xref: /openbmc/qemu/target/hexagon/translate.c (revision 8e6c718a)
1 /*
2  *  Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #define QEMU_GENERATE
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "tcg/tcg-op.h"
22 #include "tcg/tcg-op-gvec.h"
23 #include "exec/cpu_ldst.h"
24 #include "exec/log.h"
25 #include "internal.h"
26 #include "attribs.h"
27 #include "insn.h"
28 #include "decode.h"
29 #include "translate.h"
30 #include "genptr.h"
31 #include "printinsn.h"
32 
33 #include "analyze_funcs_generated.c.inc"
34 
35 typedef void (*AnalyzeInsn)(DisasContext *ctx);
36 static const AnalyzeInsn opcode_analyze[XX_LAST_OPCODE] = {
37 #define OPCODE(X)    [X] = analyze_##X
38 #include "opcodes_def_generated.h.inc"
39 #undef OPCODE
40 };
41 
42 TCGv hex_gpr[TOTAL_PER_THREAD_REGS];
43 TCGv hex_pred[NUM_PREGS];
44 TCGv hex_slot_cancelled;
45 TCGv hex_new_value_usr;
46 TCGv hex_reg_written[TOTAL_PER_THREAD_REGS];
47 TCGv hex_store_addr[STORES_MAX];
48 TCGv hex_store_width[STORES_MAX];
49 TCGv hex_store_val32[STORES_MAX];
50 TCGv_i64 hex_store_val64[STORES_MAX];
51 TCGv hex_llsc_addr;
52 TCGv hex_llsc_val;
53 TCGv_i64 hex_llsc_val_i64;
54 TCGv hex_vstore_addr[VSTORES_MAX];
55 TCGv hex_vstore_size[VSTORES_MAX];
56 TCGv hex_vstore_pending[VSTORES_MAX];
57 
58 static const char * const hexagon_prednames[] = {
59   "p0", "p1", "p2", "p3"
60 };
61 
62 intptr_t ctx_future_vreg_off(DisasContext *ctx, int regnum,
63                           int num, bool alloc_ok)
64 {
65     intptr_t offset;
66 
67     if (!ctx->need_commit) {
68         return offsetof(CPUHexagonState, VRegs[regnum]);
69     }
70 
71     /* See if it is already allocated */
72     for (int i = 0; i < ctx->future_vregs_idx; i++) {
73         if (ctx->future_vregs_num[i] == regnum) {
74             return offsetof(CPUHexagonState, future_VRegs[i]);
75         }
76     }
77 
78     g_assert(alloc_ok);
79     offset = offsetof(CPUHexagonState, future_VRegs[ctx->future_vregs_idx]);
80     for (int i = 0; i < num; i++) {
81         ctx->future_vregs_num[ctx->future_vregs_idx + i] = regnum++;
82     }
83     ctx->future_vregs_idx += num;
84     g_assert(ctx->future_vregs_idx <= VECTOR_TEMPS_MAX);
85     return offset;
86 }
87 
88 intptr_t ctx_tmp_vreg_off(DisasContext *ctx, int regnum,
89                           int num, bool alloc_ok)
90 {
91     intptr_t offset;
92 
93     /* See if it is already allocated */
94     for (int i = 0; i < ctx->tmp_vregs_idx; i++) {
95         if (ctx->tmp_vregs_num[i] == regnum) {
96             return offsetof(CPUHexagonState, tmp_VRegs[i]);
97         }
98     }
99 
100     g_assert(alloc_ok);
101     offset = offsetof(CPUHexagonState, tmp_VRegs[ctx->tmp_vregs_idx]);
102     for (int i = 0; i < num; i++) {
103         ctx->tmp_vregs_num[ctx->tmp_vregs_idx + i] = regnum++;
104     }
105     ctx->tmp_vregs_idx += num;
106     g_assert(ctx->tmp_vregs_idx <= VECTOR_TEMPS_MAX);
107     return offset;
108 }
109 
110 static void gen_exception_raw(int excp)
111 {
112     gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp));
113 }
114 
115 static void gen_exec_counters(DisasContext *ctx)
116 {
117     tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_PKT_CNT],
118                     hex_gpr[HEX_REG_QEMU_PKT_CNT], ctx->num_packets);
119     tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_INSN_CNT],
120                     hex_gpr[HEX_REG_QEMU_INSN_CNT], ctx->num_insns);
121     tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_HVX_CNT],
122                     hex_gpr[HEX_REG_QEMU_HVX_CNT], ctx->num_hvx_insns);
123 }
124 
125 static bool use_goto_tb(DisasContext *ctx, target_ulong dest)
126 {
127     return translator_use_goto_tb(&ctx->base, dest);
128 }
129 
130 static void gen_goto_tb(DisasContext *ctx, int idx, target_ulong dest, bool
131                         move_to_pc)
132 {
133     if (use_goto_tb(ctx, dest)) {
134         tcg_gen_goto_tb(idx);
135         if (move_to_pc) {
136             tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest);
137         }
138         tcg_gen_exit_tb(ctx->base.tb, idx);
139     } else {
140         if (move_to_pc) {
141             tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest);
142         }
143         tcg_gen_lookup_and_goto_ptr();
144     }
145 }
146 
147 static void gen_end_tb(DisasContext *ctx)
148 {
149     Packet *pkt = ctx->pkt;
150 
151     gen_exec_counters(ctx);
152 
153     if (ctx->branch_cond != TCG_COND_NEVER) {
154         if (ctx->branch_cond != TCG_COND_ALWAYS) {
