *env, int excp, uintptr_t retaddr,
390                          vaddr addr, bool mmu_disabled)
391 {
392     CPUState *cs = env_cpu(env);
393 
394     cs->exception_index = excp;
395     cpu_restore_state(cs, retaddr);
396     hppa_set_ior_and_isr(env, addr, mmu_disabled);
397 
398     cpu_loop_exit(cs);
399 }
400 
401 void hppa_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
402                                      vaddr addr, unsigned size,
403                                      MMUAccessType access_type,
404                                      int mmu_idx, MemTxAttrs attrs,
405                                      MemTxResult response, uintptr_t retaddr)
406 {
407     CPUHPPAState *env = cpu_env(cs);
408 
409     qemu_log_mask(LOG_GUEST_ERROR, "HPMC at " TARGET_FMT_lx ":" TARGET_FMT_lx
410                 " while accessing I/O at %#08" HWADDR_PRIx "\n",
411                 env->iasq_f, env->iaoq_f, physaddr);
412 
413     /* FIXME: Enable HPMC exceptions when firmware has clean device probing */
414     if (0) {
415         raise_exception_with_ior(env, EXCP_HPMC, retaddr, addr,
416                                  MMU_IDX_MMU_DISABLED(mmu_idx));
417     }
418 }
419 
420 bool hppa_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
421                        MMUAccessType type, int mmu_idx,
422                        bool probe, uintptr_t retaddr)
423 {
424     HPPACPU *cpu = HPPA_CPU(cs);
425     CPUHPPAState *env = &cpu->env;
426     int prot, excp, a_prot;
427     hwaddr phys;
428 
429     switch (type) {
430     case MMU_INST_FETCH:
431         a_prot = PAGE_EXEC;
432         break;
433     case MMU_DATA_STORE:
434         a_prot = PAGE_WRITE;
435         break;
436     default:
437         a_prot = PAGE_READ;
438         break;
439     }
440 
441     excp = hppa_get_physical_address(env, addr, mmu_idx, a_prot, &phys, &prot);
442     if (unlikely(excp >= 0)) {
443         if (probe) {
444             return false;
445         }
446         trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx);
447 
448         /* Failure.  Raise the indicated exception.  */
449         raise_exception_with_ior(env, excp, retaddr, addr,
450                                  MMU_IDX_MMU_DISABLED(mmu_idx));
451     }
452 
453     trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK,
454                                 phys & TARGET_PAGE_MASK, size, type, mmu_idx);
455 
456     /*
457      * Success!  Store the translation into the QEMU TLB.
458      * Note that we always install a single-page entry, because that
459      * is what works best with softmmu -- anything else will trigger
460      * the large page protection mask.  We do not require this,
461      * because we record the large page here in the hppa tlb.
462      */
463     tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
464                  prot, mmu_idx, TARGET_PAGE_SIZE);
465     return true;
466 }
467 
468 /* Insert (Insn/Data) TLB Address.  Note this is PA 1.1 only.  */
469 void HELPER(itlba_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
470 {
471     HPPATLBEntry *ent;
472 
473     /* Zap any old entries covering ADDR. */
474     addr &= TARGET_PAGE_MASK;
475     hppa_flush_tlb_range(env, addr, addr + TARGET_PAGE_SIZE - 1);
476 
477     ent = env->tlb_partial;
478     if (ent == NULL) {
479         ent = hppa_alloc_tlb_ent(env);
480         env->tlb_partial = ent;
481     }
482 
483     /* Note that ent->entry_valid == 0 already.  */
484     ent->itree.start = addr;
485     ent->itree.last = addr + TARGET_PAGE_SIZE - 1;
486     ent->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS;
487     trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
488 }
