1 /* 2 * HPPA memory access helper routines 3 * 4 * Copyright (c) 2017 Helge Deller 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/page-protection.h" 25 #include "exec/helper-proto.h" 26 #include "hw/core/cpu.h" 27 #include "trace.h" 28 29 hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr) 30 { 31 /* 32 * Figure H-8 "62-bit Absolute Accesses when PSW W-bit is 1" describes 33 * an algorithm in which a 62-bit absolute address is transformed to 34 * a 64-bit physical address. This must then be combined with that 35 * pictured in Figure H-11 "Physical Address Space Mapping", in which 36 * the full physical address is truncated to the N-bit physical address 37 * supported by the implementation. 38 * 39 * Since the supported physical address space is below 54 bits, the 40 * H-8 algorithm is moot and all that is left is to truncate. 41 */ 42 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 54); 43 return sextract64(addr, 0, TARGET_PHYS_ADDR_SPACE_BITS); 44 } 45 46 hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr) 47 { 48 /* 49 * See Figure H-10, "Absolute Accesses when PSW W-bit is 0", 50 * combined with Figure H-11, as above. 51 */ 52 if (likely(extract32(addr, 28, 4) != 0xf)) { 53 /* Memory address space */ 54 addr = (uint32_t)addr; 55 } else if (extract32(addr, 24, 4) != 0) { 56 /* I/O address space */ 57 addr = (int32_t)addr; 58 } else { 59 /* 60 * PDC address space: 61 * Figures H-10 and H-11 of the parisc2.0 spec do not specify 62 * where to map into the 64-bit PDC address space. 63 * We map with an offset which equals the 32-bit address, which 64 * is what can be seen on physical machines too. 65 */ 66 addr = (uint32_t)addr; 67 addr |= -1ull << (TARGET_PHYS_ADDR_SPACE_BITS - 4); 68 } 69 return addr; 70 } 71 72 static HPPATLBEntry *hppa_find_tlb(CPUHPPAState *env, vaddr addr) 73 { 74 IntervalTreeNode *i = interval_tree_iter_first(&env->tlb_root, addr, addr); 75 76 if (i) { 77 HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree); 78 trace_hppa_tlb_find_entry(env, ent, ent->entry_valid, 79 ent->itree.start, ent->itree.last, ent->pa); 80 return ent; 81 } 82 trace_hppa_tlb_find_entry_not_found(env, addr); 83 return NULL; 84 } 85 86 static void hppa_flush_tlb_ent(CPUHPPAState *env, HPPATLBEntry *ent, 87 bool force_flush_btlb) 88 { 89 CPUState *cs = env_cpu(env); 90 bool is_btlb; 91 92 if (!ent->entry_valid) { 93 return; 94 } 95 96 trace_hppa_tlb_flush_ent(env, ent, ent->itree.start, 97 ent->itree.last, ent->pa); 98 99 tlb_flush_range_by_mmuidx(cs, ent->itree.start, 100 ent->itree.last - ent->itree.start + 1, 101 HPPA_MMU_FLUSH_MASK, TARGET_LONG_BITS); 102 103 /* Never clear BTLBs, unless forced to do so. */ 104 is_btlb = ent < &env->tlb[HPPA_BTLB_ENTRIES(env)]; 105 if (is_btlb && !force_flush_btlb) { 106 return; 107 } 108 109 interval_tree_remove(&ent->itree, &env->tlb_root); 110 memset(ent, 0, sizeof(*ent)); 111 112 if (!is_btlb) { 113 ent->unused_next = env->tlb_unused; 114 env->tlb_unused = ent; 115 } 116 } 117 118 static void hppa_flush_tlb_range(CPUHPPAState *env, vaddr va_b, vaddr va_e) 119 { 120 IntervalTreeNode *i, *n; 121 122 i = interval_tree_iter_first(&env->tlb_root, va_b, va_e); 123 for (; i ; i = n) { 124 HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree); 125 126 /* 127 * Find the next entry now: In the normal case the current entry 128 * will be removed, but in the BTLB case it will remain. 