1 /* 2 * HPPA memory access helper routines 3 * 4 * Copyright (c) 2017 Helge Deller 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/page-protection.h" 25 #include "exec/helper-proto.h" 26 #include "hw/core/cpu.h" 27 #include "trace.h" 28 29 hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr) 30 { 31 /* 32 * Figure H-8 "62-bit Absolute Accesses when PSW W-bit is 1" describes 33 * an algorithm in which a 62-bit absolute address is transformed to 34 * a 64-bit physical address. This must then be combined with that 35 * pictured in Figure H-11 "Physical Address Space Mapping", in which 36 * the full physical address is truncated to the N-bit physical address 37 * supported by the implementation. 38 * 39 * Since the supported physical address space is below 54 bits, the 40 * H-8 algorithm is moot and all that is left is to truncate. 41 */ 42 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 54); 43 return sextract64(addr, 0, TARGET_PHYS_ADDR_SPACE_BITS); 44 } 45 46 hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr) 47 { 48 /* 49 * See Figure H-10, "Absolute Accesses when PSW W-bit is 0", 50 * combined with Figure H-11, as above. 51 */ 52 if (likely(extract32(addr, 28, 4) != 0xf)) { 53 /* Memory address space */ 54 addr = (uint32_t)addr; 55 } else if (extract32(addr, 24, 4) != 0) { 56 /* I/O address space */ 57 addr = (int32_t)addr; 58 } else { 59 /* 60 * PDC address space: 61 * Figures H-10 and H-11 of the parisc2.0 spec do not specify 62 * where to map into the 64-bit PDC address space. 63 * We map with an offset which equals the 32-bit address, which 64 * is what can be seen on physical machines too. 65 */ 66 addr = (uint32_t)addr; 67 addr |= -1ull << (TARGET_PHYS_ADDR_SPACE_BITS - 4); 68 } 69 return addr; 70 } 71 72 static HPPATLBEntry *hppa_find_tlb(CPUHPPAState *env, vaddr addr) 73 { 74 IntervalTreeNode *i = interval_tree_iter_first(&env->tlb_root, addr, addr); 75 76 if (i) { 77 HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree); 78 trace_hppa_tlb_find_entry(env, ent, ent->entry_valid, 79 ent->itree.start, ent->itree.last, ent->pa); 80 return ent; 81 } 82 trace_hppa_tlb_find_entry_not_found(env, addr); 83 return NULL; 84 } 85 86 static void hppa_flush_tlb_ent(CPUHPPAState *env, HPPATLBEntry *ent, 87 bool force_flush_btlb) 88 { 89 CPUState *cs = env_cpu(env); 90 bool is_btlb; 91 92 if (!ent->entry_valid) { 93 return; 94 } 95 96 trace_hppa_tlb_flush_ent(env, ent, ent->itree.start, 97 ent->itree.last, ent->pa); 98 99 tlb_flush_range_by_mmuidx(cs, ent->itree.start, 100 ent->itree.last - ent->itree.start + 1, 101 HPPA_MMU_FLUSH_MASK, TARGET_LONG_BITS); 102 103 /* Never clear BTLBs, unless forced to do so. */ 104 is_btlb = ent < &env->tlb[HPPA_BTLB_ENTRIES(env)]; 105 if (is_btlb && !force_flush_btlb) { 106 return; 107 } 108 109 interval_tree_remove(&ent->itree, &env->tlb_root); 110 memset(ent, 0, sizeof(*ent)); 111 112 if (!is_btlb) { 113 ent->unused_next = env->tlb_unused; 114 env->tlb_unused = ent; 115 } 116 } 117 118 static void hppa_flush_tlb_range(CPUHPPAState *env, vaddr va_b, vaddr va_e) 119 { 120 IntervalTreeNode *i, *n; 121 122 i = interval_tree_iter_first(&env->tlb_root, va_b, va_e); 123 for (; i ; i = n) { 124 HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree); 125 126 /* 127 * Find the next entry now: In the normal case the current entry 128 * will be removed, but in the BTLB case it will remain. 