xref: /openbmc/qemu/target/hppa/mem_helper.c (revision 2df1eb27)
1 /*
2  *  HPPA memory access helper routines
3  *
4  *  Copyright (c) 2017 Helge Deller
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/helper-proto.h"
25 #include "hw/core/cpu.h"
26 #include "trace.h"
27 
28 hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr)
29 {
30     /*
31      * Figure H-8 "62-bit Absolute Accesses when PSW W-bit is 1" describes
32      * an algorithm in which a 62-bit absolute address is transformed to
33      * a 64-bit physical address.  This must then be combined with that
34      * pictured in Figure H-11 "Physical Address Space Mapping", in which
35      * the full physical address is truncated to the N-bit physical address
36      * supported by the implementation.
37      *
38      * Since the supported physical address space is below 54 bits, the
39      * H-8 algorithm is moot and all that is left is to truncate.
40      */
41     QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 54);
42     return sextract64(addr, 0, TARGET_PHYS_ADDR_SPACE_BITS);
43 }
44 
45 hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr)
46 {
47     /*
48      * See Figure H-10, "Absolute Accesses when PSW W-bit is 0",
49      * combined with Figure H-11, as above.
50      */
51     if (likely(extract32(addr, 28, 4) != 0xf)) {
52         /* Memory address space */
53         addr = (uint32_t)addr;
54     } else if (extract32(addr, 24, 4) != 0) {
55         /* I/O address space */
56         addr = (int32_t)addr;
57     } else {
58         /*
59          * PDC address space:
60          * Figures H-10 and H-11 of the parisc2.0 spec do not specify
61          * where to map into the 64-bit PDC address space.
62          * We map with an offset which equals the 32-bit address, which
63          * is what can be seen on physical machines too.
64          */
65         addr = (uint32_t)addr;
66         addr |= -1ull << (TARGET_PHYS_ADDR_SPACE_BITS - 4);
67     }
68     return addr;
69 }
70 
71 static HPPATLBEntry *hppa_find_tlb(CPUHPPAState *env, vaddr addr)
72 {
73     IntervalTreeNode *i = interval_tree_iter_first(&env->tlb_root, addr, addr);
74 
75     if (i) {
76         HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
77         trace_hppa_tlb_find_entry(env, ent, ent->entry_valid,
78                                   ent->itree.start, ent->itree.last, ent->pa);
79         return ent;
80     }
81     trace_hppa_tlb_find_entry_not_found(env, addr);
82     return NULL;
83 }
84 
85 static void hppa_flush_tlb_ent(CPUHPPAState *env, HPPATLBEntry *ent,
86                                bool force_flush_btlb)
87 {
88     CPUState *cs = env_cpu(env);
89     bool is_btlb;
90 
91     if (!ent->entry_valid) {
92         return;
93     }
94 
95     trace_hppa_tlb_flush_ent(env, ent, ent->itree.start,
96                              ent->itree.last, ent->pa);
97 
98     tlb_flush_range_by_mmuidx(cs, ent->itree.start,
99                               ent->itree.last - ent->itree.start + 1,
100                               HPPA_MMU_FLUSH_MASK, TARGET_LONG_BITS);
101 
102     /* Never clear BTLBs, unless forced to do so. */
103     is_btlb = ent < &env->tlb[HPPA_BTLB_ENTRIES(env)];
104     if (is_btlb && !force_flush_btlb) {
105         return;
106     }
107 
108     interval_tree_remove(&ent->itree, &env->tlb_root);
109     memset(ent, 0, sizeof(*ent));
110 
111     if (!is_btlb) {
112         ent->unused_next = env->tlb_unused;
113         env->tlb_unused = ent;
114     }
115 }
116 
117 static void hppa_flush_tlb_range(CPUHPPAState *env, vaddr va_b, vaddr va_e)
118 {
119     IntervalTreeNode *i, *n;
120 
121     i = interval_tree_iter_first(&env->tlb_root, va_b, va_e);
122     for (; i ; i = n) {
123         HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
124 
125         /*
126          * Find the next entry now: In the normal case the current entry
127          * will be removed, but in the BTLB case it will remain.
