xref: /openbmc/qemu/target/hppa/cpu.h (revision 5f88dd43)
1 /*
2  * PA-RISC emulation cpu definitions for qemu.
3  *
4  * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef HPPA_CPU_H
21 #define HPPA_CPU_H
22 
23 #include "cpu-qom.h"
24 #include "exec/cpu-defs.h"
25 #include "qemu/cpu-float.h"
26 
27 /* PA-RISC 1.x processors have a strong memory model.  */
28 /* ??? While we do not yet implement PA-RISC 2.0, those processors have
29    a weak memory model, but with TLB bits that force ordering on a per-page
30    basis.  It's probably easier to fall back to a strong memory model.  */
31 #define TCG_GUEST_DEFAULT_MO        TCG_MO_ALL
32 
33 #define MMU_KERNEL_IDX   11
34 #define MMU_PL1_IDX      12
35 #define MMU_PL2_IDX      13
36 #define MMU_USER_IDX     14
37 #define MMU_PHYS_IDX     15
38 
39 #define PRIV_TO_MMU_IDX(priv)    (MMU_KERNEL_IDX + (priv))
40 #define MMU_IDX_TO_PRIV(mmu_idx) ((mmu_idx) - MMU_KERNEL_IDX)
41 
42 #define TARGET_INSN_START_EXTRA_WORDS 1
43 
44 /* No need to flush MMU_PHYS_IDX  */
45 #define HPPA_MMU_FLUSH_MASK                             \
46         (1 << MMU_KERNEL_IDX | 1 << MMU_PL1_IDX |       \
47          1 << MMU_PL2_IDX    | 1 << MMU_USER_IDX)
48 
49 /* Hardware exceptions, interrupts, faults, and traps.  */
50 #define EXCP_HPMC                1  /* high priority machine check */
51 #define EXCP_POWER_FAIL          2
52 #define EXCP_RC                  3  /* recovery counter */
53 #define EXCP_EXT_INTERRUPT       4  /* external interrupt */
54 #define EXCP_LPMC                5  /* low priority machine check */
55 #define EXCP_ITLB_MISS           6  /* itlb miss / instruction page fault */
56 #define EXCP_IMP                 7  /* instruction memory protection trap */
57 #define EXCP_ILL                 8  /* illegal instruction trap */
58 #define EXCP_BREAK               9  /* break instruction */
59 #define EXCP_PRIV_OPR            10 /* privileged operation trap */
60 #define EXCP_PRIV_REG            11 /* privileged register trap */
61 #define EXCP_OVERFLOW            12 /* signed overflow trap */
62 #define EXCP_COND                13 /* trap-on-condition */
63 #define EXCP_ASSIST              14 /* assist exception trap */
64 #define EXCP_DTLB_MISS           15 /* dtlb miss / data page fault */
65 #define EXCP_NA_ITLB_MISS        16 /* non-access itlb miss */
66 #define EXCP_NA_DTLB_MISS        17 /* non-access dtlb miss */
67 #define EXCP_DMP                 18 /* data memory protection trap */
68 #define EXCP_DMB                 19 /* data memory break trap */
69 #define EXCP_TLB_DIRTY           20 /* tlb dirty bit trap */
70 #define EXCP_PAGE_REF            21 /* page reference trap */
71 #define EXCP_ASSIST_EMU          22 /* assist emulation trap */
72 #define EXCP_HPT                 23 /* high-privilege transfer trap */
73 #define EXCP_LPT                 24 /* low-privilege transfer trap */
74 #define EXCP_TB                  25 /* taken branch trap */
75 #define EXCP_DMAR                26 /* data memory access rights trap */
76 #define EXCP_DMPI                27 /* data memory protection id trap */
77 #define EXCP_UNALIGN             28 /* unaligned data reference trap */
78 #define EXCP_PER_INTERRUPT       29 /* performance monitor interrupt */
79 
80 /* Exceptions for linux-user emulation.  */
81 #define EXCP_SYSCALL             30
82 #define EXCP_SYSCALL_LWS         31
83 
84 /* Emulated hardware TOC button */
85 #define EXCP_TOC                 32 /* TOC = Transfer of control (NMI) */
86 
87 #define CPU_INTERRUPT_NMI       CPU_INTERRUPT_TGT_EXT_3         /* TOC */
88 
89 /* Taken from Linux kernel: arch/parisc/include/asm/psw.h */
90 #define PSW_I            0x00000001