129 */ 130 n = interval_tree_iter_next(i, va_b, va_e); 131 hppa_flush_tlb_ent(env, ent, false); 132 } 133 } 134 135 static HPPATLBEntry *hppa_alloc_tlb_ent(CPUHPPAState *env) 136 { 137 HPPATLBEntry *ent = env->tlb_unused; 138 139 if (ent == NULL) { 140 uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); 141 uint32_t i = env->tlb_last; 142 143 if (i < btlb_entries || i >= ARRAY_SIZE(env->tlb)) { 144 i = btlb_entries; 145 } 146 env->tlb_last = i + 1; 147 148 ent = &env->tlb[i]; 149 hppa_flush_tlb_ent(env, ent, false); 150 } 151 152 env->tlb_unused = ent->unused_next; 153 return ent; 154 } 155 156 #define ACCESS_ID_MASK 0xffff 157 158 /* Return the set of protections allowed by a PID match. */ 159 static int match_prot_id_1(uint32_t access_id, uint32_t prot_id) 160 { 161 if (((access_id ^ (prot_id >> 1)) & ACCESS_ID_MASK) == 0) { 162 return (prot_id & 1 163 ? PAGE_EXEC | PAGE_READ 164 : PAGE_EXEC | PAGE_READ | PAGE_WRITE); 165 } 166 return 0; 167 } 168 169 static int match_prot_id32(CPUHPPAState *env, uint32_t access_id) 170 { 171 int r, i; 172 173 for (i = CR_PID1; i <= CR_PID4; ++i) { 174 r = match_prot_id_1(access_id, env->cr[i]); 175 if (r) { 176 return r; 177 } 178 } 179 return 0; 180 } 181 182 static int match_prot_id64(CPUHPPAState *env, uint32_t access_id) 183 { 184 int r, i; 185 186 for (i = CR_PID1; i <= CR_PID4; ++i) { 187 r = match_prot_id_1(access_id, env->cr[i]); 188 if (r) { 189 return r; 190 } 191 r = match_prot_id_1(access_id, env->cr[i] >> 32); 192 if (r) { 193 return r; 194 } 195 } 196 return 0; 197 } 198 199 int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx, 200 int type, MemOp mop, hwaddr *pphys, int *pprot) 201 { 202 hwaddr phys; 203 int prot, r_prot, w_prot, x_prot, priv; 204 HPPATLBEntry *ent; 205 int ret = -1; 206 207 /* Virtual translation disabled. Map absolute to physical. */ 208 if (MMU_IDX_MMU_DISABLED(mmu_idx)) { 209 switch (mmu_idx) { 210 case MMU_ABS_W_IDX: 211 phys = hppa_abs_to_phys_pa2_w1(addr); 212 break; 213 case MMU_ABS_IDX: 214 if (hppa_is_pa20(env)) { 215 phys = hppa_abs_to_phys_pa2_w0(addr); 216 } else { 217 phys = (uint32_t)addr; 218 } 219 break; 220 default: 221 g_assert_not_reached(); 222 } 223 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 224 goto egress_align; 225 } 226 227 /* Find a valid tlb entry that matches the virtual address. */ 228 ent = hppa_find_tlb(env, addr); 229 if (ent == NULL) { 230 phys = 0; 231 prot = 0; 232 ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS; 233 goto egress; 234 } 235 236 /* We now know the physical address. */ 237 phys = ent->pa + (addr - ent->itree.start); 238 239 /* Map TLB access_rights field to QEMU protection. */ 240 priv = MMU_IDX_TO_PRIV(mmu_idx); 241 r_prot = (priv <= ent->ar_pl1) * PAGE_READ; 242 w_prot = (priv <= ent->ar_pl2) * PAGE_WRITE; 243 x_prot = (ent->ar_pl2 <= priv && priv <= ent->ar_pl1) * PAGE_EXEC; 244 switch (ent->ar_type) { 245 case 0: /* read-only: data page */ 246 prot = r_prot; 247 break; 248 case 1: /* read/write: dynamic data page */ 249 prot = r_prot | w_prot; 250 break; 251 case 2: /* read/execute: normal code page */ 252 prot = r_prot | x_prot; 253 break; 254 case 3: /* read/write/execute: dynamic code page */ 255 prot = r_prot | w_prot | x_prot; 256 break; 257 default: /* execute: promote to privilege level type & 3 */ 258 prot = x_prot; 259 break; 260 } 261 262 /* 263 * No guest access type indicates a non-architectural access from 264 * within QEMU. Bypass checks for access, D, B, P and T bits. 265 */ 266 if (type == 0) { 267 goto egress; 268 } 269 270 if (unlikely(!