xref: /openbmc/qemu/target/hppa/cpu.h (revision 6b90a4cd)
1 /*
2  * PA-RISC emulation cpu definitions for qemu.
3  *
4  * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef HPPA_CPU_H
21 #define HPPA_CPU_H
22 
23 #include "cpu-qom.h"
24 #include "exec/cpu-defs.h"
25 #include "qemu/cpu-float.h"
26 
27 /* PA-RISC 1.x processors have a strong memory model.  */
28 /* ??? While we do not yet implement PA-RISC 2.0, those processors have
29    a weak memory model, but with TLB bits that force ordering on a per-page
30    basis.  It's probably easier to fall back to a strong memory model.  */
31 #define TCG_GUEST_DEFAULT_MO        TCG_MO_ALL
32 
33 #define MMU_KERNEL_IDX   0
34 #define MMU_USER_IDX     3
35 #define MMU_PHYS_IDX     4
36 #define TARGET_INSN_START_EXTRA_WORDS 1
37 
38 /* Hardware exceptions, interupts, faults, and traps.  */
39 #define EXCP_HPMC                1  /* high priority machine check */
40 #define EXCP_POWER_FAIL          2
41 #define EXCP_RC                  3  /* recovery counter */
42 #define EXCP_EXT_INTERRUPT       4  /* external interrupt */
43 #define EXCP_LPMC                5  /* low priority machine check */
44 #define EXCP_ITLB_MISS           6  /* itlb miss / instruction page fault */
45 #define EXCP_IMP                 7  /* instruction memory protection trap */
46 #define EXCP_ILL                 8  /* illegal instruction trap */
47 #define EXCP_BREAK               9  /* break instruction */
48 #define EXCP_PRIV_OPR            10 /* privileged operation trap */
49 #define EXCP_PRIV_REG            11 /* privileged register trap */
50 #define EXCP_OVERFLOW            12 /* signed overflow trap */
51 #define EXCP_COND                13 /* trap-on-condition */
52 #define EXCP_ASSIST              14 /* assist exception trap */
53 #define EXCP_DTLB_MISS           15 /* dtlb miss / data page fault */
54 #define EXCP_NA_ITLB_MISS        16 /* non-access itlb miss */
55 #define EXCP_NA_DTLB_MISS        17 /* non-access dtlb miss */
56 #define EXCP_DMP                 18 /* data memory protection trap */
57 #define EXCP_DMB                 19 /* data memory break trap */
58 #define EXCP_TLB_DIRTY           20 /* tlb dirty bit trap */
59 #define EXCP_PAGE_REF            21 /* page reference trap */
60 #define EXCP_ASSIST_EMU          22 /* assist emulation trap */
61 #define EXCP_HPT                 23 /* high-privilege transfer trap */
62 #define EXCP_LPT                 24 /* low-privilege transfer trap */
63 #define EXCP_TB                  25 /* taken branch trap */
64 #define EXCP_DMAR                26 /* data memory access rights trap */
65 #define EXCP_DMPI                27 /* data memory protection id trap */
66 #define EXCP_UNALIGN             28 /* unaligned data reference trap */
67 #define EXCP_PER_INTERRUPT       29 /* performance monitor interrupt */
68 
69 /* Exceptions for linux-user emulation.  */
70 #define EXCP_SYSCALL             30
71 #define EXCP_SYSCALL_LWS         31
72 
73 /* Emulated hardware TOC button */
74 #define EXCP_TOC                 32 /* TOC = Transfer of control (NMI) */
75 
76 #define CPU_INTERRUPT_NMI       CPU_INTERRUPT_TGT_EXT_3         /* TOC */
77 
78 /* Taken from Linux kernel: arch/parisc/include/asm/psw.h */
79 #define PSW_I            0x00000001
80 #define PSW_D            0x00000002
81 #define PSW_P            0x00000004
82 #define PSW_Q            0x00000008
83 #define PSW_R            0x00000010
84 #define PSW_F            0x00000020
85 #define PSW_G            0x00000040 /* PA1.x only */
86 #define PSW_O            0x00000080 /* PA2.0 only */
87 #define PSW_CB           0x0000ff00
88 #define PSW_M            0x00010000
89 #define PSW_V            0x00020000
90 #define PSW_C            0x00040000
91 #define PSW_B            0x00080000
92 #define PSW_X            0x00100000
93 #define PSW_N            0x00200000
94 #define PSW_L            0x00400000
95 #define PSW_H            0x00800000
96 #define PSW_T            0x01000000
97 #define PSW_S            0x02000000
98 #define PSW_E            0x04000000
99 #ifdef TARGET_HPPA64