129 */ 130 n = interval_tree_iter_next(i, va_b, va_e); 131 hppa_flush_tlb_ent(env, ent, false); 132 } 133 } 134 135 static HPPATLBEntry *hppa_alloc_tlb_ent(CPUHPPAState *env) 136 { 137 HPPATLBEntry *ent = env->tlb_unused; 138 139 if (ent == NULL) { 140 uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); 141 uint32_t i = env->tlb_last; 142 143 if (i < btlb_entries || i >= ARRAY_SIZE(env->tlb)) { 144 i = btlb_entries; 145 } 146 env->tlb_last = i + 1; 147 148 ent = &env->tlb[i]; 149 hppa_flush_tlb_ent(env, ent, false); 150 } 151 152 env->tlb_unused = ent->unused_next; 153 return ent; 154 } 155 156 #define ACCESS_ID_MASK 0xffff 157 158 /* Return the set of protections allowed by a PID match. */ 159 static int match_prot_id_1(uint32_t access_id, uint32_t prot_id) 160 { 161 if (((access_id ^ (prot_id >> 1)) & ACCESS_ID_MASK) == 0) { 162 return (prot_id & 1 163 ? PAGE_EXEC | PAGE_READ 164 : PAGE_EXEC | PAGE_READ | PAGE_WRITE); 165 } 166 return 0; 167 } 168 169 static int match_prot_id32(CPUHPPAState *env, uint32_t access_id) 170 { 171 int r, i; 172 173 for (i = CR_PID1; i <= CR_PID4; ++i) { 174 r = match_prot_id_1(access_id, env->cr[i]); 175 if (r) { 176 return r; 177 } 178 } 179 return 0; 180 } 181 182 static int match_prot_id64(CPUHPPAState *env, uint32_t access_id) 183 { 184 int r, i; 185 186 for (i = CR_PID1; i <= CR_PID4; ++i) { 187 r = match_prot_id_1(access_id, env->cr[i]); 188 if (r) { 189 return r; 190 } 191 r = match_prot_id_1(access_id, env->cr[i] >> 32); 192 if (r) { 193 return r; 194 } 195 } 196 return 0; 197 } 198 199 int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx, 200 int type, hwaddr *pphys, int *pprot) 201 { 202 hwaddr phys; 203 int prot, r_prot, w_prot, x_prot, priv; 204 HPPATLBEntry *ent; 205 int ret = -1; 206 207 /* Virtual translation disabled. Map absolute to physical. */ 208 if (MMU_IDX_MMU_DISABLED(mmu_idx)) { 209 switch (mmu_idx) { 210 case MMU_ABS_W_IDX: 211 phys = hppa_abs_to_phys_pa2_w1(addr); 212 break; 213 case MMU_ABS_IDX: 214 if (hppa_is_pa20(env)) { 215 phys = hppa_abs_to_phys_pa2_w0(addr); 216 } else { 217 phys = (uint32_t)addr; 218 } 219 break; 220 default: 221 g_assert_not_reached(); 222 } 223 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 224 goto egress; 225 } 226 227 /* Find a valid tlb entry that matches the virtual address. */ 228 ent = hppa_find_tlb(env, addr); 229 if (ent == NULL) { 230 phys = 0; 231 prot = 0; 232 ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS; 233 goto egress; 234 } 235 236 /* We now know the physical address. */ 237 phys = ent->pa + (addr - ent->itree.start); 238 239 /* Map TLB access_rights field to QEMU protection. */ 240 priv = MMU_IDX_TO_PRIV(mmu_idx); 241 r_prot = (priv <= ent->ar_pl1) * PAGE_READ; 242 w_prot = (priv <= ent->ar_pl2) * PAGE_WRITE; 243 x_prot = (ent->ar_pl2 <= priv && priv <= ent->ar_pl1) * PAGE_EXEC; 244 switch (ent->ar_type) { 245 case 0: /* read-only: data page */ 246 prot = r_prot; 247 break; 248 case 1: /* read/write: dynamic data page */ 249 prot = r_prot | w_prot; 250 break; 251 case 2: /* read/execute: normal code page */ 252 prot = r_prot | x_prot; 253 break; 254 case 3: /* read/write/execute: dynamic code page */ 255 prot = r_prot | w_prot | x_prot; 256 break; 257 default: /* execute: promote to privilege level type & 3 */ 258 prot = x_prot; 259 break; 260 } 261 262 /* 263 * No guest access type indicates a non-architectural access from 264 * within QEMU. Bypass checks for access, D, B, P and T bits. 265 */ 266 if (type == 0) { 267 goto egress; 268 } 269 270 /* access_id == 0 means public page and no check is performed */ 271 if (ent->access_id && MMU_IDX_TO_P(mmu_idx)) { 272 int access_prot = (hppa_is_pa20(env) 273 ? match_prot_id64(env, ent->access_id) 274 : match_prot_id32(env, ent->access_id)); 275 if (unlikely(!