1 /* 2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #define QEMU_GENERATE 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "tcg/tcg-op.h" 22 #include "tcg/tcg-op-gvec.h" 23 #include "exec/cpu_ldst.h" 24 #include "exec/log.h" 25 #include "internal.h" 26 #include "attribs.h" 27 #include "insn.h" 28 #include "decode.h" 29 #include "translate.h" 30 #include "genptr.h" 31 #include "printinsn.h" 32 33 #include "analyze_funcs_generated.c.inc" 34 35 typedef void (*AnalyzeInsn)(DisasContext *ctx); 36 static const AnalyzeInsn opcode_analyze[XX_LAST_OPCODE] = { 37 #define OPCODE(X) [X] = analyze_##X 38 #include "opcodes_def_generated.h.inc" 39 #undef OPCODE 40 }; 41 42 TCGv hex_gpr[TOTAL_PER_THREAD_REGS]; 43 TCGv hex_pred[NUM_PREGS]; 44 TCGv hex_slot_cancelled; 45 TCGv hex_new_value_usr; 46 TCGv hex_reg_written[TOTAL_PER_THREAD_REGS]; 47 TCGv hex_store_addr[STORES_MAX]; 48 TCGv hex_store_width[STORES_MAX]; 49 TCGv hex_store_val32[STORES_MAX]; 50 TCGv_i64 hex_store_val64[STORES_MAX]; 51 TCGv hex_llsc_addr; 52 TCGv hex_llsc_val; 53 TCGv_i64 hex_llsc_val_i64; 54 TCGv hex_vstore_addr[VSTORES_MAX]; 55 TCGv hex_vstore_size[VSTORES_MAX]; 56 TCGv hex_vstore_pending[VSTORES_MAX]; 57 58 static const char * const hexagon_prednames[] = { 59 "p0", "p1", "p2", "p3" 60 }; 61 62 intptr_t ctx_future_vreg_off(DisasContext *ctx, int regnum, 63 int num, bool alloc_ok) 64 { 65 intptr_t offset; 66 67 if (!ctx->need_commit) { 68 return offsetof(CPUHexagonState, VRegs[regnum]); 69 } 70 71 /* See if it is already allocated */ 72 for (int i = 0; i < ctx->future_vregs_idx; i++) { 73 if (ctx->future_vregs_num[i] == regnum) { 74 return offsetof(CPUHexagonState, future_VRegs[i]); 75 } 76 } 77 78 g_assert(alloc_ok); 79 offset = offsetof(CPUHexagonState, future_VRegs[ctx->future_vregs_idx]); 80 for (int i = 0; i < num; i++) { 81 ctx->future_vregs_num[ctx->future_vregs_idx + i] = regnum++; 82 } 83 ctx->future_vregs_idx += num; 84 g_assert(ctx->future_vregs_idx <= VECTOR_TEMPS_MAX); 85 return offset; 86 } 87 88 intptr_t ctx_tmp_vreg_off(DisasContext *ctx, int regnum, 89 int num, bool alloc_ok) 90 { 91 intptr_t offset; 92 93 /* See if it is already allocated */ 94 for (int i = 0; i < ctx->tmp_vregs_idx; i++) { 95 if (ctx->tmp_vregs_num[i] == regnum) { 96 return offsetof(CPUHexagonState, tmp_VRegs[i]); 97 } 98 } 99 100 g_assert(alloc_ok); 101 offset = offsetof(CPUHexagonState, tmp_VRegs[ctx->tmp_vregs_idx]); 102 for (int i = 0; i < num; i++) { 103 ctx->tmp_vregs_num[ctx->tmp_vregs_idx + i] = regnum++; 104 } 105 ctx->tmp_vregs_idx += num; 106 g_assert(ctx->tmp_vregs_idx <= VECTOR_TEMPS_MAX); 107 return offset; 108 } 109 110 static void gen_exception_raw(int excp) 111 { 112 gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp)); 113 } 114 115 static void gen_exec_counters(DisasContext *ctx) 116 { 117 tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_PKT_CNT], 118 hex_gpr[HEX_REG_QEMU_PKT_CNT], ctx->num_packets); 119 tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_INSN_CNT], 120 