155             TCGLabel *skip = gen_new_label();
156             tcg_gen_brcondi_tl(ctx->branch_cond, ctx->branch_taken, 0, skip);
157             gen_goto_tb(ctx, 0, ctx->branch_dest, true);
158             gen_set_label(skip);
159             gen_goto_tb(ctx, 1, ctx->next_PC, false);
160         } else {
161             gen_goto_tb(ctx, 0, ctx->branch_dest, true);
162         }
163     } else if (ctx->is_tight_loop &&
164                pkt->insn[pkt->num_insns - 1].opcode == J2_endloop0) {
165         /*
166          * When we're in a tight loop, we defer the endloop0 processing
167          * to take advantage of direct block chaining
168          */
169         TCGLabel *skip = gen_new_label();
170         tcg_gen_brcondi_tl(TCG_COND_LEU, hex_gpr[HEX_REG_LC0], 1, skip);
171         tcg_gen_subi_tl(hex_gpr[HEX_REG_LC0], hex_gpr[HEX_REG_LC0], 1);
172         gen_goto_tb(ctx, 0, ctx->base.tb->pc, true);
173         gen_set_label(skip);
174         gen_goto_tb(ctx, 1, ctx->next_PC, false);
175     } else {
176         tcg_gen_lookup_and_goto_ptr();
177     }
178 
179     ctx->base.is_jmp = DISAS_NORETURN;
180 }
181 
182 static void gen_exception_end_tb(DisasContext *ctx, int excp)
183 {
184     gen_exec_counters(ctx);
185     tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->next_PC);
186     gen_exception_raw(excp);
187     ctx->base.is_jmp = DISAS_NORETURN;
188 
189 }
190 
191 #define PACKET_BUFFER_LEN              1028
192 static void print_pkt(Packet *pkt)
193 {
194     GString *buf = g_string_sized_new(PACKET_BUFFER_LEN);
195     snprint_a_pkt_debug(buf, pkt);
196     HEX_DEBUG_LOG("%s", buf->str);
197     g_string_free(buf, true);
198 }
199 #define HEX_DEBUG_PRINT_PKT(pkt) \
200     do { \
201         if (HEX_DEBUG) { \
202             print_pkt(pkt); \
203         } \
204     } while (0)
205 
206 static int read_packet_words(CPUHexagonState *env, DisasContext *ctx,
207                              uint32_t words[])
208 {
209     bool found_end = false;
210     int nwords, max_words;
211 
212     memset(words, 0, PACKET_WORDS_MAX * sizeof(uint32_t));
213     for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
214         words[nwords] =
215             translator_ldl(env, &ctx->base,
216                            ctx->base.pc_next + nwords * sizeof(uint32_t));
217         found_end = is_packet_end(words[nwords]);
218     }
219     if (!found_end) {
220         /* Read too many words without finding the end */
221         return 0;
222     }
223 
224     /* Check for page boundary crossing */
225     max_words = -(ctx->base.pc_next | TARGET_PAGE_MASK) / sizeof(uint32_t);
226     if (nwords > max_words) {
227         /* We can only cross a page boundary at the beginning of a TB */
228         g_assert(ctx->base.num_insns == 1);
229     }
230 
231     HEX_DEBUG_LOG("decode_packet: pc = 0x%x\n", ctx->base.pc_next);
232     HEX_DEBUG_LOG("    words = { ");
233     for (int i = 0; i < nwords; i++) {
234         HEX_DEBUG_LOG("0x%x, ", words[i]);
235     }
236     HEX_DEBUG_LOG("}\n");
237 
238     return nwords;
239 }
240 
241 static bool check_for_attrib(Packet *pkt, int attrib)
242 {
243     for (int i = 0; i < pkt->num_insns; i++) {
244         if (GET_ATTRIB(pkt->insn[i].opcode, attrib)) {
245             return true;
246         }
247     }
248     return false;
249 }
250 
251 static bool need_slot_cancelled(Packet *pkt)
252 {
253     /* We only need slot_cancelled for conditional store instructions */
254     for (int i = 0; i < pkt->num_insns; i++) {
255         uint16_t opcode = pkt->insn[i].opcode;
256         if (GET_ATTRIB(opcode, A_CONDEXEC) &&
257             GET_ATTRIB(opcode, A_SCALAR_STORE)) {
258             return true;
259         }
260     }
261     return false;
262 }
263 
264 static bool need_next_PC(DisasContext *ctx)
265 {
266     Packet *pkt = ctx->pkt;
267 
268     /* Check for conditional control flow or HW loop end */
269     for (int i = 0; i < pkt->num_insns; i++) {
270         uint16_t opcode = pkt->insn[i].opcode;
271         if (GET_ATTRIB(opcode, A_CONDEXEC) && GET_ATTRIB(opcode, A_COF)) {
272             return true;
273         }
274         if (GET_ATTRIB(opcode, A_HWLOOP0_END) ||
275             GET_ATTRIB(opcode, A_HWLOOP1_END)) {
276             return true;
277         }
278     }
279     return false;
280 }
281 
282 /*
283  * The opcode_analyze functions mark most of the writes in a packet
284  * However, there are some implicit writes marked as attributes
285  * of the applicable instructions.