(prot & type))) { 271 /* Not allowed -- Inst/Data Memory Access Rights Fault. */ 272 ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR; 273 goto egress; 274 } 275 276 /* access_id == 0 means public page and no check is performed */ 277 if (ent->access_id && MMU_IDX_TO_P(mmu_idx)) { 278 int access_prot = (hppa_is_pa20(env) 279 ? match_prot_id64(env, ent->access_id) 280 : match_prot_id32(env, ent->access_id)); 281 if (unlikely(!(type & access_prot))) { 282 /* Not allowed -- Inst/Data Memory Protection Id Fault. */ 283 ret = type & PAGE_EXEC ? EXCP_IMP : EXCP_DMPI; 284 goto egress; 285 } 286 /* Otherwise exclude permissions not allowed (i.e WD). */ 287 prot &= access_prot; 288 } 289 290 /* 291 * In reverse priority order, check for conditions which raise faults. 292 * Remove PROT bits that cover the condition we want to check, 293 * so that the resulting PROT will force a re-check of the 294 * architectural TLB entry for the next access. 295 */ 296 if (unlikely(ent->t)) { 297 prot &= PAGE_EXEC; 298 if (!(type & PAGE_EXEC)) { 299 /* The T bit is set -- Page Reference Fault. */ 300 ret = EXCP_PAGE_REF; 301 } 302 } 303 if (unlikely(!ent->d)) { 304 prot &= PAGE_READ | PAGE_EXEC; 305 if (type & PAGE_WRITE) { 306 /* The D bit is not set -- TLB Dirty Bit Fault. */ 307 ret = EXCP_TLB_DIRTY; 308 } 309 } 310 if (unlikely(ent->b)) { 311 prot &= PAGE_READ | PAGE_EXEC; 312 if (type & PAGE_WRITE) { 313 /* 314 * The B bit is set -- Data Memory Break Fault. 315 * Except when PSW_X is set, allow this single access to succeed. 316 * The write bit will be invalidated for subsequent accesses. 317 */ 318 if (env->psw_xb & PSW_X) { 319 prot |= PAGE_WRITE_INV; 320 } else { 321 ret = EXCP_DMB; 322 } 323 } 324 } 325 326 egress_align: 327 if (addr & ((1u << memop_alignment_bits(mop)) - 1)) { 328 ret = EXCP_UNALIGN; 329 } 330 331 egress: 332 *pphys = phys; 333 *pprot = prot; 334 trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys); 335 return ret; 336 } 337 338 hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 339 { 340 HPPACPU *cpu = HPPA_CPU(cs); 341 hwaddr phys; 342 int prot, excp, mmu_idx; 343 344 /* If the (data) mmu is disabled, bypass translation. */ 345 /* ??? We really ought to know if the code mmu is disabled too, 346 in order to get the correct debugging dumps. */ 347 mmu_idx = (cpu->env.psw & PSW_D ? MMU_KERNEL_IDX : 348 cpu->env.psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX); 349 350 excp = hppa_get_physical_address(&cpu->env, addr, mmu_idx, 0, 0, 351 &phys, &prot); 352 353 /* Since we're translating for debugging, the only error that is a 354 hard error is no translation at all. Otherwise, while a real cpu 355 access might not have permission, the debugger does. */ 356 return excp == EXCP_DTLB_MISS ? -1 : phys; 357 } 358 359 void hppa_set_ior_and_isr(CPUHPPAState *env, vaddr addr, bool mmu_disabled) 360 { 361 if (env->psw & PSW_Q) { 362 /* 363 * For pa1.x, the offset and space never overlap, and so we 364 * simply extract the high and low part of the virtual address. 365 * 366 * For pa2.0, the formation of these are described in section 367 * "Interruption Parameter Registers", page 2-15. 368 */ 369 env->cr[CR_IOR] = (uint32_t)addr; 370 env->cr[CR_ISR] = addr >> 32; 371 372 if (hppa_is_pa20(env)) { 373 if (mmu_disabled) { 374 /* 375 * If data translation was disabled, the ISR contains 376 * the upper portion of the abs address, zero-extended. 