1 /* 2 * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #define QEMU_GENERATE 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "tcg/tcg-op.h" 22 #include "tcg/tcg-op-gvec.h" 23 #include "exec/cpu_ldst.h" 24 #include "exec/log.h" 25 #include "internal.h" 26 #include "attribs.h" 27 #include "insn.h" 28 #include "decode.h" 29 #include "translate.h" 30 #include "printinsn.h" 31 32 TCGv hex_gpr[TOTAL_PER_THREAD_REGS]; 33 TCGv hex_pred[NUM_PREGS]; 34 TCGv hex_next_PC; 35 TCGv hex_this_PC; 36 TCGv hex_slot_cancelled; 37 TCGv hex_branch_taken; 38 TCGv hex_new_value[TOTAL_PER_THREAD_REGS]; 39 TCGv hex_reg_written[TOTAL_PER_THREAD_REGS]; 40 TCGv hex_new_pred_value[NUM_PREGS]; 41 TCGv hex_pred_written; 42 TCGv hex_store_addr[STORES_MAX]; 43 TCGv hex_store_width[STORES_MAX]; 44 TCGv hex_store_val32[STORES_MAX]; 45 TCGv_i64 hex_store_val64[STORES_MAX]; 46 TCGv hex_pkt_has_store_s1; 47 TCGv hex_dczero_addr; 48 TCGv hex_llsc_addr; 49 TCGv hex_llsc_val; 50 TCGv_i64 hex_llsc_val_i64; 51 TCGv hex_VRegs_updated; 52 TCGv hex_QRegs_updated; 53 TCGv hex_vstore_addr[VSTORES_MAX]; 54 TCGv hex_vstore_size[VSTORES_MAX]; 55 TCGv hex_vstore_pending[VSTORES_MAX]; 56 57 static const char * const hexagon_prednames[] = { 58 "p0", "p1", "p2", "p3" 59 }; 60 61 intptr_t ctx_future_vreg_off(DisasContext *ctx, int regnum, 62 int num, bool alloc_ok) 63 { 64 intptr_t offset; 65 66 /* See if it is already allocated */ 67 for (int i = 0; i < ctx->future_vregs_idx; i++) { 68 if (ctx->future_vregs_num[i] == regnum) { 69 return offsetof(CPUHexagonState, future_VRegs[i]); 70 } 71 } 72 73 g_assert(alloc_ok); 74 offset = offsetof(CPUHexagonState, future_VRegs[ctx->future_vregs_idx]); 75 for (int i = 0; i < num; i++) { 76 ctx->future_vregs_num[ctx->future_vregs_idx + i] = regnum++; 77 } 78 ctx->future_vregs_idx += num; 79 g_assert(ctx->future_vregs_idx <= VECTOR_TEMPS_MAX); 80 return offset; 81 } 82 83 intptr_t ctx_tmp_vreg_off(DisasContext *ctx, int regnum, 84 int num, bool alloc_ok) 85 { 86 intptr_t offset; 87 88 /* See if it is already allocated */ 89 for (int i = 0; i < ctx->tmp_vregs_idx; i++) { 90 if (ctx->tmp_vregs_num[i] == regnum) { 91 return offsetof(CPUHexagonState, tmp_VRegs[i]); 92 } 93 } 94 95 g_assert(alloc_ok); 96 offset = offsetof(CPUHexagonState, tmp_VRegs[ctx->tmp_vregs_idx]); 97 for (int i = 0; i < num; i++) { 98 ctx->tmp_vregs_num[ctx->tmp_vregs_idx + i] = regnum++; 99 } 100 ctx->tmp_vregs_idx += num; 101 g_assert(ctx->tmp_vregs_idx <= VECTOR_TEMPS_MAX); 102 return offset; 103 } 104 105 static void gen_exception_raw(int excp) 106 { 107 gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp)); 108 } 109 110 static void gen_exec_counters(DisasContext *ctx) 111 { 112 tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_PKT_CNT], 113 hex_gpr[HEX_REG_QEMU_PKT_CNT], ctx->num_packets); 114 tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_INSN_CNT], 115 hex_gpr[HEX_REG_QEMU_INSN_CNT], ctx->num_insns); 116 tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_HVX_CNT], 117 hex_gpr[HEX_REG_QEMU_HVX_CNT], ctx->num_hvx_insns); 118 } 119 120 static void gen_end_tb(DisasContext *ctx) 121 { 122 gen_exec_counters(ctx); 123 tcg_gen_mov_tl(hex_gpr[HEX_REG_PC], hex_next_PC); 124 tcg_gen_exit_tb(NULL, 0); 125 ctx->base.is_jmp = DISAS_NORETURN; 126 } 127 128 static void gen_exception_end_tb(DisasContext *ctx, int excp) 129 { 130 gen_exec_counters(ctx); 131 tcg_gen_mov_tl(hex_gpr[HEX_REG_PC], hex_next_PC); 132 gen_exception_raw(excp); 133 ctx->base.is_jmp = DISAS_NORETURN; 134 135 } 136 137 #define PACKET_BUFFER_LEN 1028 138 static void print_pkt(Packet *pkt) 139 { 140 GString *buf = g_string_sized_new(PACKET_BUFFER_LEN); 141 snprint_a_pkt_debug(buf, pkt); 142 HEX_DEBUG_LOG("%s", buf->str); 