128          */
129         n = interval_tree_iter_next(i, va_b, va_e);
130         hppa_flush_tlb_ent(env, ent, false);
131     }
132 }
133 
134 static HPPATLBEntry *hppa_alloc_tlb_ent(CPUHPPAState *env)
135 {
136     HPPATLBEntry *ent = env->tlb_unused;
137 
138     if (ent == NULL) {
139         uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
140         uint32_t i = env->tlb_last;
141 
142         if (i < btlb_entries || i >= ARRAY_SIZE(env->tlb)) {
143             i = btlb_entries;
144         }
145         env->tlb_last = i + 1;
146 
147         ent = &env->tlb[i];
148         hppa_flush_tlb_ent(env, ent, false);
149     }
150 
151     env->tlb_unused = ent->unused_next;
152     return ent;
153 }
154 
155 int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
156                               int type, hwaddr *pphys, int *pprot,
157                               HPPATLBEntry **tlb_entry)
158 {
159     hwaddr phys;
160     int prot, r_prot, w_prot, x_prot, priv;
161     HPPATLBEntry *ent;
162     int ret = -1;
163 
164     if (tlb_entry) {
165         *tlb_entry = NULL;
166     }
167 
168     /* Virtual translation disabled.  Map absolute to physical.  */
169     if (MMU_IDX_MMU_DISABLED(mmu_idx)) {
170         switch (mmu_idx) {
171         case MMU_ABS_W_IDX:
172             phys = hppa_abs_to_phys_pa2_w1(addr);
173             break;
174         case MMU_ABS_IDX:
175             if (hppa_is_pa20(env)) {
176                 phys = hppa_abs_to_phys_pa2_w0(addr);
177             } else {
178                 phys = (uint32_t)addr;
179             }
180             break;
181         default:
182             g_assert_not_reached();
183         }
184         prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
185         goto egress;
186     }
187 
188     /* Find a valid tlb entry that matches the virtual address.  */
189     ent = hppa_find_tlb(env, addr);
190     if (ent == NULL) {
191         phys = 0;
192         prot = 0;
193         ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS;
194         goto egress;
195     }
196 
197     if (tlb_entry) {
198         *tlb_entry = ent;
199     }
200 
201     /* We now know the physical address.  */
202     phys = ent->pa + (addr - ent->itree.start);
203 
204     /* Map TLB access_rights field to QEMU protection.  */
205     priv = MMU_IDX_TO_PRIV(mmu_idx);
206     r_prot = (priv <= ent->ar_pl1) * PAGE_READ;
207     w_prot = (priv <= ent->ar_pl2) * PAGE_WRITE;
208     x_prot = (ent->ar_pl2 <= priv && priv <= ent->ar_pl1) * PAGE_EXEC;
209     switch (ent->ar_type) {
210     case 0: /* read-only: data page */
211         prot = r_prot;
212         break;
213     case 1: /* read/write: dynamic data page */
214         prot = r_prot | w_prot;
215         break;
216     case 2: /* read/execute: normal code page */
217         prot = r_prot | x_prot;
218         break;
219     case 3: /* read/write/execute: dynamic code page */
220         prot = r_prot | w_prot | x_prot;
221         break;
222     default: /* execute: promote to privilege level type & 3 */
223         prot = x_prot;
224         break;
225     }
226 
227     /* access_id == 0 means public page and no check is performed */
228     if (ent->access_id && MMU_IDX_TO_P(mmu_idx)) {
229         /* If bits [31:1] match, and bit 0 is set, suppress write.  */
230         int match = ent->access_id * 2 + 1;
231 
232         if (match == env->cr[CR_PID1] || match == env->cr[CR_PID2] ||
233             match == env->cr[CR_PID3] || match == env->cr[CR_PID4]) {
234             prot &= PAGE_READ | PAGE_EXEC;
235             if (type == PAGE_WRITE) {
236                 ret = EXCP_DMPI;
237                 goto egress;
238             }
239         }
240     }
241 
242     /* No guest access type indicates a non-architectural access from
243        within QEMU.  Bypass checks for access, D, B and T bits.  */
244     if (type == 0) {
245         goto egress;
246     }
247 
248     if (unlikely(!(prot & type))) {
249         /* The access isn't allowed -- Inst/Data Memory Protection Fault.  */
250         ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR;
251         goto egress;
252     }
253 
254     /* In reverse priority order, check for conditions which raise faults.