377 */ 378 env->cr[CR_ISR] &= 0x3fffffff; 379 } else { 380 /* 381 * If data translation was enabled, the upper two bits 382 * of the IOR (the b field) are equal to the two space 383 * bits from the base register used to form the gva. 384 */ 385 uint64_t b; 386 387 b = env->unwind_breg ? env->gr[env->unwind_breg] : 0; 388 b >>= (env->psw & PSW_W ? 62 : 30); 389 env->cr[CR_IOR] |= b << 62; 390 } 391 } 392 } 393 } 394 395 G_NORETURN static void 396 raise_exception_with_ior(CPUHPPAState *env, int excp, uintptr_t retaddr, 397 vaddr addr, bool mmu_disabled) 398 { 399 CPUState *cs = env_cpu(env); 400 401 cs->exception_index = excp; 402 cpu_restore_state(cs, retaddr); 403 hppa_set_ior_and_isr(env, addr, mmu_disabled); 404 405 cpu_loop_exit(cs); 406 } 407 408 void hppa_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 409 vaddr addr, unsigned size, 410 MMUAccessType access_type, 411 int mmu_idx, MemTxAttrs attrs, 412 MemTxResult response, uintptr_t retaddr) 413 { 414 CPUHPPAState *env = cpu_env(cs); 415 416 qemu_log_mask(LOG_GUEST_ERROR, "HPMC at " TARGET_FMT_lx ":" TARGET_FMT_lx 417 " while accessing I/O at %#08" HWADDR_PRIx "\n", 418 env->iasq_f, env->iaoq_f, physaddr); 419 420 /* FIXME: Enable HPMC exceptions when firmware has clean device probing */ 421 if (0) { 422 raise_exception_with_ior(env, EXCP_HPMC, retaddr, addr, 423 MMU_IDX_MMU_DISABLED(mmu_idx)); 424 } 425 } 426 427 bool hppa_cpu_tlb_fill_align(CPUState *cs, CPUTLBEntryFull *out, vaddr addr, 428 MMUAccessType type, int mmu_idx, 429 MemOp memop, int size, bool probe, uintptr_t ra) 430 { 431 CPUHPPAState *env = cpu_env(cs); 432 int prot, excp, a_prot; 433 hwaddr phys; 434 435 switch (type) { 436 case MMU_INST_FETCH: 437 a_prot = PAGE_EXEC; 438 break; 439 case MMU_DATA_STORE: 440 a_prot = PAGE_WRITE; 441 break; 442 default: 443 a_prot = PAGE_READ; 444 break; 445 } 446 447 excp = hppa_get_physical_address(env, addr, mmu_idx, a_prot, memop, 448 &phys, &prot); 449 if (unlikely(excp >= 0)) { 450 if (probe) { 451 return false; 452 } 453 trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx); 454 455 /* Failure. Raise the indicated exception. */ 456 raise_exception_with_ior(env, excp, ra, addr, 457 MMU_IDX_MMU_DISABLED(mmu_idx)); 458 } 459 460 trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK, 461 phys & TARGET_PAGE_MASK, size, type, mmu_idx); 462 463 /* 464 * Success! Store the translation into the QEMU TLB. 465 * Note that we always install a single-page entry, because that 466 * is what works best with softmmu -- anything else will trigger 467 * the large page protection mask. We do not require this, 468 * because we record the large page here in the hppa tlb. 469 */ 470 memset(out, 0, sizeof(*out)); 471 out->phys_addr = phys; 472 out->prot = prot; 473 out->attrs = MEMTXATTRS_UNSPECIFIED; 474 out->lg_page_size = TARGET_PAGE_BITS; 475 476 return true; 477 } 478 479 /* Insert (Insn/Data) TLB Address. Note this is PA 1.1 only. */ 480 void HELPER(itlba_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg) 481 { 482 HPPATLBEntry *ent; 483 484 /* Zap any old entries covering ADDR. */ 485 addr &= TARGET_PAGE_MASK; 486 hppa_flush_tlb_range(env, addr, addr + TARGET_PAGE_SIZE - 1); 487 488 ent = env->tlb_partial; 489 if (ent == NULL) { 490 ent = hppa_alloc_tlb_ent(env); 491 