hex_gpr[HEX_REG_QEMU_INSN_CNT], ctx->num_insns); 121 tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_HVX_CNT], 122 hex_gpr[HEX_REG_QEMU_HVX_CNT], ctx->num_hvx_insns); 123 } 124 125 static bool use_goto_tb(DisasContext *ctx, target_ulong dest) 126 { 127 return translator_use_goto_tb(&ctx->base, dest); 128 } 129 130 static void gen_goto_tb(DisasContext *ctx, int idx, target_ulong dest, bool 131 move_to_pc) 132 { 133 if (use_goto_tb(ctx, dest)) { 134 tcg_gen_goto_tb(idx); 135 if (move_to_pc) { 136 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest); 137 } 138 tcg_gen_exit_tb(ctx->base.tb, idx); 139 } else { 140 if (move_to_pc) { 141 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest); 142 } 143 tcg_gen_lookup_and_goto_ptr(); 144 } 145 } 146 147 static void gen_end_tb(DisasContext *ctx) 148 { 149 Packet *pkt = ctx->pkt; 150 151 gen_exec_counters(ctx); 152 153 if (ctx->branch_cond != TCG_COND_NEVER) { 154 if (ctx->branch_cond != TCG_COND_ALWAYS) { 155 TCGLabel *skip = gen_new_label(); 156 tcg_gen_brcondi_tl(ctx->branch_cond, ctx->branch_taken, 0, skip); 157 gen_goto_tb(ctx, 0, ctx->branch_dest, true); 158 gen_set_label(skip); 159 gen_goto_tb(ctx, 1, ctx->next_PC, false); 160 } else { 161 gen_goto_tb(ctx, 0, ctx->branch_dest, true); 162 } 163 } else if (ctx->is_tight_loop && 164 pkt->insn[pkt->num_insns - 1].opcode == J2_endloop0) { 165 /* 166 * When we're in a tight loop, we defer the endloop0 processing 167 * to take advantage of direct block chaining 168 */ 169 TCGLabel *skip = gen_new_label(); 170 tcg_gen_brcondi_tl(TCG_COND_LEU, hex_gpr[HEX_REG_LC0], 1, skip); 171 tcg_gen_subi_tl(hex_gpr[HEX_REG_LC0], hex_gpr[HEX_REG_LC0], 1); 172 gen_goto_tb(ctx, 0, ctx->base.tb->pc, true); 173 gen_set_label(skip); 174 gen_goto_tb(ctx, 1, ctx->next_PC, false); 175 } else { 176 tcg_gen_lookup_and_goto_ptr(); 177 } 178 179 ctx->base.is_jmp = DISAS_NORETURN; 180 } 181 182 static void gen_exception_end_tb(DisasContext *ctx, int excp) 183 { 184 gen_exec_counters(ctx); 185 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->next_PC); 186 gen_exception_raw(excp); 187 ctx->base.is_jmp = DISAS_NORETURN; 188 189 } 190 191 #define PACKET_BUFFER_LEN 1028 192 static void print_pkt(Packet *pkt) 193 { 194 GString *buf = g_string_sized_new(PACKET_BUFFER_LEN); 195 snprint_a_pkt_debug(buf, pkt); 196 HEX_DEBUG_LOG("%s", buf->str); 197 g_string_free(buf, true); 198 } 199 #define HEX_DEBUG_PRINT_PKT(pkt) \ 200 do { \ 201 if (HEX_DEBUG) { \ 202 print_pkt(pkt); \ 203 } \ 204 } while (0) 205 206 static int read_packet_words(CPUHexagonState *env, DisasContext *ctx, 207 uint32_t words[]) 208 { 209 bool found_end = false; 210 int nwords, max_words; 211 212 memset(words, 0, PACKET_WORDS_MAX * sizeof(uint32_t)); 213 for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) { 214 words[nwords] = 215 translator_ldl(env, &ctx->base, 216 ctx->base.pc_next + nwords * sizeof(uint32_t)); 217 found_end = is_packet_end(words[nwords]); 218 } 219 if (!found_end) { 220 /* Read too many words without finding the end */ 221 return 