91 #define PSW_D            0x00000002
92 #define PSW_P            0x00000004
93 #define PSW_Q            0x00000008
94 #define PSW_R            0x00000010
95 #define PSW_F            0x00000020
96 #define PSW_G            0x00000040 /* PA1.x only */
97 #define PSW_O            0x00000080 /* PA2.0 only */
98 #define PSW_CB           0x0000ff00
99 #define PSW_M            0x00010000
100 #define PSW_V            0x00020000
101 #define PSW_C            0x00040000
102 #define PSW_B            0x00080000
103 #define PSW_X            0x00100000
104 #define PSW_N            0x00200000
105 #define PSW_L            0x00400000
106 #define PSW_H            0x00800000
107 #define PSW_T            0x01000000
108 #define PSW_S            0x02000000
109 #define PSW_E            0x04000000
110 #ifdef TARGET_HPPA64
111 #define PSW_W            0x08000000 /* PA2.0 only */
112 #else
113 #define PSW_W            0
114 #endif
115 #define PSW_Z            0x40000000 /* PA1.x only */
116 #define PSW_Y            0x80000000 /* PA1.x only */
117 
118 #define PSW_SM (PSW_W | PSW_E | PSW_O | PSW_G | PSW_F \
119                | PSW_R | PSW_Q | PSW_P | PSW_D | PSW_I)
120 
121 /* ssm/rsm instructions number PSW_W and PSW_E differently */
122 #define PSW_SM_I         PSW_I      /* Enable External Interrupts */
123 #define PSW_SM_D         PSW_D
124 #define PSW_SM_P         PSW_P
125 #define PSW_SM_Q         PSW_Q      /* Enable Interrupt State Collection */
126 #define PSW_SM_R         PSW_R      /* Enable Recover Counter Trap */
127 #ifdef TARGET_HPPA64
128 #define PSW_SM_E         0x100
129 #define PSW_SM_W         0x200      /* PA2.0 only : Enable Wide Mode */
130 #else
131 #define PSW_SM_E         0
132 #define PSW_SM_W         0
133 #endif
134 
135 #define CR_RC            0
136 #define CR_PID1          8
137 #define CR_PID2          9
138 #define CR_PID3          12
139 #define CR_PID4          13
140 #define CR_SCRCCR        10
141 #define CR_SAR           11
142 #define CR_IVA           14
143 #define CR_EIEM          15
144 #define CR_IT            16
145 #define CR_IIASQ         17
146 #define CR_IIAOQ         18
147 #define CR_IIR           19
148 #define CR_ISR           20
149 #define CR_IOR           21
150 #define CR_IPSW          22
151 #define CR_EIRR          23
152 
153 #if TARGET_REGISTER_BITS == 32
154 typedef uint32_t target_ureg;
155 typedef int32_t  target_sreg;
156 #define TREG_FMT_lx   "%08"PRIx32
157 #define TREG_FMT_ld   "%"PRId32
158 #else
159 typedef uint64_t target_ureg;
160 typedef int64_t  target_sreg;
161 #define TREG_FMT_lx   "%016"PRIx64
162 #define TREG_FMT_ld   "%"PRId64
163 #endif
164 
165 typedef struct {
166     uint64_t va_b;
167     uint64_t va_e;
168     target_ureg pa;
169     unsigned u : 1;
170     unsigned t : 1;
171     unsigned d : 1;
172     unsigned b : 1;
173     unsigned page_size : 4;
174     unsigned ar_type : 3;
175     unsigned ar_pl1 : 2;
176     unsigned ar_pl2 : 2;
177     unsigned entry_valid : 1;
178     unsigned access_id : 16;
179 } hppa_tlb_entry;
180 
181 typedef struct CPUArchState {
182     target_ureg iaoq_f;      /* front */
183     target_ureg iaoq_b;      /* back, aka next instruction */
184 
185     target_ureg gr[32];
186     uint64_t fr[32];
187     uint64_t sr[8];          /* stored shifted into place for gva */
188 
189     target_ureg psw;         /* All psw bits except the following:  */
190     target_ureg psw_n;       /* boolean */
191     target_sreg psw_v;       /* in most significant bit */
192 
193     /* Splitting the carry-borrow field into the MSB and "the rest", allows
194      * for "the rest" to be deleted when it is unused, but the MSB is in use.