100 #define PSW_W            0x08000000 /* PA2.0 only */
101 #else
102 #define PSW_W            0
103 #endif
104 #define PSW_Z            0x40000000 /* PA1.x only */
105 #define PSW_Y            0x80000000 /* PA1.x only */
106 
107 #define PSW_SM (PSW_W | PSW_E | PSW_O | PSW_G | PSW_F \
108                | PSW_R | PSW_Q | PSW_P | PSW_D | PSW_I)
109 
110 /* ssm/rsm instructions number PSW_W and PSW_E differently */
111 #define PSW_SM_I         PSW_I      /* Enable External Interrupts */
112 #define PSW_SM_D         PSW_D
113 #define PSW_SM_P         PSW_P
114 #define PSW_SM_Q         PSW_Q      /* Enable Interrupt State Collection */
115 #define PSW_SM_R         PSW_R      /* Enable Recover Counter Trap */
116 #ifdef TARGET_HPPA64
117 #define PSW_SM_E         0x100
118 #define PSW_SM_W         0x200      /* PA2.0 only : Enable Wide Mode */
119 #else
120 #define PSW_SM_E         0
121 #define PSW_SM_W         0
122 #endif
123 
124 #define CR_RC            0
125 #define CR_PID1          8
126 #define CR_PID2          9
127 #define CR_PID3          12
128 #define CR_PID4          13
129 #define CR_SCRCCR        10
130 #define CR_SAR           11
131 #define CR_IVA           14
132 #define CR_EIEM          15
133 #define CR_IT            16
134 #define CR_IIASQ         17
135 #define CR_IIAOQ         18
136 #define CR_IIR           19
137 #define CR_ISR           20
138 #define CR_IOR           21
139 #define CR_IPSW          22
140 #define CR_EIRR          23
141 
142 #if TARGET_REGISTER_BITS == 32
143 typedef uint32_t target_ureg;
144 typedef int32_t  target_sreg;
145 #define TREG_FMT_lx   "%08"PRIx32
146 #define TREG_FMT_ld   "%"PRId32
147 #else
148 typedef uint64_t target_ureg;
149 typedef int64_t  target_sreg;
150 #define TREG_FMT_lx   "%016"PRIx64
151 #define TREG_FMT_ld   "%"PRId64
152 #endif
153 
154 typedef struct {
155     uint64_t va_b;
156     uint64_t va_e;
157     target_ureg pa;
158     unsigned u : 1;
159     unsigned t : 1;
160     unsigned d : 1;
161     unsigned b : 1;
162     unsigned page_size : 4;
163     unsigned ar_type : 3;
164     unsigned ar_pl1 : 2;
165     unsigned ar_pl2 : 2;
166     unsigned entry_valid : 1;
167     unsigned access_id : 16;
168 } hppa_tlb_entry;
169 
170 typedef struct CPUArchState {
171     target_ureg gr[32];
172     uint64_t fr[32];
173     uint64_t sr[8];          /* stored shifted into place for gva */
174 
175     target_ureg psw;         /* All psw bits except the following:  */
176     target_ureg psw_n;       /* boolean */
177     target_sreg psw_v;       /* in most significant bit */
178 
179     /* Splitting the carry-borrow field into the MSB and "the rest", allows
180      * for "the rest" to be deleted when it is unused, but the MSB is in use.
181      * In addition, it's easier to compute carry-in for bit B+1 than it is to
182      * compute carry-out for bit B (3 vs 4 insns for addition, assuming the
183      * host has the appropriate add-with-carry insn to compute the msb).
184      * Therefore the carry bits are stored as: cb_msb : cb & 0x11111110.
185      */
186     target_ureg psw_cb;      /* in least significant bit of next nibble */
187     target_ureg psw_cb_msb;  /* boolean */
188 
189     target_ureg iaoq_f;      /* front */
190     target_ureg iaoq_b;      /* back, aka next instruction */
191     uint64_t iasq_f;
192     uint64_t iasq_b;
193 
194     uint32_t fr0_shadow;     /* flags, c, ca/cq, rm, d, enables */
195     float_status fp_status;
196 
197     target_ureg cr[32];      /* control registers */
198     target_ureg cr_back[2];  /* back of cr17/cr18 */
199     target_ureg shadow[7];   /* shadow registers */
200 
201     /* ??? The number of entries isn't specified by the architecture.  */
202 #define HPPA_TLB_ENTRIES        256
203 #define HPPA_BTLB_ENTRIES       0
204 
205     /* ??? Implement a unified itlb/dtlb for the moment.  */
206     /* ??? We should use a more intelligent data structure.  */
207     hppa_tlb_entry tlb[HPPA_TLB_ENTRIES];
208     uint32_t tlb_last;
209 } CPUHPPAState;
210 
211 /**
212  * HPPACPU:
213  * @env: #CPUHPPAState
214  *
215  * An HPPA CPU.