286  */
287 static void mark_implicit_reg_write(DisasContext *ctx, int attrib, int rnum)
288 {
289     uint16_t opcode = ctx->insn->opcode;
290     if (GET_ATTRIB(opcode, attrib)) {
291         /*
292          * USR is used to set overflow and FP exceptions,
293          * so treat it as conditional
294          */
295         bool is_predicated = GET_ATTRIB(opcode, A_CONDEXEC) ||
296                              rnum == HEX_REG_USR;
297 
298         /* LC0/LC1 is conditionally written by endloop instructions */
299         if ((rnum == HEX_REG_LC0 || rnum == HEX_REG_LC1) &&
300             (opcode == J2_endloop0 ||
301              opcode == J2_endloop1 ||
302              opcode == J2_endloop01)) {
303             is_predicated = true;
304         }
305 
306         ctx_log_reg_write(ctx, rnum, is_predicated);
307     }
308 }
309 
310 static void mark_implicit_reg_writes(DisasContext *ctx)
311 {
312     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_FP,  HEX_REG_FP);
313     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SP,  HEX_REG_SP);
314     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LR,  HEX_REG_LR);
315     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC0, HEX_REG_LC0);
316     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA0, HEX_REG_SA0);
317     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC1, HEX_REG_LC1);
318     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA1, HEX_REG_SA1);
319     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_USR, HEX_REG_USR);
320     mark_implicit_reg_write(ctx, A_FPOP, HEX_REG_USR);
321 }
322 
323 static void mark_implicit_pred_write(DisasContext *ctx, int attrib, int pnum)
324 {
325     if (GET_ATTRIB(ctx->insn->opcode, attrib)) {
326         ctx_log_pred_write(ctx, pnum);
327     }
328 }
329 
330 static void mark_implicit_pred_writes(DisasContext *ctx)
331 {
332     mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P0, 0);
333     mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P1, 1);
334     mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P2, 2);
335     mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P3, 3);
336 }
337 
338 static bool pkt_raises_exception(Packet *pkt)
339 {
340     if (check_for_attrib(pkt, A_LOAD) ||
341         check_for_attrib(pkt, A_STORE)) {
342         return true;
343     }
344     return false;
345 }
346 
347 static bool need_commit(DisasContext *ctx)
348 {
349     Packet *pkt = ctx->pkt;
350 
351     /*
352      * If the short-circuit property is set to false, we'll always do the commit
353      */
354     if (!ctx->short_circuit) {
355         return true;
356     }
357 
358     if (pkt_raises_exception(pkt)) {
359         return true;
360     }
361 
362     /* Registers with immutability flags require new_value */
363     for (int i = 0; i < ctx->reg_log_idx; i++) {
364         int rnum = ctx->reg_log[i];
365         if (reg_immut_masks[rnum]) {
366             return true;
367         }
368     }
369 
370     /* Floating point instructions are hard-coded to use new_value */
371     if (check_for_attrib(pkt, A_FPOP)) {
372         return true;
373     }
374 
375     if (pkt->num_insns == 1) {
376         if (pkt->pkt_has_hvx) {
377             /*
378              * The HVX instructions with generated helpers use
379              * pass-by-reference, so they need the read/write overlap
380              * check below.
381              * The HVX instructions with overrides are OK.
382              */
383             if (!ctx->has_hvx_helper) {
384                 return false;
385             }
386         } else {
387             return false;
388         }
389     }
390 
391     /* Check for overlap between register reads and writes */
392     for (int i = 0; i < ctx->reg_log_idx; i++) {
393         int rnum = ctx->reg_log[i];
394         if (test_bit(rnum, ctx->regs_read)) {
395             return true;
396         }
397     }
398 
399     /* Check for overlap between predicate reads and writes */
400     for (int i = 0; i < ctx->preg_log_idx; i++) {
401         int pnum = ctx->preg_log[i];
402         if (test_bit(pnum, ctx->pregs_read)) {
403             return true;
404         }
405     }
406 
407     /* Check for overlap between HVX reads and writes */
408     for (int i = 0; i < ctx->vreg_log_idx; i++) {
409         int vnum = ctx->vreg_log[i];
410         if (test_bit(vnum, ctx->vregs_read)) {
411             return true;
412         }
413     }
414     if (!bitmap_empty(ctx->vregs_updated_tmp, NUM_VREGS)) {
415         int i = find_first_bit(ctx->vregs_updated_tmp, NUM_VREGS);
416         while (i < NUM_VREGS) {
417             if (test_bit(i, ctx->vregs_read)) {
418                 return true;
419             }
420             i = find_next_bit(ctx->vregs_updated_tmp, NUM_VREGS, i + 1);
421         }
422     }
423     if (!bitmap_empty(ctx->vregs_select, NUM_VREGS)) {
424         int i = find_first_bit(ctx->vregs_select, NUM_VREGS);
425         while (i < NUM_VREGS) {
426             if (test_bit(i, ctx->vregs_read)) {
427                 return true;
428             }
429             i = find_next_bit(ctx->vregs_select, NUM_VREGS, i + 1);
430         }
431     }
432 
433     /* Check for overlap between HVX predicate reads and writes */
434     for (int i = 0; i < ctx->qreg_log_idx; i++) {
435         int qnum = ctx->qreg_log[i];
436         if (test_bit(qnum, ctx->qregs_read)) {
437             return true;
438         }
439     }
440 
441     return false;
442 }
443 
444 static void mark_implicit_pred_read(DisasContext *ctx, int attrib, int pnum)
445 {
446     if (GET_ATTRIB(ctx->insn->opcode, attrib)) {
447         ctx_log_pred_read(ctx, pnum);
448     }
449 }
450 
451 static void mark_implicit_pred_reads(DisasContext *ctx)
452 {
453     mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P0, 0);
454     mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P1, 1);
455     mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P3, 2);
456     mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P3, 3);
457 }
458 
459 static void analyze_packet(DisasContext *ctx)
460 {
461     Packet *pkt = ctx->pkt;
462     ctx->has_hvx_helper = false;
463     for (int i = 0; i < pkt->num_insns; i++) {
464         Insn *insn = &pkt->insn[i];
465         ctx->insn = insn;
466         if (opcode_analyze[insn->opcode]) {
467             opcode_analyze[insn->opcode](ctx);
468         }
469         mark_implicit_reg_writes(ctx);
470         mark_implicit_pred_writes(ctx);
471         mark_implicit_pred_reads(ctx);
472     }
473 
474     ctx->need_commit = need_commit(ctx);
475 }
476 
477 static void gen_start_packet(DisasContext *ctx)
478 {
479     Packet *pkt = ctx->pkt;
480     target_ulong next_PC = ctx->base.pc_next + pkt->encod_pkt_size_in_bytes;
481     int i;
482 
483     /* Clear out the disassembly context */
484     ctx->next_PC = next_PC;
485     ctx->reg_log_idx = 0;
486     bitmap_zero(ctx->regs_written, TOTAL_PER_THREAD_REGS);
487     bitmap_zero(ctx->regs_read, TOTAL_PER_THREAD_REGS);
488     bitmap_zero(ctx->predicated_regs, TOTAL_PER_THREAD_REGS);
489     ctx->preg_log_idx = 0;
490     bitmap_zero(ctx->pregs_written, NUM_PREGS);
491     bitmap_zero(ctx->pregs_read, NUM_PREGS);
492     ctx->future_vregs_idx = 0;
493     ctx->tmp_vregs_idx = 0;
494     ctx->vreg_log_idx = 0;
495     bitmap_zero(ctx->vregs_updated_tmp, NUM_VREGS);
496     bitmap_zero(ctx->vregs_updated, NUM_VREGS);
497     bitmap_zero(ctx->vregs_select, NUM_VREGS);
498     bitmap_zero(ctx->predicated_future_vregs, NUM_VREGS);
499     bitmap_zero(ctx->predicated_tmp_vregs, NUM_VREGS);
500     bitmap_zero(ctx->vregs_read, NUM_VREGS);
501     bitmap_zero(ctx->qregs_read, NUM_QREGS);
502     ctx->qreg_log_idx = 0;
503     for (i = 0; i < STORES_MAX; i++) {
504         ctx->store_width[i] = 0;
505     }
506     ctx->s1_store_processed = false;
507     ctx->pre_commit = true;
508     for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
509         ctx->new_value[i] = NULL;
510     }
511     for (i = 0; i < NUM_PREGS; i++) {
512         ctx->new_pred_value[i] = NULL;
513     }
514 
515     analyze_packet(ctx);
516 
517     /*
518      * pregs_written is used both in the analyze phase as well as the code
519      * gen phase, so clear it again.