195      * In addition, it's easier to compute carry-in for bit B+1 than it is to
196      * compute carry-out for bit B (3 vs 4 insns for addition, assuming the
197      * host has the appropriate add-with-carry insn to compute the msb).
198      * Therefore the carry bits are stored as: cb_msb : cb & 0x11111110.
199      */
200     target_ureg psw_cb;      /* in least significant bit of next nibble */
201     target_ureg psw_cb_msb;  /* boolean */
202 
203     uint64_t iasq_f;
204     uint64_t iasq_b;
205 
206     uint32_t fr0_shadow;     /* flags, c, ca/cq, rm, d, enables */
207     float_status fp_status;
208 
209     target_ureg cr[32];      /* control registers */
210     target_ureg cr_back[2];  /* back of cr17/cr18 */
211     target_ureg shadow[7];   /* shadow registers */
212 
213     /* ??? The number of entries isn't specified by the architecture.  */
214 #define HPPA_TLB_ENTRIES        256
215 #define HPPA_BTLB_ENTRIES       0
216 
217     /* ??? Implement a unified itlb/dtlb for the moment.  */
218     /* ??? We should use a more intelligent data structure.  */
219     hppa_tlb_entry tlb[HPPA_TLB_ENTRIES];
220     uint32_t tlb_last;
221 } CPUHPPAState;
222 
223 /**
224  * HPPACPU:
225  * @env: #CPUHPPAState
226  *
227  * An HPPA CPU.
228  */
229 struct ArchCPU {
230     /*< private >*/
231     CPUState parent_obj;
232     /*< public >*/
233 
234     CPUNegativeOffsetState neg;
235     CPUHPPAState env;
236     QEMUTimer *alarm_timer;
237 };
238 
239 #include "exec/cpu-all.h"
240 
241 static inline int cpu_mmu_index(CPUHPPAState *env, bool ifetch)
242 {
243 #ifdef CONFIG_USER_ONLY
244     return MMU_USER_IDX;
245 #else
246     if (env->psw & (ifetch ? PSW_C : PSW_D)) {
247         return PRIV_TO_MMU_IDX(env->iaoq_f & 3);
248     }
249     return MMU_PHYS_IDX;  /* mmu disabled */
250 #endif
251 }
252 
253 void hppa_translate_init(void);
254 
255 #define CPU_RESOLVING_TYPE TYPE_HPPA_CPU
256 
257 static inline target_ulong hppa_form_gva_psw(target_ureg psw, uint64_t spc,
258                                              target_ureg off)
259 {
260 #ifdef CONFIG_USER_ONLY
261     return off;
262 #else
263     off &= (psw & PSW_W ? 0x3fffffffffffffffull : 0xffffffffull);
264     return spc | off;
265 #endif
266 }
267 
268 static inline target_ulong hppa_form_gva(CPUHPPAState *env, uint64_t spc,
269                                          target_ureg off)
270 {
271     return hppa_form_gva_psw(env->psw, spc, off);
272 }
273 
274 /*
275  * Since PSW_{I,CB} will never need to be in tb->flags, reuse them.