255        As we go, remove PROT bits that cover the condition we want to check.
256        In this way, the resulting PROT will force a re-check of the
257        architectural TLB entry for the next access.  */
258     if (unlikely(!ent->d)) {
259         if (type & PAGE_WRITE) {
260             /* The D bit is not set -- TLB Dirty Bit Fault.  */
261             ret = EXCP_TLB_DIRTY;
262         }
263         prot &= PAGE_READ | PAGE_EXEC;
264     }
265     if (unlikely(ent->b)) {
266         if (type & PAGE_WRITE) {
267             /* The B bit is set -- Data Memory Break Fault.  */
268             ret = EXCP_DMB;
269         }
270         prot &= PAGE_READ | PAGE_EXEC;
271     }
272     if (unlikely(ent->t)) {
273         if (!(type & PAGE_EXEC)) {
274             /* The T bit is set -- Page Reference Fault.  */
275             ret = EXCP_PAGE_REF;
276         }
277         prot &= PAGE_EXEC;
278     }
279 
280  egress:
281     *pphys = phys;
282     *pprot = prot;
283     trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys);
284     return ret;
285 }
286 
287 hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
288 {
289     HPPACPU *cpu = HPPA_CPU(cs);
290     hwaddr phys;
291     int prot, excp, mmu_idx;
292 
293     /* If the (data) mmu is disabled, bypass translation.  */
294     /* ??? We really ought to know if the code mmu is disabled too,
295        in order to get the correct debugging dumps.  */
296     mmu_idx = (cpu->env.psw & PSW_D ? MMU_KERNEL_IDX :
297                cpu->env.psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX);
298 
299     excp = hppa_get_physical_address(&cpu->env, addr, mmu_idx, 0,
300                                      &phys, &prot, NULL);
301 
302     /* Since we're translating for debugging, the only error that is a
303        hard error is no translation at all.  Otherwise, while a real cpu
304        access might not have permission, the debugger does.  */
305     return excp == EXCP_DTLB_MISS ? -1 : phys;
306 }
307 
308 void hppa_set_ior_and_isr(CPUHPPAState *env, vaddr addr, bool mmu_disabled)
309 {
310     if (env->psw & PSW_Q) {
311         /*
312          * For pa1.x, the offset and space never overlap, and so we
313          * simply extract the high and low part of the virtual address.
314          *
315          * For pa2.0, the formation of these are described in section
316          * "Interruption Parameter Registers", page 2-15.
317          */
318         env->cr[CR_IOR] = (uint32_t)addr;
319         env->cr[CR_ISR] = addr >> 32;
320 
321         if (hppa_is_pa20(env)) {
322             if (mmu_disabled) {
323                 /*
324                  * If data translation was disabled, the ISR contains
325                  * the upper portion of the abs address, zero-extended.
326                  */
327                 env->cr[CR_ISR] &= 0x3fffffff;
328             } else {
329                 /*
330                  * If data translation was enabled, the upper two bits
331                  * of the IOR (the b field) are equal to the two space
332                  * bits from the base register used to form the gva.
333                  */
334                 uint64_t b;
335 
336                 b = env->unwind_breg ? env->gr[env->unwind_breg] : 0;
337                 b >>= (env->psw & PSW_W ? 62 : 30);
338                 env->cr[CR_IOR] |= b << 62;
339             }
340         }
341     }
342 }
343 
344 G_NORETURN static void
345 raise_exception_with_ior(CPUHPPAState *env, int excp, uintptr_t retaddr,
346                          vaddr addr, bool mmu_disabled)
347 {
348     CPUState *cs = env_cpu(env);
349 
350     cs->exception_index = excp;
351     hppa_set_ior_and_isr(env, addr, mmu_disabled);
352 
353     cpu_loop_exit_restore(cs, retaddr);
354 }
355 
356 bool hppa_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
357                        MMUAccessType type, int mmu_idx,
358                        bool probe, uintptr_t retaddr)
359 {
360     HPPACPU *cpu = HPPA_CPU(cs);
361     CPUHPPAState *env = &cpu->env;
362     HPPATLBEntry *ent;
363     int prot, excp, a_prot;
364     hwaddr phys;
365 
366     switch (type) {
367     case MMU_INST_FETCH:
368         a_prot = PAGE_EXEC;
369         break;
370     case MMU_DATA_STORE:
371         a_prot = PAGE_WRITE;
372         break;
373     default:
374         a_prot = PAGE_READ;
375         break;
376     }
377 
378     excp = hppa_get_physical_address(env, addr, mmu_idx,
379                                      a_prot, &phys, &prot, &ent);
380     if (unlikely(excp >= 0)) {
381         if (probe) {
382             return false;
383         }
384         trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx);
385 
386         /* Failure.  Raise the indicated exception.  */
387         raise_exception_with_ior(env, excp, retaddr, addr,
388                                  MMU_IDX_MMU_DISABLED(mmu_idx));
389     }
390 
391     trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK,
392                                 phys & TARGET_PAGE_MASK, size, type, mmu_idx);
393 
394     /*
395      * Success!  Store the translation into the QEMU TLB.