env->tlb_partial = ent; 492 } 493 494 /* Note that ent->entry_valid == 0 already. */ 495 ent->itree.start = addr; 496 ent->itree.last = addr + TARGET_PAGE_SIZE - 1; 497 ent->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS; 498 trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa); 499 } 500 501 static void set_access_bits_pa11(CPUHPPAState *env, HPPATLBEntry *ent, 502 target_ulong reg) 503 { 504 ent->access_id = extract32(reg, 1, 18); 505 ent->u = extract32(reg, 19, 1); 506 ent->ar_pl2 = extract32(reg, 20, 2); 507 ent->ar_pl1 = extract32(reg, 22, 2); 508 ent->ar_type = extract32(reg, 24, 3); 509 ent->b = extract32(reg, 27, 1); 510 ent->d = extract32(reg, 28, 1); 511 ent->t = extract32(reg, 29, 1); 512 ent->entry_valid = 1; 513 514 interval_tree_insert(&ent->itree, &env->tlb_root); 515 trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2, 516 ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t); 517 } 518 519 /* Insert (Insn/Data) TLB Protection. Note this is PA 1.1 only. */ 520 void HELPER(itlbp_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg) 521 { 522 HPPATLBEntry *ent = env->tlb_partial; 523 524 if (ent) { 525 env->tlb_partial = NULL; 526 if (ent->itree.start <= addr && addr <= ent->itree.last) { 527 set_access_bits_pa11(env, ent, reg); 528 return; 529 } 530 } 531 qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n"); 532 } 533 534 static void itlbt_pa20(CPUHPPAState *env, target_ulong r1, 535 target_ulong r2, vaddr va_b) 536 { 537 HPPATLBEntry *ent; 538 vaddr va_e; 539 uint64_t va_size; 540 int mask_shift; 541 542 mask_shift = 2 * (r1 & 0xf); 543 va_size = (uint64_t)TARGET_PAGE_SIZE << mask_shift; 544 va_b &= -va_size; 545 va_e = va_b + va_size - 1; 546 547 hppa_flush_tlb_range(env, va_b, va_e); 548 ent = hppa_alloc_tlb_ent(env); 549 550 ent->itree.start = va_b; 551 ent->itree.last = va_e; 552 553 /* Extract all 52 bits present in the page table entry. */ 554 ent->pa = r1 << (TARGET_PAGE_BITS - 5); 555 /* Align per the page size. */ 556 ent->pa &= TARGET_PAGE_MASK << mask_shift; 557 /* Ignore the bits beyond physical address space. */ 558 ent->pa = sextract64(ent->pa, 0, TARGET_PHYS_ADDR_SPACE_BITS); 559 560 ent->t = extract64(r2, 61, 1); 561 ent->d = extract64(r2, 60, 1); 562 ent->b = extract64(r2, 59, 1); 563 ent->ar_type = extract64(r2, 56, 3); 564 ent->ar_pl1 = extract64(r2, 54, 2); 565 ent->ar_pl2 = extract64(r2, 52, 2); 566 ent->u = extract64(r2, 51, 1); 567 /* o = bit 50 */ 568 /* p = bit 49 */ 569 ent->access_id = extract64(r2, 1, 31); 570 ent->entry_valid = 1; 571 572 interval_tree_insert(&ent->itree, &env->tlb_root); 573 trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa); 574 trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, 575 ent->ar_pl2, ent->ar_pl1, ent->ar_type, 576 ent->b, ent->d, ent->t); 577 } 578 579 void HELPER(idtlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2) 580 { 581 vaddr va_b = deposit64(env->cr[CR_IOR], 32, 32, env->cr[CR_ISR]); 582 itlbt_pa20(env, r1, r2, va_b); 583 } 584 585 void HELPER(iitlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2) 586 { 587 vaddr va_b = deposit64(env->cr[CR_IIAOQ], 32, 32, env->cr[CR_IIASQ]); 588 itlbt_pa20(env, r1, r2, va_b); 589 } 590 591 /* Purge (Insn/Data) TLB. */ 592 static void ptlb_work(CPUState *cpu, run_on_cpu_data data) 593 { 594 vaddr start = data.target_ptr; 595 vaddr end; 596 597 /* 598 * PA2.0 allows a range of pages encoded into GR[b], which we have 599 * copied into the bottom bits of the otherwise page-aligned address. 