489 
490 static void set_access_bits_pa11(CPUHPPAState *env, HPPATLBEntry *ent,
491                                  target_ulong reg)
492 {
493     ent->access_id = extract32(reg, 1, 18);
494     ent->u = extract32(reg, 19, 1);
495     ent->ar_pl2 = extract32(reg, 20, 2);
496     ent->ar_pl1 = extract32(reg, 22, 2);
497     ent->ar_type = extract32(reg, 24, 3);
498     ent->b = extract32(reg, 27, 1);
499     ent->d = extract32(reg, 28, 1);
500     ent->t = extract32(reg, 29, 1);
501     ent->entry_valid = 1;
502 
503     interval_tree_insert(&ent->itree, &env->tlb_root);
504     trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2,
505                          ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t);
506 }
507 
508 /* Insert (Insn/Data) TLB Protection.  Note this is PA 1.1 only.  */
509 void HELPER(itlbp_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
510 {
511     HPPATLBEntry *ent = env->tlb_partial;
512 
513     if (ent) {
514         env->tlb_partial = NULL;
515         if (ent->itree.start <= addr && addr <= ent->itree.last) {
516             set_access_bits_pa11(env, ent, reg);
517             return;
518         }
519     }
520     qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n");
521 }
522 
523 static void itlbt_pa20(CPUHPPAState *env, target_ulong r1,
524                        target_ulong r2, vaddr va_b)
525 {
526     HPPATLBEntry *ent;
527     vaddr va_e;
528     uint64_t va_size;
529     int mask_shift;
530 
531     mask_shift = 2 * (r1 & 0xf);
532     va_size = (uint64_t)TARGET_PAGE_SIZE << mask_shift;
533     va_b &= -va_size;
534     va_e = va_b + va_size - 1;
535 
536     hppa_flush_tlb_range(env, va_b, va_e);
537     ent = hppa_alloc_tlb_ent(env);
538 
539     ent->itree.start = va_b;
540     ent->itree.last = va_e;
541 
542     /* Extract all 52 bits present in the page table entry. */
543     ent->pa = r1 << (TARGET_PAGE_BITS - 5);
544     /* Align per the page size. */
545     ent->pa &= TARGET_PAGE_MASK << mask_shift;
546     /* Ignore the bits beyond physical address space. */
547     ent->pa = sextract64(ent->pa, 0, TARGET_PHYS_ADDR_SPACE_BITS);
548 
549     ent->t = extract64(r2, 61, 1);
550     ent->d = extract64(r2, 60, 1);
551     ent->b = extract64(r2, 59, 1);
552     ent->ar_type = extract64(r2, 56, 3);
553     ent->ar_pl1 = extract64(r2, 54, 2);
554     ent->ar_pl2 = extract64(r2, 52, 2);
555     ent->u = extract64(r2, 51, 1);
556     /* o = bit 50 */
557     /* p = bit 49 */
558     ent->access_id = extract64(r2, 1, 31);
559     ent->entry_valid = 1;
560 
561     interval_tree_insert(&ent->itree, &env->tlb_root);
562     trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
563     trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u,
564                          ent->ar_pl2, ent->ar_pl1, ent->ar_type,
565                          ent->b, ent->d, ent->t);
566 }
567 
568 void HELPER(idtlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
569 {
570     vaddr va_b = deposit64(env->cr[CR_IOR], 32, 32, env->cr[CR_ISR]);
571     itlbt_pa20(env, r1, r2, va_b);
572 }
573 
574 void HELPER(iitlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
575 {
576     vaddr va_b = deposit64(env->cr[CR_IIAOQ], 32, 32, env->cr[CR_IIASQ]);
577     itlbt_pa20(env, r1, r2, va_b);
578 }
579 
580 /* Purge (Insn/Data) TLB. */
581 static void ptlb_work(CPUState *cpu, run_on_cpu_data data)
582 {
583     vaddr start = data.target_ptr;
584     vaddr end;
585 
586     /*
587      * PA2.0 allows a range of pages encoded into GR[b], which we have
588      * copied into the bottom bits of the otherwise page-aligned address.
589      * PA1.x will always provide zero here, for a single page flush.