0; 222 } 223 224 /* Check for page boundary crossing */ 225 max_words = -(ctx->base.pc_next | TARGET_PAGE_MASK) / sizeof(uint32_t); 226 if (nwords > max_words) { 227 /* We can only cross a page boundary at the beginning of a TB */ 228 g_assert(ctx->base.num_insns == 1); 229 } 230 231 HEX_DEBUG_LOG("decode_packet: pc = 0x%x\n", ctx->base.pc_next); 232 HEX_DEBUG_LOG(" words = { "); 233 for (int i = 0; i < nwords; i++) { 234 HEX_DEBUG_LOG("0x%x, ", words[i]); 235 } 236 HEX_DEBUG_LOG("}\n"); 237 238 return nwords; 239 } 240 241 static bool check_for_attrib(Packet *pkt, int attrib) 242 { 243 for (int i = 0; i < pkt->num_insns; i++) { 244 if (GET_ATTRIB(pkt->insn[i].opcode, attrib)) { 245 return true; 246 } 247 } 248 return false; 249 } 250 251 static bool need_slot_cancelled(Packet *pkt) 252 { 253 /* We only need slot_cancelled for conditional store instructions */ 254 for (int i = 0; i < pkt->num_insns; i++) { 255 uint16_t opcode = pkt->insn[i].opcode; 256 if (GET_ATTRIB(opcode, A_CONDEXEC) && 257 GET_ATTRIB(opcode, A_SCALAR_STORE)) { 258 return true; 259 } 260 } 261 return false; 262 } 263 264 static bool need_next_PC(DisasContext *ctx) 265 { 266 Packet *pkt = ctx->pkt; 267 268 /* Check for conditional control flow or HW loop end */ 269 for (int i = 0; i < pkt->num_insns; i++) { 270 uint16_t opcode = pkt->insn[i].opcode; 271 if (GET_ATTRIB(opcode, A_CONDEXEC) && GET_ATTRIB(opcode, A_COF)) { 272 return true; 273 } 274 if (GET_ATTRIB(opcode, A_HWLOOP0_END) || 275 GET_ATTRIB(opcode, A_HWLOOP1_END)) { 276 return true; 277 } 278 } 279 return false; 280 } 281 282 /* 283 * The opcode_analyze functions mark most of the writes in a packet 284 * However, there are some implicit writes marked as attributes 285 * of the applicable instructions. 286 */ 287 static void mark_implicit_reg_write(DisasContext *ctx, int attrib, int rnum) 288 { 289 uint16_t opcode = ctx->insn->opcode; 290 if (GET_ATTRIB(opcode, attrib)) { 291 /* 292 * USR is used to set overflow and FP exceptions, 293 * so treat it as conditional 294 */ 295 bool is_predicated = GET_ATTRIB(opcode, A_CONDEXEC) || 296 rnum == HEX_REG_USR; 297 298 /* LC0/LC1 is conditionally written by endloop instructions */ 299 if ((rnum == HEX_REG_LC0 || rnum == HEX_REG_LC1) && 300 (opcode == J2_endloop0 || 301 opcode == J2_endloop1 || 302 opcode == J2_endloop01)) { 303 is_predicated = true; 304 } 305 306 ctx_log_reg_write(ctx, rnum, is_predicated); 307 } 308 } 309 310 static void mark_implicit_reg_writes(DisasContext *ctx) 311 { 312 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_FP, HEX_REG_FP); 313 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SP, HEX_REG_SP); 314 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LR, HEX_REG_LR); 315 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC0, HEX_REG_LC0); 316 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA0, HEX_REG_SA0); 317 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC1, HEX_REG_LC1); 318 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA1, HEX_REG_SA1); 319 