600 * PA1.x will always provide zero here, for a single page flush. 601 */ 602 end = start & 0xf; 603 start &= TARGET_PAGE_MASK; 604 end = (vaddr)TARGET_PAGE_SIZE << (2 * end); 605 end = start + end - 1; 606 607 hppa_flush_tlb_range(cpu_env(cpu), start, end); 608 } 609 610 /* This is local to the current cpu. */ 611 void HELPER(ptlb_l)(CPUHPPAState *env, target_ulong addr) 612 { 613 trace_hppa_tlb_ptlb_local(env); 614 ptlb_work(env_cpu(env), RUN_ON_CPU_TARGET_PTR(addr)); 615 } 616 617 /* This is synchronous across all processors. */ 618 void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr) 619 { 620 CPUState *src = env_cpu(env); 621 CPUState *cpu; 622 bool wait = false; 623 624 trace_hppa_tlb_ptlb(env); 625 run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr); 626 627 CPU_FOREACH(cpu) { 628 if (cpu != src) { 629 async_run_on_cpu(cpu, ptlb_work, data); 630 wait = true; 631 } 632 } 633 if (wait) { 634 async_safe_run_on_cpu(src, ptlb_work, data); 635 } else { 636 ptlb_work(src, data); 637 } 638 } 639 640 void hppa_ptlbe(CPUHPPAState *env) 641 { 642 uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); 643 uint32_t i; 644 645 /* Zap the (non-btlb) tlb entries themselves. */ 646 memset(&env->tlb[btlb_entries], 0, 647 sizeof(env->tlb) - btlb_entries * sizeof(env->tlb[0])); 648 env->tlb_last = btlb_entries; 649 env->tlb_partial = NULL; 650 651 /* Put them all onto the unused list. */ 652 env->tlb_unused = &env->tlb[btlb_entries]; 653 for (i = btlb_entries; i < ARRAY_SIZE(env->tlb) - 1; ++i) { 654 env->tlb[i].unused_next = &env->tlb[i + 1]; 655 } 656 657 /* Re-initialize the interval tree with only the btlb entries. */ 658 memset(&env->tlb_root, 0, sizeof(env->tlb_root)); 659 for (i = 0; i < btlb_entries; ++i) { 660 if (env->tlb[i].entry_valid) { 661 interval_tree_insert(&env->tlb[i].itree, &env->tlb_root); 662 } 663 } 664 665 tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK); 666 } 667 668 /* Purge (Insn/Data) TLB entry. This affects an implementation-defined 669 number of pages/entries (we choose all), and is local to the cpu. */ 670 void HELPER(ptlbe)(CPUHPPAState *env) 671 { 672 trace_hppa_tlb_ptlbe(env); 673 qemu_log_mask(CPU_LOG_MMU, "FLUSH ALL TLB ENTRIES\n"); 674 hppa_ptlbe(env); 675 } 676 677 void cpu_hppa_change_prot_id(CPUHPPAState *env) 678 { 679 tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_P_MASK); 680 } 681 682 void HELPER(change_prot_id)(CPUHPPAState *env) 683 { 684 cpu_hppa_change_prot_id(env); 685 } 686 687 target_ulong HELPER(lpa)(CPUHPPAState *env, target_ulong addr) 688 { 689 hwaddr phys; 690 int prot, excp; 691 692 excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0, 0, 693 &phys, &prot); 694 if (excp >= 0) { 695 if (excp == EXCP_DTLB_MISS) { 696 excp = EXCP_NA_DTLB_MISS; 697 } 698 trace_hppa_tlb_lpa_failed(env, addr); 699 raise_exception_with_ior(env, excp, GETPC(), addr, false); 700 } 701 trace_hppa_tlb_lpa_success(env, addr, phys); 702 return phys; 703 } 704 705 /* 706 * diag_btlb() emulates the PDC PDC_BLOCK_TLB firmware call to 707 * allow operating systems to modify the Block TLB (BTLB) entries. 