590      */
591     end = start & 0xf;
592     start &= TARGET_PAGE_MASK;
593     end = (vaddr)TARGET_PAGE_SIZE << (2 * end);
594     end = start + end - 1;
595 
596     hppa_flush_tlb_range(cpu_env(cpu), start, end);
597 }
598 
599 /* This is local to the current cpu. */
600 void HELPER(ptlb_l)(CPUHPPAState *env, target_ulong addr)
601 {
602     trace_hppa_tlb_ptlb_local(env);
603     ptlb_work(env_cpu(env), RUN_ON_CPU_TARGET_PTR(addr));
604 }
605 
606 /* This is synchronous across all processors.  */
607 void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr)
608 {
609     CPUState *src = env_cpu(env);
610     CPUState *cpu;
611     bool wait = false;
612 
613     trace_hppa_tlb_ptlb(env);
614     run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr);
615 
616     CPU_FOREACH(cpu) {
617         if (cpu != src) {
618             async_run_on_cpu(cpu, ptlb_work, data);
619             wait = true;
620         }
621     }
622     if (wait) {
623         async_safe_run_on_cpu(src, ptlb_work, data);
624     } else {
625         ptlb_work(src, data);
626     }
627 }
628 
629 void hppa_ptlbe(CPUHPPAState *env)
630 {
631     uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
632     uint32_t i;
633 
634     /* Zap the (non-btlb) tlb entries themselves. */
635     memset(&env->tlb[btlb_entries], 0,
636            sizeof(env->tlb) - btlb_entries * sizeof(env->tlb[0]));
637     env->tlb_last = btlb_entries;
638     env->tlb_partial = NULL;
639 
640     /* Put them all onto the unused list. */
641     env->tlb_unused = &env->tlb[btlb_entries];
642     for (i = btlb_entries; i < ARRAY_SIZE(env->tlb) - 1; ++i) {
643         env->tlb[i].unused_next = &env->tlb[i + 1];
644     }
645 
646     /* Re-initialize the interval tree with only the btlb entries. */
647     memset(&env->tlb_root, 0, sizeof(env->tlb_root));
648     for (i = 0; i < btlb_entries; ++i) {
649         if (env->tlb[i].entry_valid) {
650             interval_tree_insert(&env->tlb[i].itree, &env->tlb_root);
651         }
652     }
653 
654     tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK);
655 }
656 
657 /* Purge (Insn/Data) TLB entry.  This affects an implementation-defined
658    number of pages/entries (we choose all), and is local to the cpu.  */
659 void HELPER(ptlbe)(CPUHPPAState *env)
660 {
661     trace_hppa_tlb_ptlbe(env);
662     qemu_log_mask(CPU_LOG_MMU, "FLUSH ALL TLB ENTRIES\n");
663     hppa_ptlbe(env);
664 }
665 
666 void cpu_hppa_change_prot_id(CPUHPPAState *env)
667 {
668     tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_P_MASK);
669 }
670 
671 void HELPER(change_prot_id)(CPUHPPAState *env)
672 {
673     cpu_hppa_change_prot_id(env);
674 }
675 
676 target_ulong HELPER(lpa)(CPUHPPAState *env, target_ulong addr)
677 {
678     hwaddr phys;
679     int prot, excp;
680 
681     excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0,
682                                      &phys, &prot);
683     if (excp >= 0) {
684         if (excp == EXCP_DTLB_MISS) {
685             excp = EXCP_NA_DTLB_MISS;
686         }
687         trace_hppa_tlb_lpa_failed(env, addr);
688         raise_exception_with_ior(env, excp, GETPC(), addr, false);
689     }
690     trace_hppa_tlb_lpa_success(env, addr, phys);
691     return phys;
692 }
693 
694 /*
695  * diag_btlb() emulates the PDC PDC_BLOCK_TLB firmware call to
696  * allow operating systems to modify the Block TLB (BTLB) entries.