143 g_string_free(buf, true); 144 } 145 #define HEX_DEBUG_PRINT_PKT(pkt) \ 146 do { \ 147 if (HEX_DEBUG) { \ 148 print_pkt(pkt); \ 149 } \ 150 } while (0) 151 152 static int read_packet_words(CPUHexagonState *env, DisasContext *ctx, 153 uint32_t words[]) 154 { 155 bool found_end = false; 156 int nwords, max_words; 157 158 memset(words, 0, PACKET_WORDS_MAX * sizeof(uint32_t)); 159 for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) { 160 words[nwords] = 161 translator_ldl(env, &ctx->base, 162 ctx->base.pc_next + nwords * sizeof(uint32_t)); 163 found_end = is_packet_end(words[nwords]); 164 } 165 if (!found_end) { 166 /* Read too many words without finding the end */ 167 return 0; 168 } 169 170 /* Check for page boundary crossing */ 171 max_words = -(ctx->base.pc_next | TARGET_PAGE_MASK) / sizeof(uint32_t); 172 if (nwords > max_words) { 173 /* We can only cross a page boundary at the beginning of a TB */ 174 g_assert(ctx->base.num_insns == 1); 175 } 176 177 HEX_DEBUG_LOG("decode_packet: pc = 0x%x\n", ctx->base.pc_next); 178 HEX_DEBUG_LOG(" words = { "); 179 for (int i = 0; i < nwords; i++) { 180 HEX_DEBUG_LOG("0x%x, ", words[i]); 181 } 182 HEX_DEBUG_LOG("}\n"); 183 184 return nwords; 185 } 186 187 static bool check_for_attrib(Packet *pkt, int attrib) 188 { 189 for (int i = 0; i < pkt->num_insns; i++) { 190 if (GET_ATTRIB(pkt->insn[i].opcode, attrib)) { 191 return true; 192 } 193 } 194 return false; 195 } 196 197 static bool need_pc(Packet *pkt) 198 { 199 return check_for_attrib(pkt, A_IMPLICIT_READS_PC); 200 } 201 202 static bool need_slot_cancelled(Packet *pkt) 203 { 204 return check_for_attrib(pkt, A_CONDEXEC); 205 } 206 207 static bool need_pred_written(Packet *pkt) 208 { 209 return check_for_attrib(pkt, A_WRITES_PRED_REG); 210 } 211 212 static void gen_start_packet(DisasContext *ctx, Packet *pkt) 213 { 214 target_ulong next_PC = ctx->base.pc_next + pkt->encod_pkt_size_in_bytes; 215 int i; 216 217 /* Clear out the disassembly context */ 218 ctx->reg_log_idx = 0; 219 bitmap_zero(ctx->regs_written, TOTAL_PER_THREAD_REGS); 220 ctx->preg_log_idx = 0; 221 bitmap_zero(ctx->pregs_written, NUM_PREGS); 222 ctx->future_vregs_idx = 0; 223 ctx->tmp_vregs_idx = 0; 224 ctx->vreg_log_idx = 0; 225 bitmap_zero(ctx->vregs_updated_tmp, NUM_VREGS); 226 bitmap_zero(ctx->vregs_updated, NUM_VREGS); 227 bitmap_zero(ctx->vregs_select, NUM_VREGS); 228 ctx->qreg_log_idx = 0; 229 for (i = 0; i < STORES_MAX; i++) { 230 ctx->store_width[i] = 0; 231 } 232 tcg_gen_movi_tl(hex_pkt_has_store_s1, pkt->pkt_has_store_s1); 233 ctx->s1_store_processed = false; 234 ctx->pre_commit = true; 235 236 if (HEX_DEBUG) { 237 /* Handy place to set a breakpoint before the packet executes */ 238 gen_helper_debug_start_packet(cpu_env); 239 tcg_gen_movi_tl(hex_this_PC, ctx->base.pc_next); 240 } 241 242 /* Initialize the runtime state for packet semantics */ 243 if (need_pc(pkt)) { 244 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next); 245 } 246 if (need_slot_cancelled(pkt)) { 247 tcg_gen_movi_tl(hex_slot_cancelled, 0); 248 } 249 if (pkt->pkt_has_cof) { 250 tcg_gen_movi_tl(hex_branch_taken, 0); 251 tcg_gen_movi_tl(hex_next_PC, next_PC); 252 } 253 if (need_pred_written(pkt)) { 254 tcg_gen_movi_tl(hex_pred_written, 0); 255 } 256 257 if (pkt->pkt_has_hvx) { 258 tcg_gen_movi_tl(hex_VRegs_updated, 0); 259 tcg_gen_movi_tl(hex_QRegs_updated, 0); 260 } 261 } 262 263 bool is_gather_store_insn(Insn *insn, Packet *pkt) 264 { 265 if (GET_ATTRIB(insn->opcode, A_CVI_NEW) && 266 insn->new_value_producer_slot == 1) { 267 /* Look for gather instruction */ 268 for (int i = 0; i < pkt->num_insns; i++) { 269 Insn *in = &pkt->insn[i]; 270 if (GET_ATTRIB(in->opcode, A_CVI_GATHER) && in->slot == 1) { 271 return true; 272 } 273 } 274 } 275 return false; 276 } 277 278 /* 279 * The LOG_*_WRITE macros mark most of the writes in a packet 280 * However, there are some implicit writes marked as attributes 281 * of the applicable instructions. 