520      */
521     bitmap_zero(ctx->pregs_written, NUM_PREGS);
522 
523     if (HEX_DEBUG) {
524         /* Handy place to set a breakpoint before the packet executes */
525         gen_helper_debug_start_packet(cpu_env);
526     }
527 
528     /* Initialize the runtime state for packet semantics */
529     if (need_slot_cancelled(pkt)) {
530         tcg_gen_movi_tl(hex_slot_cancelled, 0);
531     }
532     ctx->branch_taken = NULL;
533     if (pkt->pkt_has_cof) {
534         ctx->branch_taken = tcg_temp_new();
535         if (pkt->pkt_has_multi_cof) {
536             tcg_gen_movi_tl(ctx->branch_taken, 0);
537         }
538         if (need_next_PC(ctx)) {
539             tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], next_PC);
540         }
541     }
542     if (HEX_DEBUG) {
543         ctx->pred_written = tcg_temp_new();
544         tcg_gen_movi_tl(ctx->pred_written, 0);
545     }
546 
547     /* Preload the predicated registers into get_result_gpr(ctx, i) */
548     if (ctx->need_commit &&
549         !bitmap_empty(ctx->predicated_regs, TOTAL_PER_THREAD_REGS)) {
550         int i = find_first_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS);
551         while (i < TOTAL_PER_THREAD_REGS) {
552             tcg_gen_mov_tl(get_result_gpr(ctx, i), hex_gpr[i]);
553             i = find_next_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS,
554                               i + 1);
555         }
556     }
557 
558     /*
559      * Preload the predicated pred registers into hex_new_pred_value[pred_num]
560      * Only endloop instructions conditionally write to pred registers
561      */
562     if (ctx->need_commit && pkt->pkt_has_endloop) {
563         for (int i = 0; i < ctx->preg_log_idx; i++) {
564             int pred_num = ctx->preg_log[i];
565             ctx->new_pred_value[pred_num] = tcg_temp_new();
566             tcg_gen_mov_tl(ctx->new_pred_value[pred_num], hex_pred[pred_num]);
567         }
568     }
569 
570     /* Preload the predicated HVX registers into future_VRegs and tmp_VRegs */
571     if (!bitmap_empty(ctx->predicated_future_vregs, NUM_VREGS)) {
572         int i = find_first_bit(ctx->predicated_future_vregs, NUM_VREGS);
573         while (i < NUM_VREGS) {
574             const intptr_t VdV_off =
575                 ctx_future_vreg_off(ctx, i, 1, true);
576             intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]);
577             tcg_gen_gvec_mov(MO_64, VdV_off,
578                              src_off,
579                              sizeof(MMVector),
580                              sizeof(MMVector));
581             i = find_next_bit(ctx->predicated_future_vregs, NUM_VREGS, i + 1);
582         }
583     }
584     if (!bitmap_empty(ctx->predicated_tmp_vregs, NUM_VREGS)) {
585         int i = find_first_bit(ctx->predicated_tmp_vregs, NUM_VREGS);
586         while (i < NUM_VREGS) {
587             const intptr_t VdV_off =
588                 ctx_tmp_vreg_off(ctx, i, 1, true);
589             intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]);
590             tcg_gen_gvec_mov(MO_64, VdV_off,
591                              src_off,
592                              sizeof(MMVector),
593                              sizeof(MMVector));
594             i = find_next_bit(ctx->predicated_tmp_vregs, NUM_VREGS, i + 1);
595         }
596     }
597 }
598 
599 bool is_gather_store_insn(DisasContext *ctx)
600 {
601     Packet *pkt = ctx->pkt;
602     Insn *insn = ctx->insn;
603     if (GET_ATTRIB(insn->opcode, A_CVI_NEW) &&
604         insn->new_value_producer_slot == 1) {
605         /* Look for gather instruction */
606         for (int i = 0; i < pkt->num_insns; i++) {
607             Insn *in = &pkt->insn[i];
608             if (GET_ATTRIB(in->opcode, A_CVI_GATHER) && in->slot == 1) {
609                 return true;
610             }
611         }
612     }
613     return false;
614 }
615 
616 static void mark_store_width(DisasContext *ctx)
617 {
618     uint16_t opcode = ctx->insn->opcode;
619     uint32_t slot = ctx->insn->slot;
620     uint8_t width = 0;
621 
622     if (GET_ATTRIB(opcode, A_SCALAR_STORE)) {
623         if (GET_ATTRIB(opcode, A_MEMSIZE_0B)) {
624             return;
625         }
626         if (GET_ATTRIB(opcode, A_MEMSIZE_1B)) {
627             width |= 1;
628         }
629         if (GET_ATTRIB(opcode, A_MEMSIZE_2B)) {
630             width |= 2;
631         }
632         if (GET_ATTRIB(opcode, A_MEMSIZE_4B)) {
633             width |= 4;
634         }
635         if (GET_ATTRIB(opcode, A_MEMSIZE_8B)) {
636             width |= 8;
637         }
638         tcg_debug_assert(is_power_of_2(width));
639         ctx->store_width[slot] = width;
640     }
641 }
642 
643 static void gen_insn(DisasContext *ctx)
644 {
645     if (ctx->insn->generate) {
646         ctx->insn->generate(ctx);
647         mark_store_width(ctx);
648     } else {
649         gen_exception_end_tb(ctx, HEX_EXCP_INVALID_OPCODE);
650     }
651 }
652 
653 /*
654  * Helpers for generating the packet commit
655  */
656 static void gen_reg_writes(DisasContext *ctx)
657 {
658     int i;
659 
660     /* Early exit if not needed */
661     if (!ctx->need_commit) {
662         return;
663     }
664 
665     for (i = 0; i < ctx->reg_log_idx; i++) {
666         int reg_num = ctx->reg_log[i];
667 
668         tcg_gen_mov_tl(hex_gpr[reg_num], get_result_gpr(ctx, reg_num));
669 
670         /*
671          * ctx->is_tight_loop is set when SA0 points to the beginning of the TB.