697  * For implementation details see page 1-13 in
698  * https://parisc.wiki.kernel.org/images-parisc/e/ef/Pdc11-v0.96-Ch1-procs.pdf
699  */
700 void HELPER(diag_btlb)(CPUHPPAState *env)
701 {
702     unsigned int phys_page, len, slot;
703     int mmu_idx = cpu_mmu_index(env_cpu(env), 0);
704     uintptr_t ra = GETPC();
705     HPPATLBEntry *btlb;
706     uint64_t virt_page;
707     uint32_t *vaddr;
708     uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
709 
710     /* BTLBs are not supported on 64-bit CPUs */
711     if (btlb_entries == 0) {
712         env->gr[28] = -1; /* nonexistent procedure */
713         return;
714     }
715 
716     env->gr[28] = 0; /* PDC_OK */
717 
718     switch (env->gr[25]) {
719     case 0:
720         /* return BTLB parameters */
721         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INFO\n");
722         vaddr = probe_access(env, env->gr[24], 4 * sizeof(uint32_t),
723                              MMU_DATA_STORE, mmu_idx, ra);
724         if (vaddr == NULL) {
725             env->gr[28] = -10; /* invalid argument */
726         } else {
727             vaddr[0] = cpu_to_be32(1);
728             vaddr[1] = cpu_to_be32(16 * 1024);
729             vaddr[2] = cpu_to_be32(PA10_BTLB_FIXED);
730             vaddr[3] = cpu_to_be32(PA10_BTLB_VARIABLE);
731         }
732         break;
733     case 1:
734         /* insert BTLB entry */
735         virt_page = env->gr[24];        /* upper 32 bits */
736         virt_page <<= 32;
737         virt_page |= env->gr[23];       /* lower 32 bits */
738         phys_page = env->gr[22];
739         len = env->gr[21];
740         slot = env->gr[19];
741         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INSERT "
742                     "0x%08llx-0x%08llx: vpage 0x%llx for phys page 0x%04x len %d "
743                     "into slot %d\n",
744                     (long long) virt_page << TARGET_PAGE_BITS,
745                     (long long) (virt_page + len) << TARGET_PAGE_BITS,
746                     (long long) virt_page, phys_page, len, slot);
747         if (slot < btlb_entries) {
748             btlb = &env->tlb[slot];
749 
750             /* Force flush of possibly existing BTLB entry. */
751             hppa_flush_tlb_ent(env, btlb, true);
752 
753             /* Create new BTLB entry */
754             btlb->itree.start = virt_page << TARGET_PAGE_BITS;
755             btlb->itree.last = btlb->itree.start + len * TARGET_PAGE_SIZE - 1;
756             btlb->pa = phys_page << TARGET_PAGE_BITS;
757             set_access_bits_pa11(env, btlb, env->gr[20]);
758             btlb->t = 0;
759             btlb->d = 1;
760         } else {
761             env->gr[28] = -10; /* invalid argument */
762         }
763         break;
764     case 2:
765         /* Purge BTLB entry */
766         slot = env->gr[22];
767         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE slot %d\n",
768                                     slot);
769         if (slot < btlb_entries) {
770             btlb = &env->tlb[slot];
771             hppa_flush_tlb_ent(env, btlb, true);
772         } else {
773             env->gr[28] = -10; /* invalid argument */
774         }
775         break;
776     case 3:
777         /* Purge all BTLB entries */
778         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE_ALL\n");
779         for (slot = 0; slot < btlb_entries; slot++) {
780             btlb = &env->tlb[slot];
781             hppa_flush_tlb_ent(env, btlb, true);
782         }
783         break;
784     default:
785         env->gr[28] = -2; /* nonexistent option */
786         break;
787     }
788 }
789 
790 uint64_t HELPER(b_gate_priv)(CPUHPPAState *env, uint64_t iaoq_f)
791 {
792     uint64_t gva = hppa_form_gva(env, env->iasq_f, iaoq_f);
793     HPPATLBEntry *ent = hppa_find_tlb(env, gva);
794 
795     if (ent == NULL) {
796         raise_exception_with_ior(env, EXCP_ITLB_MISS, GETPC(), gva, false);
797     }
798 
799     /*
800      * There should be no need to check page permissions, as that will
801      * already have been done by tb_lookup via get_page_addr_code.
802      * All we need at this point is to check the ar_type.
803      *
804      * No change for non-gateway pages or for priv decrease.
805      */
806     if (ent->ar_type & 4) {
807         int old_priv = iaoq_f & 3;
808         int new_priv = ent->ar_type & 3;
809 
810         if (new_priv < old_priv) {
811             iaoq_f = (iaoq_f & -4) | new_priv;
812         }
813     }
814     return iaoq_f;
815 }
816