396      * Note that we always install a single-page entry, because that
397      * is what works best with softmmu -- anything else will trigger
398      * the large page protection mask.  We do not require this,
399      * because we record the large page here in the hppa tlb.
400      */
401     tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
402                  prot, mmu_idx, TARGET_PAGE_SIZE);
403     return true;
404 }
405 
406 /* Insert (Insn/Data) TLB Address.  Note this is PA 1.1 only.  */
407 void HELPER(itlba_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
408 {
409     HPPATLBEntry *ent;
410 
411     /* Zap any old entries covering ADDR. */
412     addr &= TARGET_PAGE_MASK;
413     hppa_flush_tlb_range(env, addr, addr + TARGET_PAGE_SIZE - 1);
414 
415     ent = env->tlb_partial;
416     if (ent == NULL) {
417         ent = hppa_alloc_tlb_ent(env);
418         env->tlb_partial = ent;
419     }
420 
421     /* Note that ent->entry_valid == 0 already.  */
422     ent->itree.start = addr;
423     ent->itree.last = addr + TARGET_PAGE_SIZE - 1;
424     ent->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS;
425     trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
426 }
427 
428 static void set_access_bits_pa11(CPUHPPAState *env, HPPATLBEntry *ent,
429                                  target_ulong reg)
430 {
431     ent->access_id = extract32(reg, 1, 18);
432     ent->u = extract32(reg, 19, 1);
433     ent->ar_pl2 = extract32(reg, 20, 2);
434     ent->ar_pl1 = extract32(reg, 22, 2);
435     ent->ar_type = extract32(reg, 24, 3);
436     ent->b = extract32(reg, 27, 1);
437     ent->d = extract32(reg, 28, 1);
438     ent->t = extract32(reg, 29, 1);
439     ent->entry_valid = 1;
440 
441     interval_tree_insert(&ent->itree, &env->tlb_root);
442     trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2,
443                          ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t);
444 }
445 
446 /* Insert (Insn/Data) TLB Protection.  Note this is PA 1.1 only.  */
447 void HELPER(itlbp_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
448 {
449     HPPATLBEntry *ent = env->tlb_partial;
450 
451     if (ent) {
452         env->tlb_partial = NULL;
453         if (ent->itree.start <= addr && addr <= ent->itree.last) {
454             set_access_bits_pa11(env, ent, reg);
455             return;
456         }
457     }
458     qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n");
459 }
460 
461 static void itlbt_pa20(CPUHPPAState *env, target_ulong r1,
462                        target_ulong r2, vaddr va_b)
463 {
464     HPPATLBEntry *ent;
465     vaddr va_e;
466     uint64_t va_size;
467     int mask_shift;
468 
469     mask_shift = 2 * (r1 & 0xf);
470     va_size = (uint64_t)TARGET_PAGE_SIZE << mask_shift;
471     va_b &= -va_size;
472     va_e = va_b + va_size - 1;
473 
474     hppa_flush_tlb_range(env, va_b, va_e);
475     ent = hppa_alloc_tlb_ent(env);
476 
477     ent->itree.start = va_b;
478     ent->itree.last = va_e;
479 
480     /* Extract all 52 bits present in the page table entry. */
481     ent->pa = r1 << (TARGET_PAGE_BITS - 5);
482     /* Align per the page size. */
483     ent->pa &= TARGET_PAGE_MASK << mask_shift;
484     /* Ignore the bits beyond physical address space. */
485     ent->pa = sextract64(ent->pa, 0, TARGET_PHYS_ADDR_SPACE_BITS);
486 
487     ent->t = extract64(r2, 61, 1);
488     ent->d = extract64(r2, 60, 1);
489     ent->b = extract64(r2, 59, 1);
490     ent->ar_type = extract64(r2, 56, 3);
491     ent->ar_pl1 = extract64(r2, 54, 2);
492     ent->ar_pl2 = extract64(r2, 52, 2);
493     ent->u = extract64(r2, 51, 1);
494     /* o = bit 50 */
495     /* p = bit 49 */
496     ent->access_id = extract64(r2, 1, 31);
497     ent->entry_valid = 1;
498 
499     interval_tree_insert(&ent->itree, &env->tlb_root);
500     trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
501     trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u,
502                          ent->ar_pl2, ent->ar_pl1, ent->ar_type,
503                          ent->b, ent->d, ent->t);
504 }
505 
506 void HELPER(idtlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
507 {
508     vaddr va_b = deposit64(env->cr[CR_IOR], 32, 32, env->cr[CR_ISR]);
509     itlbt_pa20(env, r1, r2, va_b);
510 }
511 
512 void HELPER(iitlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
513 {
514     vaddr va_b = deposit64(env->cr[CR_IIAOQ], 32, 32, env->cr[CR_IIASQ]);
515     itlbt_pa20(env, r1, r2, va_b);
516 }
517 
518 /* Purge (Insn/Data) TLB. */
519 static void ptlb_work(CPUState *cpu, run_on_cpu_data data)
520 {
521     CPUHPPAState *env = cpu_env(cpu);
522     vaddr start = data.target_ptr;
523     vaddr end;
524 
525     /*
526      * PA2.0 allows a range of pages encoded into GR[b], which we have
527      * copied into the bottom bits of the otherwise page-aligned address.