282 */ 283 static void mark_implicit_reg_write(DisasContext *ctx, Insn *insn, 284 int attrib, int rnum) 285 { 286 if (GET_ATTRIB(insn->opcode, attrib)) { 287 /* 288 * USR is used to set overflow and FP exceptions, 289 * so treat it as conditional 290 */ 291 bool is_predicated = GET_ATTRIB(insn->opcode, A_CONDEXEC) || 292 rnum == HEX_REG_USR; 293 if (is_predicated && !is_preloaded(ctx, rnum)) { 294 tcg_gen_mov_tl(hex_new_value[rnum], hex_gpr[rnum]); 295 } 296 297 ctx_log_reg_write(ctx, rnum); 298 } 299 } 300 301 static void mark_implicit_pred_write(DisasContext *ctx, Insn *insn, 302 int attrib, int pnum) 303 { 304 if (GET_ATTRIB(insn->opcode, attrib)) { 305 ctx_log_pred_write(ctx, pnum); 306 } 307 } 308 309 static void mark_implicit_reg_writes(DisasContext *ctx, Insn *insn) 310 { 311 mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_FP, HEX_REG_FP); 312 mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_SP, HEX_REG_SP); 313 mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_LR, HEX_REG_LR); 314 mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_LC0, HEX_REG_LC0); 315 mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_SA0, HEX_REG_SA0); 316 mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_LC1, HEX_REG_LC1); 317 mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_SA1, HEX_REG_SA1); 318 mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_USR, HEX_REG_USR); 319 mark_implicit_reg_write(ctx, insn, A_FPOP, HEX_REG_USR); 320 } 321 322 static void mark_implicit_pred_writes(DisasContext *ctx, Insn *insn) 323 { 324 mark_implicit_pred_write(ctx, insn, A_IMPLICIT_WRITES_P0, 0); 325 mark_implicit_pred_write(ctx, insn, A_IMPLICIT_WRITES_P1, 1); 326 mark_implicit_pred_write(ctx, insn, A_IMPLICIT_WRITES_P2, 2); 327 mark_implicit_pred_write(ctx, insn, A_IMPLICIT_WRITES_P3, 3); 328 } 329 330 static void gen_insn(CPUHexagonState *env, DisasContext *ctx, 331 Insn *insn, Packet *pkt) 332 { 333 if (insn->generate) { 334 mark_implicit_reg_writes(ctx, insn); 335 insn->generate(env, ctx, insn, pkt); 336 mark_implicit_pred_writes(ctx, insn); 337 } else { 338 gen_exception_end_tb(ctx, HEX_EXCP_INVALID_OPCODE); 339 } 340 } 341 342 /* 343 * Helpers for generating the packet commit 344 */ 345 static void gen_reg_writes(DisasContext *ctx) 346 { 347 int i; 348 349 for (i = 0; i < ctx->reg_log_idx; i++) { 350 int reg_num = ctx->reg_log[i]; 351 352 tcg_gen_mov_tl(hex_gpr[reg_num], hex_new_value[reg_num]); 353 } 354 } 355 356 static void gen_pred_writes(DisasContext *ctx, Packet *pkt) 357 { 358 int i; 359 360 /* Early exit if the log is empty */ 361 if (!ctx->preg_log_idx) { 362 return; 363 } 364 365 /* 366 * Only endloop instructions will conditionally 367 * write a predicate. If there are no endloop 368 * instructions, we can use the non-conditional 369 * write of the predicates. 370 */ 371 if (pkt->pkt_has_endloop) { 372 TCGv zero = tcg_constant_tl(0); 373 TCGv pred_written = tcg_temp_new(); 374 for (i = 0; i < ctx->preg_log_idx; i++) { 375 int pred_num = ctx->preg_log[i]; 376 377 tcg_gen_andi_tl(pred_written, hex_pred_written, 1 << pred_num); 378 tcg_gen_movcond_tl(TCG_COND_NE, hex_pred[pred_num], 379 pred_written, zero, 380 hex_new_pred_value[pred_num], 381 hex_pred[pred_num]); 382 } 383 tcg_temp_free(pred_written); 384 } else { 385 for (i = 0; i < ctx->preg_log_idx; i++) { 386 int pred_num = ctx->preg_log[i]; 387 tcg_gen_mov_tl(hex_pred[pred_num], hex_new_pred_value[pred_num]); 388 if (HEX_DEBUG) { 389 /* Do