(type & access_prot))) { 276 /* Not allowed -- Inst/Data Memory Protection Id Fault. */ 277 ret = type & PAGE_EXEC ? EXCP_IMP : EXCP_DMPI; 278 goto egress; 279 } 280 /* Otherwise exclude permissions not allowed (i.e WD). */ 281 prot &= access_prot; 282 } 283 284 if (unlikely(!(prot & type))) { 285 /* Not allowed -- Inst/Data Memory Access Rights Fault. */ 286 ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR; 287 goto egress; 288 } 289 290 /* 291 * In priority order, check for conditions which raise faults. 292 * Remove PROT bits that cover the condition we want to check, 293 * so that the resulting PROT will force a re-check of the 294 * architectural TLB entry for the next access. 295 */ 296 if (unlikely(ent->t)) { 297 prot &= PAGE_EXEC; 298 if (!(type & PAGE_EXEC)) { 299 /* The T bit is set -- Page Reference Fault. */ 300 ret = EXCP_PAGE_REF; 301 } 302 } else if (!ent->d) { 303 prot &= PAGE_READ | PAGE_EXEC; 304 if (type & PAGE_WRITE) { 305 /* The D bit is not set -- TLB Dirty Bit Fault. */ 306 ret = EXCP_TLB_DIRTY; 307 } 308 } else if (unlikely(ent->b)) { 309 prot &= PAGE_READ | PAGE_EXEC; 310 if (type & PAGE_WRITE) { 311 /* 312 * The B bit is set -- Data Memory Break Fault. 313 * Except when PSW_X is set, allow this single access to succeed. 314 * The write bit will be invalidated for subsequent accesses. 315 */ 316 if (env->psw_xb & PSW_X) { 317 prot |= PAGE_WRITE_INV; 318 } else { 319 ret = EXCP_DMB; 320 } 321 } 322 } 323 324 egress: 325 *pphys = phys; 326 *pprot = prot; 327 trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys); 328 return ret; 329 } 330 331 hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 332 { 333 HPPACPU *cpu = HPPA_CPU(cs); 334 hwaddr phys; 335 int prot, excp, mmu_idx; 336 337 /* If the (data) mmu is disabled, bypass translation. */ 338 /* ??? We really ought to know if the code mmu is disabled too, 339 in order to get the correct debugging dumps. */ 340 mmu_idx = (cpu->env.psw & PSW_D ? MMU_KERNEL_IDX : 341 cpu->env.psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX); 342 343 excp = hppa_get_physical_address(&cpu->env, addr, mmu_idx, 0, 344 &phys, &prot); 345 346 /* Since we're translating for debugging, the only error that is a 347 hard error is no translation at all. Otherwise, while a real cpu 348 access might not have permission, the debugger does. */ 349 return excp == EXCP_DTLB_MISS ? -1 : phys; 350 } 351 352 void hppa_set_ior_and_isr(CPUHPPAState *env, vaddr addr, bool mmu_disabled) 353 { 354 if (env->psw & PSW_Q) { 355 /* 356 * For pa1.x, the offset and space never overlap, and so we 357 * simply extract the high and low part of the virtual address. 358 * 359 * For pa2.0, the formation of these are described in section 360 * "Interruption Parameter Registers", page 2-15. 361 */ 362 env->cr[CR_IOR] = (uint32_t)addr; 363 env->cr[CR_ISR] = addr >> 32; 364 365 if (hppa_is_pa20(env)) { 366 if (mmu_disabled) { 367 /* 368 * If data translation was disabled, the ISR contains 369 * the upper portion of the abs address, zero-extended. 