528      * PA1.x will always provide zero here, for a single page flush.
529      */
530     end = start & 0xf;
531     start &= TARGET_PAGE_MASK;
532     end = (vaddr)TARGET_PAGE_SIZE << (2 * end);
533     end = start + end - 1;
534 
535     hppa_flush_tlb_range(env, start, end);
536 }
537 
538 /* This is local to the current cpu. */
539 void HELPER(ptlb_l)(CPUHPPAState *env, target_ulong addr)
540 {
541     trace_hppa_tlb_ptlb_local(env);
542     ptlb_work(env_cpu(env), RUN_ON_CPU_TARGET_PTR(addr));
543 }
544 
545 /* This is synchronous across all processors.  */
546 void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr)
547 {
548     CPUState *src = env_cpu(env);
549     CPUState *cpu;
550     bool wait = false;
551 
552     trace_hppa_tlb_ptlb(env);
553     run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr);
554 
555     CPU_FOREACH(cpu) {
556         if (cpu != src) {
557             async_run_on_cpu(cpu, ptlb_work, data);
558             wait = true;
559         }
560     }
561     if (wait) {
562         async_safe_run_on_cpu(src, ptlb_work, data);
563     } else {
564         ptlb_work(src, data);
565     }
566 }
567 
568 void hppa_ptlbe(CPUHPPAState *env)
569 {
570     uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
571     uint32_t i;
572 
573     /* Zap the (non-btlb) tlb entries themselves. */
574     memset(&env->tlb[btlb_entries], 0,
575            sizeof(env->tlb) - btlb_entries * sizeof(env->tlb[0]));
576     env->tlb_last = btlb_entries;
577     env->tlb_partial = NULL;
578 
579     /* Put them all onto the unused list. */
580     env->tlb_unused = &env->tlb[btlb_entries];
581     for (i = btlb_entries; i < ARRAY_SIZE(env->tlb) - 1; ++i) {
582         env->tlb[i].unused_next = &env->tlb[i + 1];
583     }
584 
585     /* Re-initialize the interval tree with only the btlb entries. */
586     memset(&env->tlb_root, 0, sizeof(env->tlb_root));
587     for (i = 0; i < btlb_entries; ++i) {
588         if (env->tlb[i].entry_valid) {
589             interval_tree_insert(&env->tlb[i].itree, &env->tlb_root);
590         }
591     }
592 
593     tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK);
594 }
595 
596 /* Purge (Insn/Data) TLB entry.  This affects an implementation-defined
597    number of pages/entries (we choose all), and is local to the cpu.  */
598 void HELPER(ptlbe)(CPUHPPAState *env)
599 {
600     trace_hppa_tlb_ptlbe(env);
601     qemu_log_mask(CPU_LOG_MMU, "FLUSH ALL TLB ENTRIES\n");
602     hppa_ptlbe(env);
603 }
604 
605 void cpu_hppa_change_prot_id(CPUHPPAState *env)
606 {
607     tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_P_MASK);
608 }
609 
610 void HELPER(change_prot_id)(CPUHPPAState *env)
611 {
612     cpu_hppa_change_prot_id(env);
613 }
614 
615 target_ulong HELPER(lpa)(CPUHPPAState *env, target_ulong addr)
616 {
617     hwaddr phys;
618     int prot, excp;
619 
620     excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0,
621                                      &phys, &prot, NULL);
622     if (excp >= 0) {
623         if (excp == EXCP_DTLB_MISS) {
624             excp = EXCP_NA_DTLB_MISS;
625         }
626         trace_hppa_tlb_lpa_failed(env, addr);
627         raise_exception_with_ior(env, excp, GETPC(), addr, false);
628     }
629     trace_hppa_tlb_lpa_success(env, addr, phys);
630     return phys;
631 }
632 
633 /* Return the ar_type of the TLB at VADDR, or -1.  */
634 int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr)
635 {
636     HPPATLBEntry *ent = hppa_find_tlb(env, vaddr);
637     return ent ? ent->ar_type : -1;
638 }
639 
640 /*
641  * diag_btlb() emulates the PDC PDC_BLOCK_TLB firmware call to
642  * allow operating systems to modify the Block TLB (BTLB) entries.