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_USR, HEX_REG_USR); 320 mark_implicit_reg_write(ctx, A_FPOP, HEX_REG_USR); 321 } 322 323 static void mark_implicit_pred_write(DisasContext *ctx, int attrib, int pnum) 324 { 325 if (GET_ATTRIB(ctx->insn->opcode, attrib)) { 326 ctx_log_pred_write(ctx, pnum); 327 } 328 } 329 330 static void mark_implicit_pred_writes(DisasContext *ctx) 331 { 332 mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P0, 0); 333 mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P1, 1); 334 mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P2, 2); 335 mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P3, 3); 336 } 337 338 static bool pkt_raises_exception(Packet *pkt) 339 { 340 if (check_for_attrib(pkt, A_LOAD) || 341 check_for_attrib(pkt, A_STORE)) { 342 return true; 343 } 344 return false; 345 } 346 347 static bool need_commit(DisasContext *ctx) 348 { 349 Packet *pkt = ctx->pkt; 350 351 /* 352 * If the short-circuit property is set to false, we'll always do the commit 353 */ 354 if (!ctx->short_circuit) { 355 return true; 356 } 357 358 if (pkt_raises_exception(pkt)) { 359 return true; 360 } 361 362 /* Registers with immutability flags require new_value */ 363 for (int i = 0; i < ctx->reg_log_idx; i++) { 364 int rnum = ctx->reg_log[i]; 365 if (reg_immut_masks[rnum]) { 366 return true; 367 } 368 } 369 370 /* Floating point instructions are hard-coded to use new_value */ 371 if (check_for_attrib(pkt, A_FPOP)) { 372 return true; 373 } 374 375 if (pkt->num_insns == 1) { 376 if (pkt->pkt_has_hvx) { 377 /* 378 * The HVX instructions with generated helpers use 379 * pass-by-reference, so they need the read/write overlap 380 * check below. 381 * The HVX instructions with overrides are OK. 382 */ 383 if (!ctx->has_hvx_helper) { 384 return false; 385 } 386 } else { 387 return false; 388 } 389 } 390 391 /* Check for overlap between register reads and writes */ 392 for (int i = 0; i < ctx->reg_log_idx; i++) { 393 int rnum = ctx->reg_log[i]; 394 if (test_bit(rnum, ctx->regs_read)) { 395 return true; 396 } 397 } 398 399 /* Check for overlap between predicate reads and writes */ 400 for (int i = 0; i < ctx->preg_log_idx; i++) { 401 int pnum = ctx->preg_log[i]; 402 if (test_bit(pnum, ctx->pregs_read)) { 403 return true; 404 } 405 } 406 407 /* Check for overlap between HVX reads and writes */ 408 for (int i = 0; i < ctx->vreg_log_idx; i++) { 409 int vnum = ctx->vreg_log[i]; 410 if (test_bit(vnum, ctx->vregs_read)) { 411 return true; 412 } 413 } 414 if (!bitmap_empty(ctx->vregs_updated_tmp, NUM_VREGS)) { 415 int i = find_first_bit(ctx->vregs_updated_tmp, NUM_VREGS); 416 while (i < NUM_VREGS) { 417 if (test_bit(i, ctx->vregs_read)) { 418 return true; 419 } 420 i = find_next_bit(ctx->vregs_updated_tmp, NUM_VREGS, i + 1); 421 } 422 } 423 if (!bitmap_empty(ctx->vregs_select, NUM_VREGS)) { 424 int i = find_first_bit(ctx->vregs_select, NUM_VREGS); 425 while (i < NUM_VREGS) { 426 if (test_bit(i, ctx->vregs_read)) { 427 return true; 428 } 429 i = find_next_bit(ctx->vregs_select, NUM_VREGS, i + 1); 430 } 431 } 432 433 /* Check for overlap between HVX predicate reads and writes */ 434 for (int i = 0; i < ctx->qreg_log_idx; i++) { 435 int qnum = ctx->qreg_log[i]; 436 if (test_bit(qnum, ctx->qregs_read)) { 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 static void mark_implicit_pred_read(DisasContext *ctx, int attrib, int pnum) 445 { 446 if (GET_ATTRIB(ctx->insn->opcode, attrib)) { 447 ctx_log_pred_read(ctx, pnum); 448 } 449 } 450 451 static void mark_implicit_pred_reads(DisasContext *ctx) 452 { 453 mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P0, 0); 454 mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P1, 1); 455 mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P3, 2); 456 mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P3, 3); 457 } 458 459 static void analyze_packet(DisasContext *ctx) 460 { 461 Packet *pkt = ctx->pkt; 462 ctx->has_hvx_helper = false; 463 for (int i = 0; i < pkt->num_insns; i++) { 464 Insn *insn = &pkt->insn[i]; 465 ctx->insn = insn; 466 if (opcode_analyze[insn->opcode]) { 467 opcode_analyze[insn->opcode](ctx); 468 } 469 mark_implicit_reg_writes(ctx); 470 mark_implicit_pred_writes(ctx); 471 mark_implicit_pred_reads(ctx); 472 } 473 474 ctx->need_commit = need_commit(ctx); 475 } 476 477 static void gen_start_packet(DisasContext *ctx) 478 { 479 Packet *pkt = ctx->pkt; 480 target_ulong next_PC = ctx->base.pc_next + pkt->encod_pkt_size_in_bytes; 481 int i; 482 483 /* Clear out the disassembly context */ 484 ctx->next_PC = next_PC; 485 ctx->reg_log_idx = 0; 486 bitmap_zero(ctx->regs_written, TOTAL_PER_THREAD_REGS); 487 bitmap_zero(ctx->regs_read, TOTAL_PER_THREAD_REGS); 488 bitmap_zero(ctx->predicated_regs, TOTAL_PER_THREAD_REGS); 489 ctx->preg_log_idx = 0; 490 bitmap_zero(ctx->pregs_written, NUM_PREGS); 491 bitmap_zero(ctx->pregs_read, NUM_PREGS); 492 ctx->future_vregs_idx = 0; 493 ctx->tmp_vregs_idx = 0; 494 ctx->vreg_log_idx = 0; 495 bitmap_zero(ctx->vregs_updated_tmp, NUM_VREGS); 496 bitmap_zero(ctx->vregs_updated, NUM_VREGS); 497 bitmap_zero(ctx->vregs_select, NUM_VREGS); 498 bitmap_zero(ctx->predicated_future_vregs, NUM_VREGS); 499 bitmap_zero(ctx->predicated_tmp_vregs, NUM_VREGS); 500 bitmap_zero(ctx->vregs_read, NUM_VREGS); 501 bitmap_zero(ctx->qregs_read, NUM_QREGS); 502 ctx->qreg_log_idx = 0; 503 for (i = 0; i < STORES_MAX; i++) { 504 ctx->store_width[i] = 0; 505 } 506 ctx->s1_store_processed = false; 507 ctx->pre_commit = true; 508 for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) { 509 ctx->new_value[i] = NULL; 510 } 511 for (i = 0; i < NUM_PREGS; i++) { 512 ctx->new_pred_value[i] = NULL; 513 } 514 515 analyze_packet(ctx); 516 517 /* 518 * pregs_written is used both in the analyze phase as well as the code 519 * gen phase, so clear it again. 