1 /* 2 * HPPA memory access helper routines 3 * 4 * Copyright (c) 2017 Helge Deller 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/helper-proto.h" 25 #include "hw/core/cpu.h" 26 #include "trace.h" 27 28 hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr) 29 { 30 /* 31 * Figure H-8 "62-bit Absolute Accesses when PSW W-bit is 1" describes 32 * an algorithm in which a 62-bit absolute address is transformed to 33 * a 64-bit physical address. This must then be combined with that 34 * pictured in Figure H-11 "Physical Address Space Mapping", in which 35 * the full physical address is truncated to the N-bit physical address 36 * supported by the implementation. 37 * 38 * Since the supported physical address space is below 54 bits, the 39 * H-8 algorithm is moot and all that is left is to truncate. 40 */ 41 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 54); 42 return sextract64(addr, 0, TARGET_PHYS_ADDR_SPACE_BITS); 43 } 44 45 hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr) 46 { 47 /* 48 * See Figure H-10, "Absolute Accesses when PSW W-bit is 0", 49 * combined with Figure H-11, as above. 50 */ 51 if (likely(extract32(addr, 28, 4) != 0xf)) { 52 /* Memory address space */ 53 addr = (uint32_t)addr; 54 } else if (extract32(addr, 24, 4) != 0) { 55 /* I/O address space */ 56 addr = (int32_t)addr; 57 } else { 58 /* 59 * PDC address space: 60 * Figures H-10 and H-11 of the parisc2.0 spec do not specify 61 * where to map into the 64-bit PDC address space. 62 * We map with an offset which equals the 32-bit address, which 63 * is what can be seen on physical machines too. 64 */ 65 addr = (uint32_t)addr; 66 addr |= -1ull << (TARGET_PHYS_ADDR_SPACE_BITS - 4); 67 } 68 return addr; 69 } 70 71 static HPPATLBEntry *hppa_find_tlb(CPUHPPAState *env, vaddr addr) 72 { 73 IntervalTreeNode *i = interval_tree_iter_first(&env->tlb_root, addr, addr); 74 75 if (i) { 76 HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree); 77 trace_hppa_tlb_find_entry(env, ent, ent->entry_valid, 78 ent->itree.start, ent->itree.last, ent->pa); 79 return ent; 80 } 81 trace_hppa_tlb_find_entry_not_found(env, addr); 82 return NULL; 83 } 84 85 static void hppa_flush_tlb_ent(CPUHPPAState *env, HPPATLBEntry *ent, 86 bool force_flush_btlb) 87 { 88 CPUState *cs = env_cpu(env); 89 bool is_btlb; 90 91 if (!ent->entry_valid) { 92 return; 93 } 94 95 trace_hppa_tlb_flush_ent(env, ent, ent->itree.start, 96 ent->itree.last, ent->pa); 97 98 tlb_flush_range_by_mmuidx(cs, ent->itree.start, 99 ent->itree.last - ent->itree.start + 1, 100 HPPA_MMU_FLUSH_MASK, TARGET_LONG_BITS); 101 102 /* Never clear BTLBs, unless forced to do so. */ 103 is_btlb = ent < &env->tlb[HPPA_BTLB_ENTRIES(env)]; 104 if (is_btlb && !force_flush_btlb) { 105 return; 106 } 107 108 interval_tree_remove(&ent->itree, &env->tlb_root); 109 memset(ent, 0, sizeof(*ent)); 110 111 if (!is_btlb) { 112 ent->unused_next = env->tlb_unused; 113 env->tlb_unused = ent; 114 } 115 } 116 117 static void hppa_flush_tlb_range(CPUHPPAState *env, vaddr va_b, vaddr va_e) 118 { 119 IntervalTreeNode *i, *n; 120 121 i = interval_tree_iter_first(&env->tlb_root, va_b, va_e); 122 for (; i ; i = n) { 123 HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree); 124 125 /* 126 * Find the next entry now: In the normal case the current entry 127 * will be removed, but in the BTLB case it will remain. 