672          * If we write to SA0, we have to turn off tight loop handling.
673          */
674         if (reg_num == HEX_REG_SA0) {
675             ctx->is_tight_loop = false;
676         }
677     }
678 }
679 
680 static void gen_pred_writes(DisasContext *ctx)
681 {
682     /* Early exit if not needed or the log is empty */
683     if (!ctx->need_commit || !ctx->preg_log_idx) {
684         return;
685     }
686 
687     for (int i = 0; i < ctx->preg_log_idx; i++) {
688         int pred_num = ctx->preg_log[i];
689         tcg_gen_mov_tl(hex_pred[pred_num], ctx->new_pred_value[pred_num]);
690     }
691 }
692 
693 static void gen_check_store_width(DisasContext *ctx, int slot_num)
694 {
695     if (HEX_DEBUG) {
696         TCGv slot = tcg_constant_tl(slot_num);
697         TCGv check = tcg_constant_tl(ctx->store_width[slot_num]);
698         gen_helper_debug_check_store_width(cpu_env, slot, check);
699     }
700 }
701 
702 static bool slot_is_predicated(Packet *pkt, int slot_num)
703 {
704     for (int i = 0; i < pkt->num_insns; i++) {
705         if (pkt->insn[i].slot == slot_num) {
706             return GET_ATTRIB(pkt->insn[i].opcode, A_CONDEXEC);
707         }
708     }
709     /* If we get to here, we didn't find an instruction in the requested slot */
710     g_assert_not_reached();
711 }
712 
713 void process_store(DisasContext *ctx, int slot_num)
714 {
715     bool is_predicated = slot_is_predicated(ctx->pkt, slot_num);
716     TCGLabel *label_end = NULL;
717 
718     /*
719      * We may have already processed this store
720      * See CHECK_NOSHUF in macros.h
721      */
722     if (slot_num == 1 && ctx->s1_store_processed) {
723         return;
724     }
725     ctx->s1_store_processed = true;
726 
727     if (is_predicated) {
728         TCGv cancelled = tcg_temp_new();
729         label_end = gen_new_label();
730 
731         /* Don't do anything if the slot was cancelled */
732         tcg_gen_extract_tl(cancelled, hex_slot_cancelled, slot_num, 1);
733         tcg_gen_brcondi_tl(TCG_COND_NE, cancelled, 0, label_end);
734     }
735     {
736         TCGv address = tcg_temp_new();
737         tcg_gen_mov_tl(address, hex_store_addr[slot_num]);
738 
739         /*
740          * If we know the width from the DisasContext, we can
741          * generate much cleaner code.
742          * Unfortunately, not all instructions execute the fSTORE
743          * macro during code generation.  Anything that uses the
744          * generic helper will have this problem.  Instructions
745          * that use fWRAP to generate proper TCG code will be OK.
746          */
747         switch (ctx->store_width[slot_num]) {
748         case 1:
749             gen_check_store_width(ctx, slot_num);
750             tcg_gen_qemu_st_tl(hex_store_val32[slot_num],
751                                hex_store_addr[slot_num],
752                                ctx->mem_idx, MO_UB);
753             break;
754         case 2:
755             gen_check_store_width(ctx, slot_num);
756             tcg_gen_qemu_st_tl(hex_store_val32[slot_num],
757                                hex_store_addr[slot_num],
758                                ctx->mem_idx, MO_TEUW);
759             break;
760         case 4:
761             gen_check_store_width(ctx, slot_num);
762             tcg_gen_qemu_st_tl(hex_store_val32[slot_num],
763                                hex_store_addr[slot_num],
764                                ctx->mem_idx, MO_TEUL);
765             break;
766         case 8:
767             gen_check_store_width(ctx, slot_num);
768             tcg_gen_qemu_st_i64(hex_store_val64[slot_num],
769                                 hex_store_addr[slot_num],
770                                 ctx->mem_idx, MO_TEUQ);
771             break;
772         default:
773             {
774                 /*
775                  * If we get to here, we don't know the width at
776                  * TCG generation time, we'll use a helper to
777                  * avoid branching based on the width at runtime.
778                  */
779                 TCGv slot = tcg_constant_tl(slot_num);
780                 gen_helper_commit_store(cpu_env, slot);
781             }
782         }
783     }
784     if (is_predicated) {
785         gen_set_label(label_end);
786     }
787 }
788 
789 static void process_store_log(DisasContext *ctx)
790 {
791     /*
792      *  When a packet has two stores, the hardware processes
793      *  slot 1 and then slot 0.  This will be important when
794      *  the memory accesses overlap.