this so HELPER(debug_commit_end) will know */ 390 tcg_gen_ori_tl(hex_pred_written, hex_pred_written, 391 1 << pred_num); 392 } 393 } 394 } 395 } 396 397 static void gen_check_store_width(DisasContext *ctx, int slot_num) 398 { 399 if (HEX_DEBUG) { 400 TCGv slot = tcg_constant_tl(slot_num); 401 TCGv check = tcg_constant_tl(ctx->store_width[slot_num]); 402 gen_helper_debug_check_store_width(cpu_env, slot, check); 403 } 404 } 405 406 static bool slot_is_predicated(Packet *pkt, int slot_num) 407 { 408 for (int i = 0; i < pkt->num_insns; i++) { 409 if (pkt->insn[i].slot == slot_num) { 410 return GET_ATTRIB(pkt->insn[i].opcode, A_CONDEXEC); 411 } 412 } 413 /* If we get to here, we didn't find an instruction in the requested slot */ 414 g_assert_not_reached(); 415 } 416 417 void process_store(DisasContext *ctx, Packet *pkt, int slot_num) 418 { 419 bool is_predicated = slot_is_predicated(pkt, slot_num); 420 TCGLabel *label_end = NULL; 421 422 /* 423 * We may have already processed this store 424 * See CHECK_NOSHUF in macros.h 425 */ 426 if (slot_num == 1 && ctx->s1_store_processed) { 427 return; 428 } 429 ctx->s1_store_processed = true; 430 431 if (is_predicated) { 432 TCGv cancelled = tcg_temp_new(); 433 label_end = gen_new_label(); 434 435 /* Don't do anything if the slot was cancelled */ 436 tcg_gen_extract_tl(cancelled, hex_slot_cancelled, slot_num, 1); 437 tcg_gen_brcondi_tl(TCG_COND_NE, cancelled, 0, label_end); 438 tcg_temp_free(cancelled); 439 } 440 { 441 TCGv address = tcg_temp_local_new(); 442 tcg_gen_mov_tl(address, hex_store_addr[slot_num]); 443 444 /* 445 * If we know the width from the DisasContext, we can 446 * generate much cleaner code. 447 * Unfortunately, not all instructions execute the fSTORE 448 * macro during code generation. Anything that uses the 449 * generic helper will have this problem. Instructions 450 * that use fWRAP to generate proper TCG code will be OK. 451 */ 452 switch (ctx->store_width[slot_num]) { 453 case 1: 454 gen_check_store_width(ctx, slot_num); 455 tcg_gen_qemu_st8(hex_store_val32[slot_num], 456 hex_store_addr[slot_num], 457 ctx->mem_idx); 458 break; 459 case 2: 460 gen_check_store_width(ctx, slot_num); 461 tcg_gen_qemu_st16(hex_store_val32[slot_num], 462 hex_store_addr[slot_num], 463 ctx->mem_idx); 464 break; 465 case 4: 466 gen_check_store_width(ctx, slot_num); 467 tcg_gen_qemu_st32(hex_store_val32[slot_num], 468 hex_store_addr[slot_num], 469 ctx->mem_idx); 470 break; 471 case 8: 472 gen_check_store_width(ctx, slot_num); 473 tcg_gen_qemu_st64(hex_store_val64[slot_num], 474 hex_store_addr[slot_num], 475 ctx->mem_idx); 476 break; 477 default: 478 { 479 /* 480 * If we get to here, we don't know the width at 481 * TCG generation time, we'll use a helper to 482 * avoid branching based on the width at runtime. 483 */ 484 TCGv slot = tcg_constant_tl(slot_num); 485 gen_helper_commit_store(cpu_env, slot); 486 } 487 } 488 tcg_temp_free(address); 489 } 490 if (is_predicated) { 491 gen_set_label(label_end); 492 } 493 } 494 495 static void process_store_log(DisasContext *ctx, Packet *pkt) 496 { 497 /* 498 * When a packet has two stores, the hardware processes 499 * slot 1 and then slot 0. This will be important when 500 * the memory accesses overlap. 