520 */ 521 bitmap_zero(ctx->pregs_written, NUM_PREGS); 522 523 if (HEX_DEBUG) { 524 /* Handy place to set a breakpoint before the packet executes */ 525 gen_helper_debug_start_packet(cpu_env); 526 } 527 528 /* Initialize the runtime state for packet semantics */ 529 if (need_slot_cancelled(pkt)) { 530 tcg_gen_movi_tl(hex_slot_cancelled, 0); 531 } 532 ctx->branch_taken = NULL; 533 if (pkt->pkt_has_cof) { 534 ctx->branch_taken = tcg_temp_new(); 535 if (pkt->pkt_has_multi_cof) { 536 tcg_gen_movi_tl(ctx->branch_taken, 0); 537 } 538 if (need_next_PC(ctx)) { 539 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], next_PC); 540 } 541 } 542 if (HEX_DEBUG) { 543 ctx->pred_written = tcg_temp_new(); 544 tcg_gen_movi_tl(ctx->pred_written, 0); 545 } 546 547 /* Preload the predicated registers into get_result_gpr(ctx, i) */ 548 if (ctx->need_commit && 549 !bitmap_empty(ctx->predicated_regs, TOTAL_PER_THREAD_REGS)) { 550 int i = find_first_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS); 551 while (i < TOTAL_PER_THREAD_REGS) { 552 tcg_gen_mov_tl(get_result_gpr(ctx, i), hex_gpr[i]); 553 i = find_next_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS, 554 i + 1); 555 } 556 } 557 558 /* 559 * Preload the predicated pred registers into hex_new_pred_value[pred_num] 560 * Only endloop instructions conditionally write to pred registers 561 */ 562 if (ctx->need_commit && pkt->pkt_has_endloop) { 563 for (int i = 0; i < ctx->preg_log_idx; i++) { 564 int pred_num = ctx->preg_log[i]; 565 ctx->new_pred_value[pred_num] = tcg_temp_new(); 566 tcg_gen_mov_tl(ctx->new_pred_value[pred_num], hex_pred[pred_num]); 567 } 568 } 569 570 /* Preload the predicated HVX registers into future_VRegs and tmp_VRegs */ 571 if (!bitmap_empty(ctx->predicated_future_vregs, NUM_VREGS)) { 572 int i = find_first_bit(ctx->predicated_future_vregs, NUM_VREGS); 573 while (i < NUM_VREGS) { 574 const intptr_t VdV_off = 575 ctx_future_vreg_off(ctx, i, 1, true); 576 intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]); 577 tcg_gen_gvec_mov(MO_64, VdV_off, 578 src_off, 579 sizeof(MMVector), 580 sizeof(MMVector)); 581 i = find_next_bit(ctx->predicated_future_vregs, NUM_VREGS, i + 1); 582 } 583 } 584 if (!bitmap_empty(ctx->predicated_tmp_vregs, NUM_VREGS)) { 585 int i = find_first_bit(ctx->predicated_tmp_vregs, NUM_VREGS); 586 while (i < NUM_VREGS) { 587 const intptr_t VdV_off = 588 ctx_tmp_vreg_off(ctx, i, 1, true); 589 intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]); 590 tcg_gen_gvec_mov(MO_64, VdV_off, 591 src_off, 592 sizeof(MMVector), 593 sizeof(MMVector)); 594 i = find_next_bit(ctx->predicated_tmp_vregs, NUM_VREGS, i + 1); 595 } 596 } 597 } 598 599 bool is_gather_store_insn(DisasContext *ctx) 600 { 601 Packet *pkt = ctx->pkt; 602 Insn *insn = ctx->insn; 603 if (GET_ATTRIB(insn->opcode, A_CVI_NEW) && 604 insn->new_value_producer_slot == 1) { 605 /* Look for gather instruction */ 606 for (int i = 0; i < pkt->num_insns; i++) { 607 Insn *in = &pkt->insn[i]; 608 if (GET_ATTRIB(in->opcode, A_CVI_GATHER) && in->slot == 1) { 609 return true; 610 } 611 } 612 } 613 return false; 614 } 615 616 static void mark_store_width(DisasContext *ctx) 617 { 618 uint16_t opcode = ctx->insn->opcode; 619 uint32_t slot = ctx->insn->slot; 620 uint8_t width = 