708 * For implementation details see page 1-13 in 709 * https://parisc.wiki.kernel.org/images-parisc/e/ef/Pdc11-v0.96-Ch1-procs.pdf 710 */ 711 void HELPER(diag_btlb)(CPUHPPAState *env) 712 { 713 unsigned int phys_page, len, slot; 714 int mmu_idx = cpu_mmu_index(env_cpu(env), 0); 715 uintptr_t ra = GETPC(); 716 HPPATLBEntry *btlb; 717 uint64_t virt_page; 718 uint32_t *vaddr; 719 uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); 720 721 /* BTLBs are not supported on 64-bit CPUs */ 722 if (btlb_entries == 0) { 723 env->gr[28] = -1; /* nonexistent procedure */ 724 return; 725 } 726 727 env->gr[28] = 0; /* PDC_OK */ 728 729 switch (env->gr[25]) { 730 case 0: 731 /* return BTLB parameters */ 732 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INFO\n"); 733 vaddr = probe_access(env, env->gr[24], 4 * sizeof(uint32_t), 734 MMU_DATA_STORE, mmu_idx, ra); 735 if (vaddr == NULL) { 736 env->gr[28] = -10; /* invalid argument */ 737 } else { 738 vaddr[0] = cpu_to_be32(1); 739 vaddr[1] = cpu_to_be32(16 * 1024); 740 vaddr[2] = cpu_to_be32(PA10_BTLB_FIXED); 741 vaddr[3] = cpu_to_be32(PA10_BTLB_VARIABLE); 742 } 743 break; 744 case 1: 745 /* insert BTLB entry */ 746 virt_page = env->gr[24]; /* upper 32 bits */ 747 virt_page <<= 32; 748 virt_page |= env->gr[23]; /* lower 32 bits */ 749 phys_page = env->gr[22]; 750 len = env->gr[21]; 751 slot = env->gr[19]; 752 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INSERT " 753 "0x%08llx-0x%08llx: vpage 0x%llx for phys page 0x%04x len %d " 754 "into slot %d\n", 755 (long long) virt_page << TARGET_PAGE_BITS, 756 (long long) (virt_page + len) << TARGET_PAGE_BITS, 757 (long long) virt_page, phys_page, len, slot); 758 if (slot < btlb_entries) { 759 btlb = &env->tlb[slot]; 760 761 /* Force flush of possibly existing BTLB entry. */ 762 hppa_flush_tlb_ent(env, btlb, true); 763 764 /* Create new BTLB entry */ 765 btlb->itree.start = virt_page << TARGET_PAGE_BITS; 766 btlb->itree.last = btlb->itree.start + len * TARGET_PAGE_SIZE - 1; 767 btlb->pa = phys_page << TARGET_PAGE_BITS; 768 set_access_bits_pa11(env, btlb, env->gr[20]); 769 btlb->t = 0; 770 btlb->d = 1; 771 } else { 772 env->gr[28] = -10; /* invalid argument */ 773 } 774 break; 775 case 2: 776 /* Purge BTLB entry */ 777 slot = env->gr[22]; 778 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE slot %d\n", 779 slot); 780 if (slot < btlb_entries) { 781 btlb = &env->tlb[slot]; 782 hppa_flush_tlb_ent(env, btlb, true); 783 } else { 784 env->gr[28] = -10; /* invalid argument */ 785 } 786 break; 787 case 3: 788 /* Purge all BTLB entries */ 789 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE_ALL\n"); 790 for (slot = 0; slot < btlb_entries; slot++) { 791 btlb = &env->tlb[slot]; 792 hppa_flush_tlb_ent(env, btlb, true); 793 } 794 break; 795 default: 796 env->gr[28] = -2; /* nonexistent option */ 797 break; 798 } 799 } 800 801 uint64_t HELPER(b_gate_priv)(CPUHPPAState *env, uint64_t iaoq_f) 802 { 803 uint64_t gva = hppa_form_gva(env, env->iasq_f, iaoq_f); 804 HPPATLBEntry *ent = hppa_find_tlb(env, gva); 805 806 if (ent == NULL) { 807 raise_exception_with_ior(env, EXCP_ITLB_MISS, GETPC(), gva, false); 808 } 809 810 /* 811 * There should be no need to check page permissions, as that will 812 * already have been done by tb_lookup via get_page_addr_code. 813 * All we need at this point is to check the ar_type. 814 * 815 * No change for non-gateway pages or for priv decrease. 816 */ 817 if (ent->ar_type & 4) { 818 int old_priv = iaoq_f & 3; 819 int new_priv = ent->ar_type & 3; 820 821 if (new_priv < old_priv) { 822 iaoq_f = (iaoq_f & -4) | new_priv; 823 } 824 } 825 return iaoq_f; 826 } 827