501 */ 502 if (pkt->pkt_has_store_s1 && !pkt->pkt_has_dczeroa) { 503 process_store(ctx, pkt, 1); 504 } 505 if (pkt->pkt_has_store_s0 && !pkt->pkt_has_dczeroa) { 506 process_store(ctx, pkt, 0); 507 } 508 } 509 510 /* Zero out a 32-bit cache line */ 511 static void process_dczeroa(DisasContext *ctx, Packet *pkt) 512 { 513 if (pkt->pkt_has_dczeroa) { 514 /* Store 32 bytes of zero starting at (addr & ~0x1f) */ 515 TCGv addr = tcg_temp_new(); 516 TCGv_i64 zero = tcg_constant_i64(0); 517 518 tcg_gen_andi_tl(addr, hex_dczero_addr, ~0x1f); 519 tcg_gen_qemu_st64(zero, addr, ctx->mem_idx); 520 tcg_gen_addi_tl(addr, addr, 8); 521 tcg_gen_qemu_st64(zero, addr, ctx->mem_idx); 522 tcg_gen_addi_tl(addr, addr, 8); 523 tcg_gen_qemu_st64(zero, addr, ctx->mem_idx); 524 tcg_gen_addi_tl(addr, addr, 8); 525 tcg_gen_qemu_st64(zero, addr, ctx->mem_idx); 526 527 tcg_temp_free(addr); 528 } 529 } 530 531 static bool pkt_has_hvx_store(Packet *pkt) 532 { 533 int i; 534 for (i = 0; i < pkt->num_insns; i++) { 535 int opcode = pkt->insn[i].opcode; 536 if (GET_ATTRIB(opcode, A_CVI) && GET_ATTRIB(opcode, A_STORE)) { 537 return true; 538 } 539 } 540 return false; 541 } 542 543 static void gen_commit_hvx(DisasContext *ctx, Packet *pkt) 544 { 545 int i; 546 547 /* 548 * for (i = 0; i < ctx->vreg_log_idx; i++) { 549 * int rnum = ctx->vreg_log[i]; 550 * if (ctx->vreg_is_predicated[i]) { 551 * if (env->VRegs_updated & (1 << rnum)) { 552 * env->VRegs[rnum] = env->future_VRegs[rnum]; 553 * } 554 * } else { 555 * env->VRegs[rnum] = env->future_VRegs[rnum]; 556 * } 557 * } 558 */ 559 for (i = 0; i < ctx->vreg_log_idx; i++) { 560 int rnum = ctx->vreg_log[i]; 561 bool is_predicated = ctx->vreg_is_predicated[i]; 562 intptr_t dstoff = offsetof(CPUHexagonState, VRegs[rnum]); 563 intptr_t srcoff = ctx_future_vreg_off(ctx, rnum, 1, false); 564 size_t size = sizeof(MMVector); 565 566 if (is_predicated) { 567 TCGv cmp = tcg_temp_new(); 568 TCGLabel *label_skip = gen_new_label(); 569 570 tcg_gen_andi_tl(cmp, hex_VRegs_updated, 1 << rnum); 571 tcg_gen_brcondi_tl(TCG_COND_EQ, cmp, 0, label_skip); 572 tcg_temp_free(cmp); 573 tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size); 574 gen_set_label(label_skip); 575 } else { 576 tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size); 577 } 578 } 579 580 /* 581 * for (i = 0; i < ctx->qreg_log_idx; i++) { 582 * int rnum = ctx->qreg_log[i]; 583 * if (ctx->qreg_is_predicated[i]) { 584 * if (env->QRegs_updated) & (1 << rnum)) { 585 * env->QRegs[rnum] = env->future_QRegs[rnum]; 586 * } 587 * } else { 588 * env->QRegs[rnum] = env->future_QRegs[rnum]; 589 * } 590 * } 591 */ 592 for (i = 0; i < ctx->qreg_log_idx; i++) { 593 int rnum = ctx->qreg_log[i]; 594 bool is_predicated = ctx->qreg_is_predicated[i]; 595 intptr_t dstoff = offsetof(CPUHexagonState, QRegs[rnum]); 596 intptr_t srcoff = offsetof(CPUHexagonState, future_QRegs[rnum]); 597 size_t size = sizeof(MMQReg); 598 599 if (is_predicated) { 600 TCGv cmp = tcg_temp_new(); 601 TCGLabel *label_skip = gen_new_label(); 602 603 tcg_gen_andi_tl(cmp, hex_QRegs_updated, 1 << rnum); 604 tcg_gen_brcondi_tl(TCG_COND_EQ, cmp, 0, label_skip); 605 tcg_temp_free(cmp); 606 tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size); 607 gen_set_label(label_skip); 608 } else { 609 tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size); 610 } 611 } 612 613 if (pkt_has_hvx_store(pkt)) { 614 gen_helper_commit_hvx_stores(cpu_env); 615 } 616 } 617 618 static void update_exec_counters(DisasContext *ctx, Packet *pkt) 619 { 620 int num_insns = pkt->num_insns; 621 int num_real_insns = 0; 622 int num_hvx_insns = 0; 623 624 for (int i = 0; i < num_insns; i++) { 625 if (!pkt->insn[i].is_endloop && 626 !pkt->insn[i].part1 && 627 !GET_ATTRIB(pkt->insn[i].opcode, A_IT_NOP)) { 628 num_real_insns++; 629 } 630 if (GET_ATTRIB(pkt->insn[i].opcode, A_CVI)) { 631 num_hvx_insns++; 632 } 633 } 634 635 ctx->num_packets++; 636 ctx->num_insns += num_real_insns; 637 ctx->num_hvx_insns += num_hvx_insns; 638 } 639 640 static void gen_commit_packet(CPUHexagonState *env, DisasContext *ctx, 641 Packet *pkt) 642 { 643 /* 644 * If there is more than one store in a packet, make sure they are all OK 645 * before proceeding with the rest of the packet commit. 