370 */ 371 env->cr[CR_ISR] &= 0x3fffffff; 372 } else { 373 /* 374 * If data translation was enabled, the upper two bits 375 * of the IOR (the b field) are equal to the two space 376 * bits from the base register used to form the gva. 377 */ 378 uint64_t b; 379 380 b = env->unwind_breg ? env->gr[env->unwind_breg] : 0; 381 b >>= (env->psw & PSW_W ? 62 : 30); 382 env->cr[CR_IOR] |= b << 62; 383 } 384 } 385 } 386 } 387 388 G_NORETURN static void 389 raise_exception_with_ior(CPUHPPAState *env, int excp, uintptr_t retaddr, 390 vaddr addr, bool mmu_disabled) 391 { 392 CPUState *cs = env_cpu(env); 393 394 cs->exception_index = excp; 395 cpu_restore_state(cs, retaddr); 396 hppa_set_ior_and_isr(env, addr, mmu_disabled); 397 398 cpu_loop_exit(cs); 399 } 400 401 void hppa_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 402 vaddr addr, unsigned size, 403 MMUAccessType access_type, 404 int mmu_idx, MemTxAttrs attrs, 405 MemTxResult response, uintptr_t retaddr) 406 { 407 CPUHPPAState *env = cpu_env(cs); 408 409 qemu_log_mask(LOG_GUEST_ERROR, "HPMC at " TARGET_FMT_lx ":" TARGET_FMT_lx 410 " while accessing I/O at %#08" HWADDR_PRIx "\n", 411 env->iasq_f, env->iaoq_f, physaddr); 412 413 /* FIXME: Enable HPMC exceptions when firmware has clean device probing */ 414 if (0) { 415 raise_exception_with_ior(env, EXCP_HPMC, retaddr, addr, 416 MMU_IDX_MMU_DISABLED(mmu_idx)); 417 } 418 } 419 420 bool hppa_cpu_tlb_fill(CPUState *cs, vaddr addr, int size, 421 MMUAccessType type, int mmu_idx, 422 bool probe, uintptr_t retaddr) 423 { 424 HPPACPU *cpu = HPPA_CPU(cs); 425 CPUHPPAState *env = &cpu->env; 426 int prot, excp, a_prot; 427 hwaddr phys; 428 429 switch (type) { 430 case MMU_INST_FETCH: 431 a_prot = PAGE_EXEC; 432 break; 433 case MMU_DATA_STORE: 434 a_prot = PAGE_WRITE; 435 break; 436 default: 437 a_prot = PAGE_READ; 438 break; 439 } 440 441 excp = hppa_get_physical_address(env, addr, mmu_idx, a_prot, &phys, &prot); 442 if (unlikely(excp >= 0)) { 443 if (probe) { 444 return false; 445 } 446 trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx); 447 448 /* Failure. Raise the indicated exception. */ 449 raise_exception_with_ior(env, excp, retaddr, addr, 450 MMU_IDX_MMU_DISABLED(mmu_idx)); 451 } 452 453 trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK, 454 phys & TARGET_PAGE_MASK, size, type, mmu_idx); 455 456 /* 457 * Success! Store the translation into the QEMU TLB. 458 * Note that we always install a single-page entry, because that 459 * is what works best with softmmu -- anything else will trigger 460 * the large page protection mask. We do not require this, 461 * because we record the large page here in the hppa tlb. 462 */ 463 tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK, 464 prot, mmu_idx, TARGET_PAGE_SIZE); 465 return true; 466 } 467 468 /* Insert (Insn/Data) TLB Address. Note this is PA 1.1 only. */ 469 void HELPER(itlba_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg) 470 { 471 HPPATLBEntry *ent; 472 473 /* Zap any old entries covering ADDR. */ 474 addr &= TARGET_PAGE_MASK; 475 hppa_flush_tlb_range(env, addr, addr + TARGET_PAGE_SIZE - 1); 476 477 ent = env->tlb_partial; 478 if (ent == NULL) { 479 ent = hppa_alloc_tlb_ent(env); 480 env->tlb_partial = ent; 481 } 482 483 /* Note that ent->entry_valid == 0 already. */ 484 ent->itree.start = addr; 485 ent->itree.last = addr + TARGET_PAGE_SIZE - 1; 486 ent->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS; 487 trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa); 488 } 489 490 static void set_access_bits_pa11(CPUHPPAState *env, HPPATLBEntry *ent, 491 target_ulong reg) 492 { 493 ent->access_id = extract32(reg, 1, 18); 494 ent->u = extract32(reg, 19, 1); 495 ent->ar_pl2 = extract32(reg, 20, 2); 496 ent->ar_pl1 = extract32(reg, 22, 2); 497 ent->ar_type = extract32(reg, 24, 3); 498 ent->b = extract32(reg, 27, 1); 499 ent->d = extract32(reg, 28, 1); 500 ent->t = extract32(reg, 29, 1); 501 ent->entry_valid = 1; 502 503 interval_tree_insert(&ent->itree, &env->tlb_root); 504 trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2, 505 ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t); 506 } 507 508 /* Insert (Insn/Data) TLB Protection. Note this is PA 1.1 only. */ 509 void HELPER(itlbp_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg) 510 { 511 HPPATLBEntry *ent = env->tlb_partial; 512 513 if (ent) { 514 env->tlb_partial = NULL; 515 if (ent->itree.start <= addr && addr <= ent->itree.last) { 516 set_access_bits_pa11(env, ent, reg); 517 return; 518 } 519 } 520 qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n"); 521 } 522 523 static void itlbt_pa20(CPUHPPAState *env, target_ulong r1, 524 target_ulong r2, vaddr va_b) 525 { 526 HPPATLBEntry *ent; 527 vaddr va_e; 528 uint64_t va_size; 529 int mask_shift; 530 531 mask_shift = 2 * (r1 & 0xf); 532 va_size = (uint64_t)TARGET_PAGE_SIZE << mask_shift; 533 va_b &= -va_size; 534 va_e = va_b + va_size - 1; 535 536 hppa_flush_tlb_range(env, va_b, va_e); 537 ent = hppa_alloc_tlb_ent(env); 538 539 ent->itree.start = va_b; 540 ent->itree.last = va_e; 541 542 /* Extract all 52 bits present in the page table entry. */ 543 ent->pa = r1 << (TARGET_PAGE_BITS - 5); 544 /* Align per the page size. */ 545 ent->pa &= TARGET_PAGE_MASK << mask_shift; 546 /* Ignore the bits beyond physical address space. */ 547 ent->pa = sextract64(ent->pa, 0, TARGET_PHYS_ADDR_SPACE_BITS); 548 549 ent->t = extract64(r2, 61, 1); 550 ent->d = extract64(r2, 60, 1); 551 ent->b = extract64(r2, 59, 1); 552 ent->ar_type = extract64(r2, 56, 3); 553 ent->ar_pl1 = extract64(r2, 54, 2); 554 ent->ar_pl2 = extract64(r2, 52, 2); 555 ent->u = extract64(r2, 51, 1); 556 /* o = bit 50 */ 557 /* p = bit 49 */ 558 ent->access_id = extract64(r2, 1, 31); 559 ent->entry_valid = 1; 560 561 interval_tree_insert(&ent->itree, &env->tlb_root); 562 trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa); 563 trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, 564 ent->ar_pl2, ent->ar_pl1, ent->ar_type, 565 ent->b, ent->d, ent->t); 566 } 567 568 void HELPER(idtlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2) 569 { 570 vaddr va_b = deposit64(env->cr[CR_IOR], 32, 32, env->cr[CR_ISR]); 571 itlbt_pa20(env, r1, r2, va_b); 572 } 573 574 void HELPER(iitlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2) 575 { 576 vaddr va_b = deposit64(env->cr[CR_IIAOQ], 32, 32, env->cr[CR_IIASQ]); 577 itlbt_pa20(env, r1, r2, va_b); 578 } 579 580 /* Purge (Insn/Data) TLB. */ 581 static void ptlb_work(CPUState *cpu, run_on_cpu_data data) 582 { 583 vaddr start = data.target_ptr; 584 vaddr end; 585 586 /* 587 * PA2.0 allows a range of pages encoded into GR[b], which we have 588 * copied into the bottom bits of the otherwise page-aligned address. 