795      */
796     Packet *pkt = ctx->pkt;
797     if (pkt->pkt_has_store_s1) {
798         g_assert(!pkt->pkt_has_dczeroa);
799         process_store(ctx, 1);
800     }
801     if (pkt->pkt_has_store_s0) {
802         g_assert(!pkt->pkt_has_dczeroa);
803         process_store(ctx, 0);
804     }
805 }
806 
807 /* Zero out a 32-bit cache line */
808 static void process_dczeroa(DisasContext *ctx)
809 {
810     if (ctx->pkt->pkt_has_dczeroa) {
811         /* Store 32 bytes of zero starting at (addr & ~0x1f) */
812         TCGv addr = tcg_temp_new();
813         TCGv_i64 zero = tcg_constant_i64(0);
814 
815         tcg_gen_andi_tl(addr, ctx->dczero_addr, ~0x1f);
816         tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
817         tcg_gen_addi_tl(addr, addr, 8);
818         tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
819         tcg_gen_addi_tl(addr, addr, 8);
820         tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
821         tcg_gen_addi_tl(addr, addr, 8);
822         tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
823     }
824 }
825 
826 static bool pkt_has_hvx_store(Packet *pkt)
827 {
828     int i;
829     for (i = 0; i < pkt->num_insns; i++) {
830         int opcode = pkt->insn[i].opcode;
831         if (GET_ATTRIB(opcode, A_CVI) && GET_ATTRIB(opcode, A_STORE)) {
832             return true;
833         }
834     }
835     return false;
836 }
837 
838 static void gen_commit_hvx(DisasContext *ctx)
839 {
840     int i;
841 
842     /* Early exit if not needed */
843     if (!ctx->need_commit) {
844         g_assert(!pkt_has_hvx_store(ctx->pkt));
845         return;
846     }
847 
848     /*
849      *    for (i = 0; i < ctx->vreg_log_idx; i++) {
850      *        int rnum = ctx->vreg_log[i];
851      *        env->VRegs[rnum] = env->future_VRegs[rnum];
852      *    }
853      */
854     for (i = 0; i < ctx->vreg_log_idx; i++) {
855         int rnum = ctx->vreg_log[i];
856         intptr_t dstoff = offsetof(CPUHexagonState, VRegs[rnum]);
857         intptr_t srcoff = ctx_future_vreg_off(ctx, rnum, 1, false);
858         size_t size = sizeof(MMVector);
859 
860         tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
861     }
862 
863     /*
864      *    for (i = 0; i < ctx->qreg_log_idx; i++) {
865      *        int rnum = ctx->qreg_log[i];
866      *        env->QRegs[rnum] = env->future_QRegs[rnum];
867      *    }
868      */
869     for (i = 0; i < ctx->qreg_log_idx; i++) {
870         int rnum = ctx->qreg_log[i];
871         intptr_t dstoff = offsetof(CPUHexagonState, QRegs[rnum]);
872         intptr_t srcoff = offsetof(CPUHexagonState, future_QRegs[rnum]);
873         size_t size = sizeof(MMQReg);
874 
875         tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
876     }
877 
878     if (pkt_has_hvx_store(ctx->pkt)) {
879         gen_helper_commit_hvx_stores(cpu_env);
880     }
881 }
882 
883 static void update_exec_counters(DisasContext *ctx)
884 {
885     Packet *pkt = ctx->pkt;
886     int num_insns = pkt->num_insns;
887     int num_real_insns = 0;
888     int num_hvx_insns = 0;
889 
890     for (int i = 0; i < num_insns; i++) {
891         if (!pkt->insn[i].is_endloop &&
892             !pkt->insn[i].part1 &&
893             !GET_ATTRIB(pkt->insn[i].opcode, A_IT_NOP)) {
894             num_real_insns++;
895         }
896         if (GET_ATTRIB(pkt->insn[i].opcode, A_CVI)) {
897             num_hvx_insns++;
898         }
899     }
900 
901     ctx->num_packets++;
902     ctx->num_insns += num_real_insns;
903     ctx->num_hvx_insns += num_hvx_insns;
904 }
905 
906 static void gen_commit_packet(DisasContext *ctx)
907 {
908     /*
909      * If there is more than one store in a packet, make sure they are all OK
910      * before proceeding with the rest of the packet commit.
911      *
912      * dczeroa has to be the only store operation in the packet, so we go
913      * ahead and process that first.
914      *
915      * When there is an HVX store, there can also be a scalar store in either
916      * slot 0 or slot1, so we create a mask for the helper to indicate what
917      * work to do.
918      *
919      * When there are two scalar stores, we probe the one in slot 0.
920      *
921      * Note that we don't call the probe helper for packets with only one
922      * store.  Therefore, we call process_store_log before anything else
923      * involved in committing the packet.
924      */
925     Packet *pkt = ctx->pkt;
926     bool has_store_s0 = pkt->pkt_has_store_s0;
927     bool has_store_s1 = (pkt->pkt_has_store_s1 && !ctx->s1_store_processed);
928     bool has_hvx_store = pkt_has_hvx_store(pkt);
929     if (pkt->pkt_has_dczeroa) {
930         /*
931          * The dczeroa will be the store in slot 0, check that we don't have
932          * a store in slot 1 or an HVX store.