646 * 647 * dczeroa has to be the only store operation in the packet, so we go 648 * ahead and process that first. 649 * 650 * When there is an HVX store, there can also be a scalar store in either 651 * slot 0 or slot1, so we create a mask for the helper to indicate what 652 * work to do. 653 * 654 * When there are two scalar stores, we probe the one in slot 0. 655 * 656 * Note that we don't call the probe helper for packets with only one 657 * store. Therefore, we call process_store_log before anything else 658 * involved in committing the packet. 659 */ 660 bool has_store_s0 = pkt->pkt_has_store_s0; 661 bool has_store_s1 = (pkt->pkt_has_store_s1 && !ctx->s1_store_processed); 662 bool has_hvx_store = pkt_has_hvx_store(pkt); 663 if (pkt->pkt_has_dczeroa) { 664 /* 665 * The dczeroa will be the store in slot 0, check that we don't have 666 * a store in slot 1 or an HVX store. 667 */ 668 g_assert(has_store_s0 && !has_store_s1 && !has_hvx_store); 669 process_dczeroa(ctx, pkt); 670 } else if (has_hvx_store) { 671 TCGv mem_idx = tcg_constant_tl(ctx->mem_idx); 672 673 if (!has_store_s0 && !has_store_s1) { 674 gen_helper_probe_hvx_stores(cpu_env, mem_idx); 675 } else { 676 int mask = 0; 677 TCGv mask_tcgv; 678 679 if (has_store_s0) { 680 mask |= (1 << 0); 681 } 682 if (has_store_s1) { 683 mask |= (1 << 1); 684 } 685 if (has_hvx_store) { 686 mask |= (1 << 2); 687 } 688 mask_tcgv = tcg_constant_tl(mask); 689 gen_helper_probe_pkt_scalar_hvx_stores(cpu_env, mask_tcgv, mem_idx); 690 } 691 } else if (has_store_s0 && has_store_s1) { 692 /* 693 * process_store_log will execute the slot 1 store first, 694 * so we only have to probe the store in slot 0 695 */ 696 TCGv mem_idx = tcg_constant_tl(ctx->mem_idx); 697 gen_helper_probe_pkt_scalar_store_s0(cpu_env, mem_idx); 698 } 699 700 process_store_log(ctx, pkt); 701 702 gen_reg_writes(ctx); 703 gen_pred_writes(ctx, pkt); 704 if (pkt->pkt_has_hvx) { 705 gen_commit_hvx(ctx, pkt); 706 } 707 update_exec_counters(ctx, pkt); 708 if (HEX_DEBUG) { 709 TCGv has_st0 = 710 tcg_constant_tl(pkt->pkt_has_store_s0 && !pkt->pkt_has_dczeroa); 711 TCGv has_st1 = 712 tcg_constant_tl(pkt->pkt_has_store_s1 && !pkt->pkt_has_dczeroa); 713 714 /* Handy place to set a breakpoint at the end of execution */ 715 gen_helper_debug_commit_end(cpu_env, has_st0, has_st1); 716 } 717 718 if (pkt->vhist_insn != NULL) { 719 ctx->pre_commit = false; 720 pkt->vhist_insn->generate(env, ctx, pkt->vhist_insn, pkt); 721 } 722 723 if (pkt->pkt_has_cof) { 724 gen_end_tb(ctx); 725 } 726 } 727 728 static void decode_and_translate_packet(CPUHexagonState *env, DisasContext *ctx) 729 { 730 uint32_t words[PACKET_WORDS_MAX]; 731 int nwords; 732 Packet pkt; 733 int i; 734 735 nwords = read_packet_words(env, ctx, words); 736 if (!nwords) { 737 gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET); 738 return; 739 } 740 741 if (decode_packet(nwords, words, &pkt, false) > 0) { 742 HEX_DEBUG_PRINT_PKT(&pkt); 743 gen_start_packet(ctx, &pkt); 744 for (i = 0; i < pkt.num_insns; i++) { 745 gen_insn(env, ctx, &pkt.insn[i], &pkt); 746 } 747 gen_commit_packet(env, ctx, &pkt); 748 ctx->base.pc_next += pkt.encod_pkt_size_in_bytes; 749 } else { 750 gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET); 751 } 752 } 753 754 static void hexagon_tr_init_disas_context(DisasContextBase *dcbase, 755 CPUState *cs) 756 { 757 DisasContext *ctx = container_of(dcbase, DisasContext, base); 758 759 ctx->mem_idx = MMU_USER_IDX; 760 ctx->num_packets = 0; 761 ctx->num_insns = 0; 762 ctx->num_hvx_insns = 0; 763 } 764 765 static void hexagon_tr_tb_start(DisasContextBase *db, CPUState *cpu) 766 { 767 } 768 769 static void hexagon_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 