589 * PA1.x will always provide zero here, for a single page flush. 590 */ 591 end = start & 0xf; 592 start &= TARGET_PAGE_MASK; 593 end = (vaddr)TARGET_PAGE_SIZE << (2 * end); 594 end = start + end - 1; 595 596 hppa_flush_tlb_range(cpu_env(cpu), start, end); 597 } 598 599 /* This is local to the current cpu. */ 600 void HELPER(ptlb_l)(CPUHPPAState *env, target_ulong addr) 601 { 602 trace_hppa_tlb_ptlb_local(env); 603 ptlb_work(env_cpu(env), RUN_ON_CPU_TARGET_PTR(addr)); 604 } 605 606 /* This is synchronous across all processors. */ 607 void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr) 608 { 609 CPUState *src = env_cpu(env); 610 CPUState *cpu; 611 bool wait = false; 612 613 trace_hppa_tlb_ptlb(env); 614 run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr); 615 616 CPU_FOREACH(cpu) { 617 if (cpu != src) { 618 async_run_on_cpu(cpu, ptlb_work, data); 619 wait = true; 620 } 621 } 622 if (wait) { 623 async_safe_run_on_cpu(src, ptlb_work, data); 624 } else { 625 ptlb_work(src, data); 626 } 627 } 628 629 void hppa_ptlbe(CPUHPPAState *env) 630 { 631 uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); 632 uint32_t i; 633 634 /* Zap the (non-btlb) tlb entries themselves. */ 635 memset(&env->tlb[btlb_entries], 0, 636 sizeof(env->tlb) - btlb_entries * sizeof(env->tlb[0])); 637 env->tlb_last = btlb_entries; 638 env->tlb_partial = NULL; 639 640 /* Put them all onto the unused list. */ 641 env->tlb_unused = &env->tlb[btlb_entries]; 642 for (i = btlb_entries; i < ARRAY_SIZE(env->tlb) - 1; ++i) { 643 env->tlb[i].unused_next = &env->tlb[i + 1]; 644 } 645 646 /* Re-initialize the interval tree with only the btlb entries. */ 647 memset(&env->tlb_root, 0, sizeof(env->tlb_root)); 648 for (i = 0; i < btlb_entries; ++i) { 649 if (env->tlb[i].entry_valid) { 650 interval_tree_insert(&env->tlb[i].itree, &env->tlb_root); 651 } 652 } 653 654 tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK); 655 } 656 657 /* Purge (Insn/Data) TLB entry. This affects an implementation-defined 658 number of pages/entries (we choose all), and is local to the cpu. */ 659 void HELPER(ptlbe)(CPUHPPAState *env) 660 { 661 trace_hppa_tlb_ptlbe(env); 662 qemu_log_mask(CPU_LOG_MMU, "FLUSH ALL TLB ENTRIES\n"); 663 hppa_ptlbe(env); 664 } 665 666 void cpu_hppa_change_prot_id(CPUHPPAState *env) 667 { 668 tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_P_MASK); 669 } 670 671 void HELPER(change_prot_id)(CPUHPPAState *env) 672 { 673 cpu_hppa_change_prot_id(env); 674 } 675 676 target_ulong HELPER(lpa)(CPUHPPAState *env, target_ulong addr) 677 { 678 hwaddr phys; 679 int prot, excp; 680 681 excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0, 682 &phys, &prot); 683 if (excp >= 0) { 684 if (excp == EXCP_DTLB_MISS) { 685 excp = EXCP_NA_DTLB_MISS; 686 } 687 trace_hppa_tlb_lpa_failed(env, addr); 688 raise_exception_with_ior(env, excp, GETPC(), addr, false); 689 } 690 trace_hppa_tlb_lpa_success(env, addr, phys); 691 return phys; 692 } 693 694 /* 695 * diag_btlb() emulates the PDC PDC_BLOCK_TLB firmware call to 696 * allow operating systems to modify the Block TLB (BTLB) entries. 