128 */ 129 n = interval_tree_iter_next(i, va_b, va_e); 130 hppa_flush_tlb_ent(env, ent, false); 131 } 132 } 133 134 static HPPATLBEntry *hppa_alloc_tlb_ent(CPUHPPAState *env) 135 { 136 HPPATLBEntry *ent = env->tlb_unused; 137 138 if (ent == NULL) { 139 uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); 140 uint32_t i = env->tlb_last; 141 142 if (i < btlb_entries || i >= ARRAY_SIZE(env->tlb)) { 143 i = btlb_entries; 144 } 145 env->tlb_last = i + 1; 146 147 ent = &env->tlb[i]; 148 hppa_flush_tlb_ent(env, ent, false); 149 } 150 151 env->tlb_unused = ent->unused_next; 152 return ent; 153 } 154 155 int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx, 156 int type, hwaddr *pphys, int *pprot, 157 HPPATLBEntry **tlb_entry) 158 { 159 hwaddr phys; 160 int prot, r_prot, w_prot, x_prot, priv; 161 HPPATLBEntry *ent; 162 int ret = -1; 163 164 if (tlb_entry) { 165 *tlb_entry = NULL; 166 } 167 168 /* Virtual translation disabled. Map absolute to physical. */ 169 if (MMU_IDX_MMU_DISABLED(mmu_idx)) { 170 switch (mmu_idx) { 171 case MMU_ABS_W_IDX: 172 phys = hppa_abs_to_phys_pa2_w1(addr); 173 break; 174 case MMU_ABS_IDX: 175 if (hppa_is_pa20(env)) { 176 phys = hppa_abs_to_phys_pa2_w0(addr); 177 } else { 178 phys = (uint32_t)addr; 179 } 180 break; 181 default: 182 g_assert_not_reached(); 183 } 184 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 185 goto egress; 186 } 187 188 /* Find a valid tlb entry that matches the virtual address. */ 189 ent = hppa_find_tlb(env, addr); 190 if (ent == NULL) { 191 phys = 0; 192 prot = 0; 193 ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS; 194 goto egress; 195 } 196 197 if (tlb_entry) { 198 *tlb_entry = ent; 199 } 200 201 /* We now know the physical address. */ 202 phys = ent->pa + (addr - ent->itree.start); 203 204 /* Map TLB access_rights field to QEMU protection. */ 205 priv = MMU_IDX_TO_PRIV(mmu_idx); 206 r_prot = (priv <= ent->ar_pl1) * PAGE_READ; 207 w_prot = (priv <= ent->ar_pl2) * PAGE_WRITE; 208 x_prot = (ent->ar_pl2 <= priv && priv <= ent->ar_pl1) * PAGE_EXEC; 209 switch (ent->ar_type) { 210 case 0: /* read-only: data page */ 211 prot = r_prot; 212 break; 213 case 1: /* read/write: dynamic data page */ 214 prot = r_prot | w_prot; 215 break; 216 case 2: /* read/execute: normal code page */ 217 prot = r_prot | x_prot; 218 break; 219 case 3: /* read/write/execute: dynamic code page */ 220 prot = r_prot | w_prot | x_prot; 221 break; 222 default: /* execute: promote to privilege level type & 3 */ 223 prot = x_prot; 224 break; 225 } 226 227 /* access_id == 0 means public page and no check is performed */ 228 if (ent->access_id && MMU_IDX_TO_P(mmu_idx)) { 229 /* If bits [31:1] match, and bit 0 is set, suppress write. */ 230 int match = ent->access_id * 2 + 1; 231 232 if (match == env->cr[CR_PID1] || match == env->cr[CR_PID2] || 233 match == env->cr[CR_PID3] || match == env->cr[CR_PID4]) { 234 prot &= PAGE_READ | PAGE_EXEC; 235 if (type == PAGE_WRITE) { 236 ret = EXCP_DMPI; 237 goto egress; 238 } 239 } 240 } 241 242 /* No guest access type indicates a non-architectural access from 243 within QEMU. Bypass checks for access, D, B and T bits. */ 244 if (type == 0) { 245 goto egress; 246 } 247 248 if (unlikely(!