643  * For implementation details see page 1-13 in
644  * https://parisc.wiki.kernel.org/images-parisc/e/ef/Pdc11-v0.96-Ch1-procs.pdf
645  */
646 void HELPER(diag_btlb)(CPUHPPAState *env)
647 {
648     unsigned int phys_page, len, slot;
649     int mmu_idx = cpu_mmu_index(env_cpu(env), 0);
650     uintptr_t ra = GETPC();
651     HPPATLBEntry *btlb;
652     uint64_t virt_page;
653     uint32_t *vaddr;
654     uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
655 
656     /* BTLBs are not supported on 64-bit CPUs */
657     if (btlb_entries == 0) {
658         env->gr[28] = -1; /* nonexistent procedure */
659         return;
660     }
661 
662     env->gr[28] = 0; /* PDC_OK */
663 
664     switch (env->gr[25]) {
665     case 0:
666         /* return BTLB parameters */
667         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INFO\n");
668         vaddr = probe_access(env, env->gr[24], 4 * sizeof(target_ulong),
669                              MMU_DATA_STORE, mmu_idx, ra);
670         if (vaddr == NULL) {
671             env->gr[28] = -10; /* invalid argument */
672         } else {
673             vaddr[0] = cpu_to_be32(1);
674             vaddr[1] = cpu_to_be32(16 * 1024);
675             vaddr[2] = cpu_to_be32(PA10_BTLB_FIXED);
676             vaddr[3] = cpu_to_be32(PA10_BTLB_VARIABLE);
677         }
678         break;
679     case 1:
680         /* insert BTLB entry */
681         virt_page = env->gr[24];        /* upper 32 bits */
682         virt_page <<= 32;
683         virt_page |= env->gr[23];       /* lower 32 bits */
684         phys_page = env->gr[22];
685         len = env->gr[21];
686         slot = env->gr[19];
687         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INSERT "
688                     "0x%08llx-0x%08llx: vpage 0x%llx for phys page 0x%04x len %d "
689                     "into slot %d\n",
690                     (long long) virt_page << TARGET_PAGE_BITS,
691                     (long long) (virt_page + len) << TARGET_PAGE_BITS,
692                     (long long) virt_page, phys_page, len, slot);
693         if (slot < btlb_entries) {
694             btlb = &env->tlb[slot];
695 
696             /* Force flush of possibly existing BTLB entry. */
697             hppa_flush_tlb_ent(env, btlb, true);
698 
699             /* Create new BTLB entry */
700             btlb->itree.start = virt_page << TARGET_PAGE_BITS;
701             btlb->itree.last = btlb->itree.start + len * TARGET_PAGE_SIZE - 1;
702             btlb->pa = phys_page << TARGET_PAGE_BITS;
703             set_access_bits_pa11(env, btlb, env->gr[20]);
704             btlb->t = 0;
705             btlb->d = 1;
706         } else {
707             env->gr[28] = -10; /* invalid argument */
708         }
709         break;
710     case 2:
711         /* Purge BTLB entry */
712         slot = env->gr[22];
713         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE slot %d\n",
714                                     slot);
715         if (slot < btlb_entries) {
716             btlb = &env->tlb[slot];
717             hppa_flush_tlb_ent(env, btlb, true);
718         } else {
719             env->gr[28] = -10; /* invalid argument */
720         }
721         break;
722     case 3:
723         /* Purge all BTLB entries */
724         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE_ALL\n");
725         for (slot = 0; slot < btlb_entries; slot++) {
726             btlb = &env->tlb[slot];
727             hppa_flush_tlb_ent(env, btlb, true);
728         }
729         break;
730     default:
731         env->gr[28] = -2; /* nonexistent option */
732         break;
733     }
734 }
735