697 * For implementation details see page 1-13 in 698 * https://parisc.wiki.kernel.org/images-parisc/e/ef/Pdc11-v0.96-Ch1-procs.pdf 699 */ 700 void HELPER(diag_btlb)(CPUHPPAState *env) 701 { 702 unsigned int phys_page, len, slot; 703 int mmu_idx = cpu_mmu_index(env_cpu(env), 0); 704 uintptr_t ra = GETPC(); 705 HPPATLBEntry *btlb; 706 uint64_t virt_page; 707 uint32_t *vaddr; 708 uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); 709 710 /* BTLBs are not supported on 64-bit CPUs */ 711 if (btlb_entries == 0) { 712 env->gr[28] = -1; /* nonexistent procedure */ 713 return; 714 } 715 716 env->gr[28] = 0; /* PDC_OK */ 717 718 switch (env->gr[25]) { 719 case 0: 720 /* return BTLB parameters */ 721 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INFO\n"); 722 vaddr = probe_access(env, env->gr[24], 4 * sizeof(uint32_t), 723 MMU_DATA_STORE, mmu_idx, ra); 724 if (vaddr == NULL) { 725 env->gr[28] = -10; /* invalid argument */ 726 } else { 727 vaddr[0] = cpu_to_be32(1); 728 vaddr[1] = cpu_to_be32(16 * 1024); 729 vaddr[2] = cpu_to_be32(PA10_BTLB_FIXED); 730 vaddr[3] = cpu_to_be32(PA10_BTLB_VARIABLE); 731 } 732 break; 733 case 1: 734 /* insert BTLB entry */ 735 virt_page = env->gr[24]; /* upper 32 bits */ 736 virt_page <<= 32; 737 virt_page |= env->gr[23]; /* lower 32 bits */ 738 phys_page = env->gr[22]; 739 len = env->gr[21]; 740 slot = env->gr[19]; 741 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INSERT " 742 "0x%08llx-0x%08llx: vpage 0x%llx for phys page 0x%04x len %d " 743 "into slot %d\n", 744 (long long) virt_page << TARGET_PAGE_BITS, 745 (long long) (virt_page + len) << TARGET_PAGE_BITS, 746 (long long) virt_page, phys_page, len, slot); 747 if (slot < btlb_entries) { 748 btlb = &env->tlb[slot]; 749 750 /* Force flush of possibly existing BTLB entry. */ 751 hppa_flush_tlb_ent(env, btlb, true); 752 753 /* Create new BTLB entry */ 754 btlb->itree.start = virt_page << TARGET_PAGE_BITS; 755 btlb->itree.last = btlb->itree.start + len * TARGET_PAGE_SIZE - 1; 756 btlb->pa = phys_page << TARGET_PAGE_BITS; 757 set_access_bits_pa11(env, btlb, env->gr[20]); 758 btlb->t = 0; 759 btlb->d = 1; 760 } else { 761 env->gr[28] = -10; /* invalid argument */ 762 } 763 break; 764 case 2: 765 /* Purge BTLB entry */ 766 slot = env->gr[22]; 767 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE slot %d\n", 768 slot); 769 if (slot < btlb_entries) { 770 btlb = &env->tlb[slot]; 771 hppa_flush_tlb_ent(env, btlb, true); 772 } else { 773 env->gr[28] = -10; /* invalid argument */ 774 } 775 break; 776 case 3: 777 /* Purge all BTLB entries */ 778 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE_ALL\n"); 779 for (slot = 0; slot < btlb_entries; slot++) { 780 btlb = &env->tlb[slot]; 781 hppa_flush_tlb_ent(env, btlb, true); 782 } 783 break; 784 default: 785 env->gr[28] = -2; /* nonexistent option */ 786 break; 787 } 788 } 789 790 uint64_t HELPER(b_gate_priv)(CPUHPPAState *env, uint64_t iaoq_f) 791 { 792 uint64_t gva = hppa_form_gva(env, env->iasq_f, iaoq_f); 793 HPPATLBEntry *ent = hppa_find_tlb(env, gva); 794 795 if (ent == NULL) { 796 raise_exception_with_ior(env, EXCP_ITLB_MISS, GETPC(), gva, false); 797 } 798 799 /* 800 * There should be no need to check page permissions, as that will 801 * already have been done by tb_lookup via get_page_addr_code. 802 * All we need at this point is to check the ar_type. 803 * 804 * No change for non-gateway pages or for priv decrease. 805 */ 806 if (ent->ar_type & 4) { 807 int old_priv = iaoq_f & 3; 808 int new_priv = ent->ar_type & 3; 809 810 if (new_priv < old_priv) { 811 iaoq_f = (iaoq_f & -4) | new_priv; 812 } 813 } 814 return iaoq_f; 815 } 816