(prot & type))) { 249 /* The access isn't allowed -- Inst/Data Memory Protection Fault. */ 250 ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR; 251 goto egress; 252 } 253 254 /* In reverse priority order, check for conditions which raise faults. 255 As we go, remove PROT bits that cover the condition we want to check. 256 In this way, the resulting PROT will force a re-check of the 257 architectural TLB entry for the next access. */ 258 if (unlikely(!ent->d)) { 259 if (type & PAGE_WRITE) { 260 /* The D bit is not set -- TLB Dirty Bit Fault. */ 261 ret = EXCP_TLB_DIRTY; 262 } 263 prot &= PAGE_READ | PAGE_EXEC; 264 } 265 if (unlikely(ent->b)) { 266 if (type & PAGE_WRITE) { 267 /* The B bit is set -- Data Memory Break Fault. */ 268 ret = EXCP_DMB; 269 } 270 prot &= PAGE_READ | PAGE_EXEC; 271 } 272 if (unlikely(ent->t)) { 273 if (!(type & PAGE_EXEC)) { 274 /* The T bit is set -- Page Reference Fault. */ 275 ret = EXCP_PAGE_REF; 276 } 277 prot &= PAGE_EXEC; 278 } 279 280 egress: 281 *pphys = phys; 282 *pprot = prot; 283 trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys); 284 return ret; 285 } 286 287 hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 288 { 289 HPPACPU *cpu = HPPA_CPU(cs); 290 hwaddr phys; 291 int prot, excp, mmu_idx; 292 293 /* If the (data) mmu is disabled, bypass translation. */ 294 /* ??? We really ought to know if the code mmu is disabled too, 295 in order to get the correct debugging dumps. */ 296 mmu_idx = (cpu->env.psw & PSW_D ? MMU_KERNEL_IDX : 297 cpu->env.psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX); 298 299 excp = hppa_get_physical_address(&cpu->env, addr, mmu_idx, 0, 300 &phys, &prot, NULL); 301 302 /* Since we're translating for debugging, the only error that is a 303 hard error is no translation at all. Otherwise, while a real cpu 304 access might not have permission, the debugger does. */ 305 return excp == EXCP_DTLB_MISS ? -1 : phys; 306 } 307 308 void hppa_set_ior_and_isr(CPUHPPAState *env, vaddr addr, bool mmu_disabled) 309 { 310 if (env->psw & PSW_Q) { 311 /* 312 * For pa1.x, the offset and space never overlap, and so we 313 * simply extract the high and low part of the virtual address. 314 * 315 * For pa2.0, the formation of these are described in section 316 * "Interruption Parameter Registers", page 2-15. 317 */ 318 env->cr[CR_IOR] = (uint32_t)addr; 319 env->cr[CR_ISR] = addr >> 32; 320 321 if (hppa_is_pa20(env)) { 322 if (mmu_disabled) { 323 /* 324 * If data translation was disabled, the ISR contains 325 * the upper portion of the abs address, zero-extended. 326 */ 327 env->cr[CR_ISR] &= 0x3fffffff; 328 } else { 329 /* 330 * If data translation was enabled, the upper two bits 331 * of the IOR (the b field) are equal to the two space 332 * bits from the base register used to form the gva. 333 */ 334 uint64_t b; 335 336 b = env->unwind_breg ? env->gr[env->unwind_breg] : 0; 337 b >>= (env->psw & PSW_W ? 