770 { 771 DisasContext *ctx = container_of(dcbase, DisasContext, base); 772 773 tcg_gen_insn_start(ctx->base.pc_next); 774 } 775 776 static bool pkt_crosses_page(CPUHexagonState *env, DisasContext *ctx) 777 { 778 target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK; 779 bool found_end = false; 780 int nwords; 781 782 for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) { 783 uint32_t word = cpu_ldl_code(env, 784 ctx->base.pc_next + nwords * sizeof(uint32_t)); 785 found_end = is_packet_end(word); 786 } 787 uint32_t next_ptr = ctx->base.pc_next + nwords * sizeof(uint32_t); 788 return found_end && next_ptr - page_start >= TARGET_PAGE_SIZE; 789 } 790 791 static void hexagon_tr_translate_packet(DisasContextBase *dcbase, CPUState *cpu) 792 { 793 DisasContext *ctx = container_of(dcbase, DisasContext, base); 794 CPUHexagonState *env = cpu->env_ptr; 795 796 decode_and_translate_packet(env, ctx); 797 798 if (ctx->base.is_jmp == DISAS_NEXT) { 799 target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK; 800 target_ulong bytes_max = PACKET_WORDS_MAX * sizeof(target_ulong); 801 802 if (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE || 803 (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE - bytes_max && 804 pkt_crosses_page(env, ctx))) { 805 ctx->base.is_jmp = DISAS_TOO_MANY; 806 } 807 808 /* 809 * The CPU log is used to compare against LLDB single stepping, 810 * so end the TLB after every packet. 811 */ 812 HexagonCPU *hex_cpu = env_archcpu(env); 813 if (hex_cpu->lldb_compat && qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 814 ctx->base.is_jmp = DISAS_TOO_MANY; 815 } 816 } 817 } 818 819 static void hexagon_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 820 { 821 DisasContext *ctx = container_of(dcbase, DisasContext, base); 822 823 switch (ctx->base.is_jmp) { 824 case DISAS_TOO_MANY: 825 gen_exec_counters(ctx); 826 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next); 827 tcg_gen_exit_tb(NULL, 0); 828 break; 829 case DISAS_NORETURN: 830 break; 831 default: 832 g_assert_not_reached(); 833 } 834 } 835 836 static void hexagon_tr_disas_log(const DisasContextBase *dcbase, 837 CPUState *cpu, FILE *logfile) 838 { 839 fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first)); 840 target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size); 841 } 842 843 844 static const TranslatorOps hexagon_tr_ops = { 845 .init_disas_context = hexagon_tr_init_disas_context, 846 .tb_start = hexagon_tr_tb_start, 847 .insn_start = hexagon_tr_insn_start, 848 .translate_insn = hexagon_tr_translate_packet, 849 .tb_stop = hexagon_tr_tb_stop, 850 .disas_log = hexagon_tr_disas_log, 851 }; 852 853 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns) 854 { 855 DisasContext ctx; 856 857 translator_loop(&hexagon_tr_ops, &ctx.base, cs, tb, max_insns); 858 } 859 860 #define NAME_LEN 64 861 static char new_value_names[TOTAL_PER_THREAD_REGS][NAME_LEN]; 862 static char reg_written_names[TOTAL_PER_THREAD_REGS][NAME_LEN]; 863 static char new_pred_value_names[NUM_PREGS][NAME_LEN]; 864 static char store_addr_names[STORES_MAX][NAME_LEN]; 865 static char store_width_names[STORES_MAX][NAME_LEN]; 866 static char store_val32_names[STORES_MAX][NAME_LEN]; 867 static char store_val64_names[STORES_MAX][NAME_LEN]; 868 static char vstore_addr_names[VSTORES_MAX][NAME_LEN]; 869 static char vstore_size_names[VSTORES_MAX][NAME_LEN]; 870 static char vstore_pending_names[VSTORES_MAX][NAME_LEN]; 871 872 void hexagon_translate_init(void) 873 { 874 int i; 875 876 opcode_init(); 877 878 for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) { 879 hex_gpr[i] = tcg_global_mem_new(cpu_env, 880 offsetof(CPUHexagonState, gpr[i]), 881 