933          */
934         g_assert(!has_store_s1 && !has_hvx_store);
935         process_dczeroa(ctx);
936     } else if (has_hvx_store) {
937         if (!has_store_s0 && !has_store_s1) {
938             TCGv mem_idx = tcg_constant_tl(ctx->mem_idx);
939             gen_helper_probe_hvx_stores(cpu_env, mem_idx);
940         } else {
941             int mask = 0;
942 
943             if (has_store_s0) {
944                 mask =
945                     FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST0, 1);
946             }
947             if (has_store_s1) {
948                 mask =
949                     FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST1, 1);
950             }
951             if (has_hvx_store) {
952                 mask =
953                     FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
954                                HAS_HVX_STORES, 1);
955             }
956             if (has_store_s0 && slot_is_predicated(pkt, 0)) {
957                 mask =
958                     FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
959                                S0_IS_PRED, 1);
960             }
961             if (has_store_s1 && slot_is_predicated(pkt, 1)) {
962                 mask =
963                     FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
964                                S1_IS_PRED, 1);
965             }
966             mask = FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, MMU_IDX,
967                               ctx->mem_idx);
968             gen_helper_probe_pkt_scalar_hvx_stores(cpu_env,
969                                                    tcg_constant_tl(mask));
970         }
971     } else if (has_store_s0 && has_store_s1) {
972         /*
973          * process_store_log will execute the slot 1 store first,
974          * so we only have to probe the store in slot 0
975          */
976         int args = 0;
977         args =
978             FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, MMU_IDX, ctx->mem_idx);
979         if (slot_is_predicated(pkt, 0)) {
980             args =
981                 FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, IS_PREDICATED, 1);
982         }
983         TCGv args_tcgv = tcg_constant_tl(args);
984         gen_helper_probe_pkt_scalar_store_s0(cpu_env, args_tcgv);
985     }
986 
987     process_store_log(ctx);
988 
989     gen_reg_writes(ctx);
990     gen_pred_writes(ctx);
991     if (pkt->pkt_has_hvx) {
992         gen_commit_hvx(ctx);
993     }
994     update_exec_counters(ctx);
995     if (HEX_DEBUG) {
996         TCGv has_st0 =
997             tcg_constant_tl(pkt->pkt_has_store_s0 && !pkt->pkt_has_dczeroa);
998         TCGv has_st1 =
999             tcg_constant_tl(pkt->pkt_has_store_s1 && !pkt->pkt_has_dczeroa);
1000 
1001         /* Handy place to set a breakpoint at the end of execution */
1002         gen_helper_debug_commit_end(cpu_env, tcg_constant_tl(ctx->pkt->pc),
1003                                     ctx->pred_written, has_st0, has_st1);
1004     }
1005 
1006     if (pkt->vhist_insn != NULL) {
1007         ctx->pre_commit = false;
1008         ctx->insn = pkt->vhist_insn;
1009         pkt->vhist_insn->generate(ctx);
1010     }
1011 
1012     if (pkt->pkt_has_cof) {
1013         gen_end_tb(ctx);
1014     }
1015 }
1016 
1017 static void decode_and_translate_packet(CPUHexagonState *env, DisasContext *ctx)
1018 {
1019     uint32_t words[PACKET_WORDS_MAX];
1020     int nwords;
1021     Packet pkt;
1022     int i;
1023 
1024     nwords = read_packet_words(env, ctx, words);
1025     if (!nwords) {
1026         gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET);
1027         return;
1028     }
1029 
1030     if (decode_packet(nwords, words, &pkt, false) > 0) {
1031         pkt.pc = ctx->base.pc_next;
1032         HEX_DEBUG_PRINT_PKT(&pkt);
1033         ctx->pkt = &pkt;
1034         gen_start_packet(ctx);
1035         for (i = 0; i < pkt.num_insns; i++) {
1036             ctx->insn = &pkt.insn[i];
1037             gen_insn(ctx);
1038         }
1039         gen_commit_packet(ctx);
1040         ctx->base.pc_next += pkt.encod_pkt_size_in_bytes;
1041     } else {
1042         gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET);
1043     }
1044 }
1045 
1046 static void hexagon_tr_init_disas_context(DisasContextBase *dcbase,
1047                                           CPUState *cs)
1048 {
1049     DisasContext *ctx = container_of(dcbase, DisasContext, base);
1050     HexagonCPU *hex_cpu = env_archcpu(cs->env_ptr);
1051     uint32_t hex_flags = dcbase->tb->flags;
1052 
1053     ctx->mem_idx = MMU_USER_IDX;
1054     ctx->num_packets = 0;
1055     ctx->num_insns = 0;
1056     ctx->num_hvx_insns = 0;
1057     ctx->branch_cond = TCG_COND_NEVER;
1058     ctx->is_tight_loop = FIELD_EX32(hex_flags, TB_FLAGS, IS_TIGHT_LOOP);
1059     ctx->short_circuit = hex_cpu->short_circuit;
1060 }
1061 
1062 static void hexagon_tr_tb_start(DisasContextBase *db, CPUState *cpu)
1063 {
1064 }
1065 
1066 static void hexagon_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
1067 {
1068     DisasContext *ctx = container_of(dcbase, DisasContext, base);
1069 
1070     tcg_gen_insn_start(ctx->base.pc_next);
1071 }
1072 
1073 static bool pkt_crosses_page(CPUHexagonState *env, DisasContext *ctx)
1074 {
1075     target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
1076     bool found_end = false;
1077     int nwords;
1078 
1079     for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
1080         uint32_t word = cpu_ldl_code(env,
1081                             ctx->base.pc_next + nwords * sizeof(uint32_t));
1082         found_end = is_packet_end(word);
1083     }
1084     uint32_t next_ptr =  ctx->base.pc_next + nwords * sizeof(uint32_t);
1085     return found_end && next_ptr - page_start >= TARGET_PAGE_SIZE;
1086 }
1087 
1088 static void hexagon_tr_translate_packet(DisasContextBase *dcbase, CPUState *cpu)
1089 {
1090     DisasContext *ctx = container_of(dcbase, DisasContext, base);
1091     CPUHexagonState *env = cpu->env_ptr;
1092 
1093     decode_and_translate_packet(env, ctx);
1094 
1095     if (ctx->base.is_jmp == DISAS_NEXT) {
1096         target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
1097         target_ulong bytes_max = PACKET_WORDS_MAX * sizeof(target_ulong);
1098 
1099         if (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE ||
1100             (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE - bytes_max &&
1101              pkt_crosses_page(env, ctx))) {
1102             ctx->base.is_jmp = DISAS_TOO_MANY;
1103         }
1104 
1105         /*
1106          * The CPU log is used to compare against LLDB single stepping,
1107          * so end the TLB after every packet.