62 : 30); 338 env->cr[CR_IOR] |= b << 62; 339 } 340 } 341 } 342 } 343 344 G_NORETURN static void 345 raise_exception_with_ior(CPUHPPAState *env, int excp, uintptr_t retaddr, 346 vaddr addr, bool mmu_disabled) 347 { 348 CPUState *cs = env_cpu(env); 349 350 cs->exception_index = excp; 351 hppa_set_ior_and_isr(env, addr, mmu_disabled); 352 353 cpu_loop_exit_restore(cs, retaddr); 354 } 355 356 void hppa_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 357 vaddr addr, unsigned size, 358 MMUAccessType access_type, 359 int mmu_idx, MemTxAttrs attrs, 360 MemTxResult response, uintptr_t retaddr) 361 { 362 CPUHPPAState *env = cpu_env(cs); 363 364 qemu_log_mask(LOG_GUEST_ERROR, "HPMC at " TARGET_FMT_lx ":" TARGET_FMT_lx 365 " while accessing I/O at %#08" HWADDR_PRIx "\n", 366 env->iasq_f, env->iaoq_f, physaddr); 367 368 /* FIXME: Enable HPMC exceptions when firmware has clean device probing */ 369 if (0) { 370 raise_exception_with_ior(env, EXCP_HPMC, retaddr, addr, 371 MMU_IDX_MMU_DISABLED(mmu_idx)); 372 } 373 } 374 375 bool hppa_cpu_tlb_fill(CPUState *cs, vaddr addr, int size, 376 MMUAccessType type, int mmu_idx, 377 bool probe, uintptr_t retaddr) 378 { 379 HPPACPU *cpu = HPPA_CPU(cs); 380 CPUHPPAState *env = &cpu->env; 381 HPPATLBEntry *ent; 382 int prot, excp, a_prot; 383 hwaddr phys; 384 385 switch (type) { 386 case MMU_INST_FETCH: 387 a_prot = PAGE_EXEC; 388 break; 389 case MMU_DATA_STORE: 390 a_prot = PAGE_WRITE; 391 break; 392 default: 393 a_prot = PAGE_READ; 394 break; 395 } 396 397 excp = hppa_get_physical_address(env, addr, mmu_idx, 398 a_prot, &phys, &prot, &ent); 399 if (unlikely(excp >= 0)) { 400 if (probe) { 401 return false; 402 } 403 trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx); 404 405 /* Failure. Raise the indicated exception. */ 406 raise_exception_with_ior(env, excp, retaddr, addr, 407 MMU_IDX_MMU_DISABLED(mmu_idx)); 408 } 409 410 trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK, 411 phys & TARGET_PAGE_MASK, size, type, mmu_idx); 412 413 /* 414 * Success! Store the translation into the QEMU TLB. 415 * Note that we always install a single-page entry, because that 416 * is what works best with softmmu -- anything else will trigger 417 * the large page protection mask. We do not require this, 418 * because we record the large page here in the hppa tlb. 419 */ 420 tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK, 421 prot, mmu_idx, TARGET_PAGE_SIZE); 422 return true; 423 } 424 425 /* Insert (Insn/Data) TLB Address. Note this is PA 1.1 only. */ 426 void HELPER(itlba_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg) 427 { 428 HPPATLBEntry *ent; 429 430 /* Zap any old entries covering ADDR. */ 431 addr &= TARGET_PAGE_MASK; 432 hppa_flush_tlb_range(env, addr, addr + TARGET_PAGE_SIZE - 1); 433 434 ent = env->tlb_partial; 435 if (ent == NULL) { 436 ent = hppa_alloc_tlb_ent(env); 437 env->tlb_partial = ent; 438 } 439 440 /* Note that ent->entry_valid == 0 already. */ 441 ent->itree.start = addr; 442 ent->itree.last = addr + TARGET_PAGE_SIZE - 1; 443 ent->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS; 444 trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa); 