hexagon_regnames[i]); 882 883 snprintf(new_value_names[i], NAME_LEN, "new_%s", hexagon_regnames[i]); 884 hex_new_value[i] = tcg_global_mem_new(cpu_env, 885 offsetof(CPUHexagonState, new_value[i]), 886 new_value_names[i]); 887 888 if (HEX_DEBUG) { 889 snprintf(reg_written_names[i], NAME_LEN, "reg_written_%s", 890 hexagon_regnames[i]); 891 hex_reg_written[i] = tcg_global_mem_new(cpu_env, 892 offsetof(CPUHexagonState, reg_written[i]), 893 reg_written_names[i]); 894 } 895 } 896 for (i = 0; i < NUM_PREGS; i++) { 897 hex_pred[i] = tcg_global_mem_new(cpu_env, 898 offsetof(CPUHexagonState, pred[i]), 899 hexagon_prednames[i]); 900 901 snprintf(new_pred_value_names[i], NAME_LEN, "new_pred_%s", 902 hexagon_prednames[i]); 903 hex_new_pred_value[i] = tcg_global_mem_new(cpu_env, 904 offsetof(CPUHexagonState, new_pred_value[i]), 905 new_pred_value_names[i]); 906 } 907 hex_pred_written = tcg_global_mem_new(cpu_env, 908 offsetof(CPUHexagonState, pred_written), "pred_written"); 909 hex_next_PC = tcg_global_mem_new(cpu_env, 910 offsetof(CPUHexagonState, next_PC), "next_PC"); 911 hex_this_PC = tcg_global_mem_new(cpu_env, 912 offsetof(CPUHexagonState, this_PC), "this_PC"); 913 hex_slot_cancelled = tcg_global_mem_new(cpu_env, 914 offsetof(CPUHexagonState, slot_cancelled), "slot_cancelled"); 915 hex_branch_taken = tcg_global_mem_new(cpu_env, 916 offsetof(CPUHexagonState, branch_taken), "branch_taken"); 917 hex_pkt_has_store_s1 = tcg_global_mem_new(cpu_env, 918 offsetof(CPUHexagonState, pkt_has_store_s1), "pkt_has_store_s1"); 919 hex_dczero_addr = tcg_global_mem_new(cpu_env, 920 offsetof(CPUHexagonState, dczero_addr), "dczero_addr"); 921 hex_llsc_addr = tcg_global_mem_new(cpu_env, 922 offsetof(CPUHexagonState, llsc_addr), "llsc_addr"); 923 hex_llsc_val = tcg_global_mem_new(cpu_env, 924 offsetof(CPUHexagonState, llsc_val), "llsc_val"); 925 hex_llsc_val_i64 = tcg_global_mem_new_i64(cpu_env, 926 offsetof(CPUHexagonState, llsc_val_i64), "llsc_val_i64"); 927 hex_VRegs_updated = tcg_global_mem_new(cpu_env, 928 offsetof(CPUHexagonState, VRegs_updated), "VRegs_updated"); 929 hex_QRegs_updated = tcg_global_mem_new(cpu_env, 930 offsetof(CPUHexagonState, QRegs_updated), "QRegs_updated"); 931 for (i = 0; i < STORES_MAX; i++) { 932 snprintf(store_addr_names[i], NAME_LEN, "store_addr_%d", i); 933 hex_store_addr[i] = tcg_global_mem_new(cpu_env, 934 offsetof(CPUHexagonState, mem_log_stores[i].va), 935 store_addr_names[i]); 936 937 snprintf(store_width_names[i], NAME_LEN, "store_width_%d", i); 938 hex_store_width[i] = tcg_global_mem_new(cpu_env, 939 offsetof(CPUHexagonState, mem_log_stores[i].width), 940 store_width_names[i]); 941 942 snprintf(store_val32_names[i], NAME_LEN, "store_val32_%d", i); 943 hex_store_val32[i] = tcg_global_mem_new(cpu_env, 944 offsetof(CPUHexagonState, mem_log_stores[i].data32), 945 store_val32_names[i]); 946 947 snprintf(store_val64_names[i], NAME_LEN, "store_val64_%d", i); 948 hex_store_val64[i] = tcg_global_mem_new_i64(cpu_env, 949 offsetof(CPUHexagonState, mem_log_stores[i].data64), 950 store_val64_names[i]); 951 } 952 for (int i = 0; i < VSTORES_MAX; i++) { 953 snprintf(vstore_addr_names[i], NAME_LEN, "vstore_addr_%d", i); 954 hex_vstore_addr[i] = tcg_global_mem_new(cpu_env, 955 offsetof(CPUHexagonState, vstore[i].va), 956 vstore_addr_names[i]); 957 958 snprintf(vstore_size_names[i], NAME_LEN, "vstore_size_%d", i); 959 hex_vstore_size[i] = tcg_global_mem_new(cpu_env, 960 offsetof(CPUHexagonState, vstore[i].size), 961 vstore_size_names[i]); 962 963 snprintf(vstore_pending_names[i], NAME_LEN, "vstore_pending_%d", i); 964 hex_vstore_pending[i] = tcg_global_mem_new(cpu_env, 965 offsetof(CPUHexagonState, vstore_pending[i]), 966 vstore_pending_names[i]); 967 } 968 } 969