1108          */
1109         HexagonCPU *hex_cpu = env_archcpu(env);
1110         if (hex_cpu->lldb_compat && qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
1111             ctx->base.is_jmp = DISAS_TOO_MANY;
1112         }
1113     }
1114 }
1115 
1116 static void hexagon_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
1117 {
1118     DisasContext *ctx = container_of(dcbase, DisasContext, base);
1119 
1120     switch (ctx->base.is_jmp) {
1121     case DISAS_TOO_MANY:
1122         gen_exec_counters(ctx);
1123         tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next);
1124         tcg_gen_exit_tb(NULL, 0);
1125         break;
1126     case DISAS_NORETURN:
1127         break;
1128     default:
1129         g_assert_not_reached();
1130     }
1131 }
1132 
1133 static void hexagon_tr_disas_log(const DisasContextBase *dcbase,
1134                                  CPUState *cpu, FILE *logfile)
1135 {
1136     fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first));
1137     target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size);
1138 }
1139 
1140 
1141 static const TranslatorOps hexagon_tr_ops = {
1142     .init_disas_context = hexagon_tr_init_disas_context,
1143     .tb_start           = hexagon_tr_tb_start,
1144     .insn_start         = hexagon_tr_insn_start,
1145     .translate_insn     = hexagon_tr_translate_packet,
1146     .tb_stop            = hexagon_tr_tb_stop,
1147     .disas_log          = hexagon_tr_disas_log,
1148 };
1149 
1150 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns,
1151                            target_ulong pc, void *host_pc)
1152 {
1153     DisasContext ctx;
1154 
1155     translator_loop(cs, tb, max_insns, pc, host_pc,
1156                     &hexagon_tr_ops, &ctx.base);
1157 }
1158 
1159 #define NAME_LEN               64
1160 static char reg_written_names[TOTAL_PER_THREAD_REGS][NAME_LEN];
1161 static char store_addr_names[STORES_MAX][NAME_LEN];
1162 static char store_width_names[STORES_MAX][NAME_LEN];
1163 static char store_val32_names[STORES_MAX][NAME_LEN];
1164 static char store_val64_names[STORES_MAX][NAME_LEN];
1165 static char vstore_addr_names[VSTORES_MAX][NAME_LEN];
1166 static char vstore_size_names[VSTORES_MAX][NAME_LEN];
1167 static char vstore_pending_names[VSTORES_MAX][NAME_LEN];
1168 
1169 void hexagon_translate_init(void)
1170 {
1171     int i;
1172 
1173     opcode_init();
1174 
1175     for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
1176         hex_gpr[i] = tcg_global_mem_new(cpu_env,
1177             offsetof(CPUHexagonState, gpr[i]),
1178             hexagon_regnames[i]);
1179 
1180         if (HEX_DEBUG) {
1181             snprintf(reg_written_names[i], NAME_LEN, "reg_written_%s",
1182                      hexagon_regnames[i]);
1183             hex_reg_written[i] = tcg_global_mem_new(cpu_env,
1184                 offsetof(CPUHexagonState, reg_written[i]),
1185                 reg_written_names[i]);
1186         }
1187     }
1188     hex_new_value_usr = tcg_global_mem_new(cpu_env,
1189         offsetof(CPUHexagonState, new_value_usr), "new_value_usr");
1190 
1191     for (i = 0; i < NUM_PREGS; i++) {
1192         hex_pred[i] = tcg_global_mem_new(cpu_env,
1193             offsetof(CPUHexagonState, pred[i]),
1194             hexagon_prednames[i]);
1195     }
1196     hex_slot_cancelled = tcg_global_mem_new(cpu_env,
1197         offsetof(CPUHexagonState, slot_cancelled), "slot_cancelled");
1198     hex_llsc_addr = tcg_global_mem_new(cpu_env,
1199         offsetof(CPUHexagonState, llsc_addr), "llsc_addr");
1200     hex_llsc_val = tcg_global_mem_new(cpu_env,
1201         offsetof(CPUHexagonState, llsc_val), "llsc_val");
1202     hex_llsc_val_i64 = tcg_global_mem_new_i64(cpu_env,
1203         offsetof(CPUHexagonState, llsc_val_i64), "llsc_val_i64");
1204     for (i = 0; i < STORES_MAX; i++) {
1205         snprintf(store_addr_names[i], NAME_LEN, "store_addr_%d", i);
1206         hex_store_addr[i] = tcg_global_mem_new(cpu_env,
1207             offsetof(CPUHexagonState, mem_log_stores[i].va),
1208             store_addr_names[i]);
1209 
1210         snprintf(store_width_names[i], NAME_LEN, "store_width_%d", i);
1211         hex_store_width[i] = tcg_global_mem_new(cpu_env,
1212             offsetof(CPUHexagonState, mem_log_stores[i].width),
1213             store_width_names[i]);
1214 
1215         snprintf(store_val32_names[i], NAME_LEN, "store_val32_%d", i);
1216         hex_store_val32[i] = tcg_global_mem_new(cpu_env,
1217             offsetof(CPUHexagonState, mem_log_stores[i].data32),
1218             store_val32_names[i]);
1219 
1220         snprintf(store_val64_names[i], NAME_LEN, "store_val64_%d", i);
1221         hex_store_val64[i] = tcg_global_mem_new_i64(cpu_env,
1222             offsetof(CPUHexagonState, mem_log_stores[i].data64),
1223             store_val64_names[i]);
1224     }
1225     for (int i = 0; i < VSTORES_MAX; i++) {
1226         snprintf(vstore_addr_names[i], NAME_LEN, "vstore_addr_%d", i);
1227         hex_vstore_addr[i] = tcg_global_mem_new(cpu_env,
1228             offsetof(CPUHexagonState, vstore[i].va),
1229             vstore_addr_names[i]);
1230 
1231         snprintf(vstore_size_names[i], NAME_LEN, "vstore_size_%d", i);
1232         hex_vstore_size[i] = tcg_global_mem_new(cpu_env,
1233             offsetof(CPUHexagonState, vstore[i].size),
1234             vstore_size_names[i]);
1235 
1236         snprintf(vstore_pending_names[i], NAME_LEN, "vstore_pending_%d", i);
1237         hex_vstore_pending[i] = tcg_global_mem_new(cpu_env,
1238             offsetof(CPUHexagonState, vstore_pending[i]),
1239             vstore_pending_names[i]);
1240     }
1241 }
1242