445 } 446 447 static void set_access_bits_pa11(CPUHPPAState *env, HPPATLBEntry *ent, 448 target_ulong reg) 449 { 450 ent->access_id = extract32(reg, 1, 18); 451 ent->u = extract32(reg, 19, 1); 452 ent->ar_pl2 = extract32(reg, 20, 2); 453 ent->ar_pl1 = extract32(reg, 22, 2); 454 ent->ar_type = extract32(reg, 24, 3); 455 ent->b = extract32(reg, 27, 1); 456 ent->d = extract32(reg, 28, 1); 457 ent->t = extract32(reg, 29, 1); 458 ent->entry_valid = 1; 459 460 interval_tree_insert(&ent->itree, &env->tlb_root); 461 trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2, 462 ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t); 463 } 464 465 /* Insert (Insn/Data) TLB Protection. Note this is PA 1.1 only. */ 466 void HELPER(itlbp_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg) 467 { 468 HPPATLBEntry *ent = env->tlb_partial; 469 470 if (ent) { 471 env->tlb_partial = NULL; 472 if (ent->itree.start <= addr && addr <= ent->itree.last) { 473 set_access_bits_pa11(env, ent, reg); 474 return; 475 } 476 } 477 qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n"); 478 } 479 480 static void itlbt_pa20(CPUHPPAState *env, target_ulong r1, 481 target_ulong r2, vaddr va_b) 482 { 483 HPPATLBEntry *ent; 484 vaddr va_e; 485 uint64_t va_size; 486 int mask_shift; 487 488 mask_shift = 2 * (r1 & 0xf); 489 va_size = (uint64_t)TARGET_PAGE_SIZE << mask_shift; 490 va_b &= -va_size; 491 va_e = va_b + va_size - 1; 492 493 hppa_flush_tlb_range(env, va_b, va_e); 494 ent = hppa_alloc_tlb_ent(env); 495 496 ent->itree.start = va_b; 497 ent->itree.last = va_e; 498 499 /* Extract all 52 bits present in the page table entry. */ 500 ent->pa = r1 << (TARGET_PAGE_BITS - 5); 501 /* Align per the page size. */ 502 ent->pa &= TARGET_PAGE_MASK << mask_shift; 503 /* Ignore the bits beyond physical address space. */ 504 ent->pa = sextract64(ent->pa, 0, TARGET_PHYS_ADDR_SPACE_BITS); 505 506 ent->t = extract64(r2, 61, 1); 507 ent->d = extract64(r2, 60, 1); 508 ent->b = extract64(r2, 59, 1); 509 ent->ar_type = extract64(r2, 56, 3); 510 ent->ar_pl1 = extract64(r2, 54, 2); 511 ent->ar_pl2 = extract64(r2, 52, 2); 512 ent->u = extract64(r2, 51, 1); 513 /* o = bit 50 */ 514 /* p = bit 49 */ 515 ent->access_id = extract64(r2, 1, 31); 516 ent->entry_valid = 1; 517 518 interval_tree_insert(&ent->itree, &env->tlb_root); 519 trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa); 520 trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, 521 ent->ar_pl2, ent->ar_pl1, ent->ar_type, 522 ent->b, ent->d, ent->t); 523 } 524 525 void HELPER(idtlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2) 526 { 527 vaddr va_b = deposit64(env->cr[CR_IOR], 32, 32, env->cr[CR_ISR]); 528 itlbt_pa20(env, r1, r2, va_b); 529 } 530 531 void HELPER(iitlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2) 532 { 533 vaddr va_b = deposit64(env->cr[CR_IIAOQ], 32, 32, env->cr[CR_IIASQ]); 534 itlbt_pa20(env, r1, r2, va_b); 535 } 536 537 /* Purge (Insn/Data) TLB. */ 538 static void ptlb_work(CPUState *cpu, run_on_cpu_data data) 539 { 540 CPUHPPAState *env = cpu_env(cpu); 541 vaddr start = data.target_ptr; 542 vaddr end; 543 544 /* 545 * PA2.0 allows a range of pages encoded into GR[b], which we have 546 * copied into the bottom bits of the otherwise page-aligned address. 