216  */
217 struct ArchCPU {
218     /*< private >*/
219     CPUState parent_obj;
220     /*< public >*/
221 
222     CPUNegativeOffsetState neg;
223     CPUHPPAState env;
224     QEMUTimer *alarm_timer;
225 };
226 
227 #include "exec/cpu-all.h"
228 
229 static inline int cpu_mmu_index(CPUHPPAState *env, bool ifetch)
230 {
231 #ifdef CONFIG_USER_ONLY
232     return MMU_USER_IDX;
233 #else
234     if (env->psw & (ifetch ? PSW_C : PSW_D)) {
235         return env->iaoq_f & 3;
236     }
237     return MMU_PHYS_IDX;  /* mmu disabled */
238 #endif
239 }
240 
241 void hppa_translate_init(void);
242 
243 #define CPU_RESOLVING_TYPE TYPE_HPPA_CPU
244 
245 static inline target_ulong hppa_form_gva_psw(target_ureg psw, uint64_t spc,
246                                              target_ureg off)
247 {
248 #ifdef CONFIG_USER_ONLY
249     return off;
250 #else
251     off &= (psw & PSW_W ? 0x3fffffffffffffffull : 0xffffffffull);
252     return spc | off;
253 #endif
254 }
255 
256 static inline target_ulong hppa_form_gva(CPUHPPAState *env, uint64_t spc,
257                                          target_ureg off)
258 {
259     return hppa_form_gva_psw(env->psw, spc, off);
260 }
261 
262 /*
263  * Since PSW_{I,CB} will never need to be in tb->flags, reuse them.
264  * TB_FLAG_SR_SAME indicates that SR4 through SR7 all contain the
265  * same value.
266  */
267 #define TB_FLAG_SR_SAME     PSW_I
268 #define TB_FLAG_PRIV_SHIFT  8
269 #define TB_FLAG_UNALIGN     0x400
270 
271 static inline void cpu_get_tb_cpu_state(CPUHPPAState *env, vaddr *pc,
272                                         uint64_t *cs_base, uint32_t *pflags)
273 {
274     uint32_t flags = env->psw_n * PSW_N;
275 
276     /* TB lookup assumes that PC contains the complete virtual address.
277        If we leave space+offset separate, we'll get ITLB misses to an
278        incomplete virtual address.  This also means that we must separate
279        out current cpu priviledge from the low bits of IAOQ_F.  */
280 #ifdef CONFIG_USER_ONLY
281     *pc = env->iaoq_f & -4;
282     *cs_base = env->iaoq_b & -4;
283     flags |= TB_FLAG_UNALIGN * !env_cpu(env)->prctl_unalign_sigbus;
284 #else
285     /* ??? E, T, H, L, B, P bits need to be here, when implemented.  */
286     flags |= env->psw & (PSW_W | PSW_C | PSW_D);
287     flags |= (env->iaoq_f & 3) << TB_FLAG_PRIV_SHIFT;
288 
289     *pc = (env->psw & PSW_C
290            ? hppa_form_gva_psw(env->psw, env->iasq_f, env->iaoq_f & -4)
291            : env->iaoq_f & -4);
292     *cs_base = env->iasq_f;
293 
294     /* Insert a difference between IAOQ_B and IAOQ_F within the otherwise zero
295        low 32-bits of CS_BASE.  This will succeed for all direct branches,
296        which is the primary case we care about -- using goto_tb within a page.
297        Failure is indicated by a zero difference.  */
298     if (env->iasq_f == env->iasq_b) {
299         target_sreg diff = env->iaoq_b - env->iaoq_f;
300         if (TARGET_REGISTER_BITS == 32 || diff == (int32_t)diff) {
301             *cs_base |= (uint32_t)diff;
302         }
303     }
304     if ((env->sr[4] == env->sr[5])
305         & (env->sr[4] == env->sr[6])
306         & (env->sr[4] == env->sr[7])) {
307         flags |= TB_FLAG_SR_SAME;
308     }
309 #endif
310 
311     *pflags = flags;
312 }
313 
314 target_ureg cpu_hppa_get_psw(CPUHPPAState *env);
315 void cpu_hppa_put_psw(CPUHPPAState *env, target_ureg);
316 void cpu_hppa_loaded_fr0(CPUHPPAState *env);
317 
318 #ifdef CONFIG_USER_ONLY
319 static inline void cpu_hppa_change_prot_id(CPUHPPAState *env) { }
320 #else
321 void cpu_hppa_change_prot_id(CPUHPPAState *env);
322 #endif
323 
324 int hppa_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
325 int hppa_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
326 void hppa_cpu_dump_state(CPUState *cs, FILE *f, int);
327 #ifndef CONFIG_USER_ONLY
328 hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr);
329 bool hppa_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
330                        MMUAccessType access_type, int mmu_idx,
331                        bool probe, uintptr_t retaddr);
332 void hppa_cpu_do_interrupt(CPUState *cpu);
333 bool hppa_cpu_exec_interrupt(CPUState *cpu, int int_req);
334 int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
335                               int type, hwaddr *pphys, int *pprot);
336 extern const MemoryRegionOps hppa_io_eir_ops;
337 extern const VMStateDescription vmstate_hppa_cpu;
338 void hppa_cpu_alarm_timer(void *);
339 int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr);
340 #endif
341 G_NORETURN void hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra);
342 
343 #endif /* HPPA_CPU_H */
344