276  * TB_FLAG_SR_SAME indicates that SR4 through SR7 all contain the
277  * same value.
278  */
279 #define TB_FLAG_SR_SAME     PSW_I
280 #define TB_FLAG_PRIV_SHIFT  8
281 #define TB_FLAG_UNALIGN     0x400
282 
283 static inline void cpu_get_tb_cpu_state(CPUHPPAState *env, vaddr *pc,
284                                         uint64_t *cs_base, uint32_t *pflags)
285 {
286     uint32_t flags = env->psw_n * PSW_N;
287 
288     /* TB lookup assumes that PC contains the complete virtual address.
289        If we leave space+offset separate, we'll get ITLB misses to an
290        incomplete virtual address.  This also means that we must separate
291        out current cpu privilege from the low bits of IAOQ_F.  */
292 #ifdef CONFIG_USER_ONLY
293     *pc = env->iaoq_f & -4;
294     *cs_base = env->iaoq_b & -4;
295     flags |= TB_FLAG_UNALIGN * !env_cpu(env)->prctl_unalign_sigbus;
296 #else
297     /* ??? E, T, H, L, B, P bits need to be here, when implemented.  */
298     flags |= env->psw & (PSW_W | PSW_C | PSW_D);
299     flags |= (env->iaoq_f & 3) << TB_FLAG_PRIV_SHIFT;
300 
301     *pc = (env->psw & PSW_C
302            ? hppa_form_gva_psw(env->psw, env->iasq_f, env->iaoq_f & -4)
303            : env->iaoq_f & -4);
304     *cs_base = env->iasq_f;
305 
306     /* Insert a difference between IAOQ_B and IAOQ_F within the otherwise zero
307        low 32-bits of CS_BASE.  This will succeed for all direct branches,
308        which is the primary case we care about -- using goto_tb within a page.
309        Failure is indicated by a zero difference.  */
310     if (env->iasq_f == env->iasq_b) {
311         target_sreg diff = env->iaoq_b - env->iaoq_f;
312         if (TARGET_REGISTER_BITS == 32 || diff == (int32_t)diff) {
313             *cs_base |= (uint32_t)diff;
314         }
315     }
316     if ((env->sr[4] == env->sr[5])
317         & (env->sr[4] == env->sr[6])
318         & (env->sr[4] == env->sr[7])) {
319         flags |= TB_FLAG_SR_SAME;
320     }
321 #endif
322 
323     *pflags = flags;
324 }
325 
326 target_ureg cpu_hppa_get_psw(CPUHPPAState *env);
327 void cpu_hppa_put_psw(CPUHPPAState *env, target_ureg);
328 void cpu_hppa_loaded_fr0(CPUHPPAState *env);
329 
330 #ifdef CONFIG_USER_ONLY
331 static inline void cpu_hppa_change_prot_id(CPUHPPAState *env) { }
332 #else
333 void cpu_hppa_change_prot_id(CPUHPPAState *env);
334 #endif
335 
336 int hppa_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
337 int hppa_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
338 void hppa_cpu_dump_state(CPUState *cs, FILE *f, int);
339 #ifndef CONFIG_USER_ONLY
340 hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr);
341 bool hppa_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
342                        MMUAccessType access_type, int mmu_idx,
343                        bool probe, uintptr_t retaddr);
344 void hppa_cpu_do_interrupt(CPUState *cpu);
345 bool hppa_cpu_exec_interrupt(CPUState *cpu, int int_req);
346 int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
347                               int type, hwaddr *pphys, int *pprot);
348 extern const MemoryRegionOps hppa_io_eir_ops;
349 extern const VMStateDescription vmstate_hppa_cpu;
350 void hppa_cpu_alarm_timer(void *);
351 int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr);
352 #endif
353 G_NORETURN void hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra);
354 
355 #endif /* HPPA_CPU_H */
356