547 * PA1.x will always provide zero here, for a single page flush. 548 */ 549 end = start & 0xf; 550 start &= TARGET_PAGE_MASK; 551 end = (vaddr)TARGET_PAGE_SIZE << (2 * end); 552 end = start + end - 1; 553 554 hppa_flush_tlb_range(env, start, end); 555 } 556 557 /* This is local to the current cpu. */ 558 void HELPER(ptlb_l)(CPUHPPAState *env, target_ulong addr) 559 { 560 trace_hppa_tlb_ptlb_local(env); 561 ptlb_work(env_cpu(env), RUN_ON_CPU_TARGET_PTR(addr)); 562 } 563 564 /* This is synchronous across all processors. */ 565 void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr) 566 { 567 CPUState *src = env_cpu(env); 568 CPUState *cpu; 569 bool wait = false; 570 571 trace_hppa_tlb_ptlb(env); 572 run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr); 573 574 CPU_FOREACH(cpu) { 575 if (cpu != src) { 576 async_run_on_cpu(cpu, ptlb_work, data); 577 wait = true; 578 } 579 } 580 if (wait) { 581 async_safe_run_on_cpu(src, ptlb_work, data); 582 } else { 583 ptlb_work(src, data); 584 } 585 } 586 587 void hppa_ptlbe(CPUHPPAState *env) 588 { 589 uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); 590 uint32_t i; 591 592 /* Zap the (non-btlb) tlb entries themselves. */ 593 memset(&env->tlb[btlb_entries], 0, 594 sizeof(env->tlb) - btlb_entries * sizeof(env->tlb[0])); 595 env->tlb_last = btlb_entries; 596 env->tlb_partial = NULL; 597 598 /* Put them all onto the unused list. */ 599 env->tlb_unused = &env->tlb[btlb_entries]; 600 for (i = btlb_entries; i < ARRAY_SIZE(env->tlb) - 1; ++i) { 601 env->tlb[i].unused_next = &env->tlb[i + 1]; 602 } 603 604 /* Re-initialize the interval tree with only the btlb entries. */ 605 memset(&env->tlb_root, 0, sizeof(env->tlb_root)); 606 for (i = 0; i < btlb_entries; ++i) { 607 if (env->tlb[i].entry_valid) { 608 interval_tree_insert(&env->tlb[i].itree, &env->tlb_root); 609 } 610 } 611 612 tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK); 613 } 614 615 /* Purge (Insn/Data) TLB entry. This affects an implementation-defined 616 number of pages/entries (we choose all), and is local to the cpu. */ 617 void HELPER(ptlbe)(CPUHPPAState *env) 618 { 619 trace_hppa_tlb_ptlbe(env); 620 qemu_log_mask(CPU_LOG_MMU, "FLUSH ALL TLB ENTRIES\n"); 621 hppa_ptlbe(env); 622 } 623 624 void cpu_hppa_change_prot_id(CPUHPPAState *env) 625 { 626 tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_P_MASK); 627 } 628 629 void HELPER(change_prot_id)(CPUHPPAState *env) 630 { 631 cpu_hppa_change_prot_id(env); 632 } 633 634 target_ulong HELPER(lpa)(CPUHPPAState *env, target_ulong addr) 635 { 636 hwaddr phys; 637 int prot, excp; 638 639 excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0, 640 &phys, &prot, NULL); 641 if (excp >= 0) { 642 if (excp == EXCP_DTLB_MISS) { 643 excp = EXCP_NA_DTLB_MISS; 644 } 645 trace_hppa_tlb_lpa_failed(env, addr); 646 raise_exception_with_ior(env, excp, GETPC(), addr, false); 647 } 648 trace_hppa_tlb_lpa_success(env, addr, phys); 649 return phys; 650 } 651 652 /* Return the ar_type of the TLB at VADDR, or -1. */ 653 int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr) 654 { 655 HPPATLBEntry *ent = hppa_find_tlb(env, vaddr); 656 return ent ? ent->ar_type : -1; 657 } 658 659 /* 660 * diag_btlb() emulates the PDC PDC_BLOCK_TLB firmware call to 661 * allow operating systems to modify the Block TLB (BTLB) entries. 662 * For implementation details see page 1-13 in 663 * https://parisc.wiki.kernel.org/images-parisc/e/ef/Pdc11-v0.96-Ch1-procs.pdf 664 */ 665 void HELPER(diag_btlb)(CPUHPPAState *env) 666 { 667 unsigned int phys_page, len, slot; 668 int mmu_idx = cpu_mmu_index(env_cpu(env), 0); 669 uintptr_t ra = GETPC(); 670 HPPATLBEntry *btlb; 671 uint64_t virt_page; 672 uint32_t *vaddr; 673 uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); 674 675 /* BTLBs are not supported on 64-bit CPUs */ 676 if (btlb_entries == 0) { 677 env->gr[28] = -1; /* nonexistent procedure */ 678 return; 679 } 680 681 env->gr[28] = 0; /* PDC_OK */ 682 683 switch (env->gr[25]) { 684 case 0: 685 /* return BTLB parameters */ 686 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INFO\n"); 687 vaddr = probe_access(env, env->gr[24], 4 * sizeof(uint32_t), 688 MMU_DATA_STORE, mmu_idx, ra); 689 if (vaddr == NULL) { 690 env->gr[28] = -10; /* invalid argument */ 691 } else { 692 vaddr[0] = cpu_to_be32(1); 693 vaddr[1] = cpu_to_be32(16 * 1024); 694 vaddr[2] = cpu_to_be32(PA10_BTLB_FIXED); 695 vaddr[3] = cpu_to_be32(PA10_BTLB_VARIABLE); 696 } 697 break; 698 case 1: 699 /* insert BTLB entry */ 700 virt_page = env->gr[24]; /* upper 32 bits */ 701 virt_page <<= 32; 702 virt_page |= env->gr[23]; /* lower 32 bits */ 703 phys_page = env->gr[22]; 704 len = env->gr[21]; 705 slot = env->gr[19]; 706 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INSERT " 707 "0x%08llx-0x%08llx: vpage 0x%llx for phys page 0x%04x len %d " 708 "into slot %d\n", 709 (long long) virt_page << TARGET_PAGE_BITS, 710 (long long) (virt_page + len) << TARGET_PAGE_BITS, 711 (long long) virt_page, phys_page, len, slot); 712 if (slot < btlb_entries) { 713 btlb = &env->tlb[slot]; 714 715 /* Force flush of possibly existing BTLB entry. */ 716 hppa_flush_tlb_ent(env, btlb, true); 717 718 /* Create new BTLB entry */ 719 btlb->itree.start = virt_page << TARGET_PAGE_BITS; 720 btlb->itree.last = btlb->itree.start + len * TARGET_PAGE_SIZE - 1; 721 btlb->pa = phys_page << TARGET_PAGE_BITS; 722 set_access_bits_pa11(env, btlb, env->gr[20]); 723 btlb->t = 0; 724 btlb->d = 1; 725 } else { 726 env->gr[28] = -10; /* invalid argument */ 727 } 728 break; 729 case 2: 730 /* Purge BTLB entry */ 731 slot = env->gr[22]; 732 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE slot %d\n", 733 slot); 734 if (slot < btlb_entries) { 735 btlb = &env->tlb[slot]; 736 hppa_flush_tlb_ent(env, btlb, true); 737 } else { 738 env->gr[28] = -10; /* invalid argument */ 739 } 740 break; 741 case 3: 742 /* Purge all BTLB entries */ 743 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE_ALL\n"); 744 for (slot = 0; slot < btlb_entries; slot++) { 745 btlb = &env->tlb[slot]; 746 hppa_flush_tlb_ent(env, btlb, true); 747 } 748 break; 749 default: 750 env->gr[28] = -2; /* nonexistent option */ 751 break; 752 } 753 } 754