0; 621 622 if (GET_ATTRIB(opcode, A_SCALAR_STORE)) { 623 if (GET_ATTRIB(opcode, A_MEMSIZE_0B)) { 624 return; 625 } 626 if (GET_ATTRIB(opcode, A_MEMSIZE_1B)) { 627 width |= 1; 628 } 629 if (GET_ATTRIB(opcode, A_MEMSIZE_2B)) { 630 width |= 2; 631 } 632 if (GET_ATTRIB(opcode, A_MEMSIZE_4B)) { 633 width |= 4; 634 } 635 if (GET_ATTRIB(opcode, A_MEMSIZE_8B)) { 636 width |= 8; 637 } 638 tcg_debug_assert(is_power_of_2(width)); 639 ctx->store_width[slot] = width; 640 } 641 } 642 643 static void gen_insn(DisasContext *ctx) 644 { 645 if (ctx->insn->generate) { 646 ctx->insn->generate(ctx); 647 mark_store_width(ctx); 648 } else { 649 gen_exception_end_tb(ctx, HEX_EXCP_INVALID_OPCODE); 650 } 651 } 652 653 /* 654 * Helpers for generating the packet commit 655 */ 656 static void gen_reg_writes(DisasContext *ctx) 657 { 658 int i; 659 660 /* Early exit if not needed */ 661 if (!ctx->need_commit) { 662 return; 663 } 664 665 for (i = 0; i < ctx->reg_log_idx; i++) { 666 int reg_num = ctx->reg_log[i]; 667 668 tcg_gen_mov_tl(hex_gpr[reg_num], get_result_gpr(ctx, reg_num)); 669 670 /* 671 * ctx->is_tight_loop is set when SA0 points to the beginning of the TB. 672 * If we write to SA0, we have to turn off tight loop handling. 673 */ 674 if (reg_num == HEX_REG_SA0) { 675 ctx->is_tight_loop = false; 676 } 677 } 678 } 679 680 static void gen_pred_writes(DisasContext *ctx) 681 { 682 /* Early exit if not needed or the log is empty */ 683 if (!ctx->need_commit || !ctx->preg_log_idx) { 684 return; 685 } 686 687 for (int i = 0; i < ctx->preg_log_idx; i++) { 688 int pred_num = ctx->preg_log[i]; 689 tcg_gen_mov_tl(hex_pred[pred_num], ctx->new_pred_value[pred_num]); 690 } 691 } 692 693 static void gen_check_store_width(DisasContext *ctx, int slot_num) 694 { 695 if (HEX_DEBUG) { 696 TCGv slot = tcg_constant_tl(slot_num); 697 TCGv check = tcg_constant_tl(ctx->store_width[slot_num]); 698 gen_helper_debug_check_store_width(cpu_env, slot, check); 699 } 700 } 701 702 static bool slot_is_predicated(Packet *pkt, int slot_num) 703 { 704 for (int i = 0; i < pkt->num_insns; i++) { 705 if (pkt->insn[i].slot == slot_num) { 706 return GET_ATTRIB(pkt->insn[i].opcode, A_CONDEXEC); 707 } 708 } 709 /* If we get to here, we didn't find an instruction in the requested slot */ 710 g_assert_not_reached(); 711 } 712 713 void process_store(DisasContext *ctx, int slot_num) 714 { 715 bool is_predicated = slot_is_predicated(ctx->pkt, slot_num); 716 TCGLabel *label_end = NULL; 717 718 /* 719 * We may have already processed this store 720 * See CHECK_NOSHUF in macros.h 721 */ 722 if (slot_num == 1 && ctx->s1_store_processed) { 723 return; 724 } 725 ctx->s1_store_processed = true; 726 727 if (is_predicated) { 728 TCGv cancelled = tcg_temp_new(); 729 label_end = gen_new_label(); 730 731 /* Don't do anything if the slot was cancelled */ 732 tcg_gen_extract_tl(cancelled, hex_slot_cancelled, slot_num, 1); 733 tcg_gen_brcondi_tl(TCG_COND_NE, cancelled, 0, label_end); 734 } 735 { 736 TCGv address = tcg_temp_new(); 737 tcg_gen_mov_tl(address, hex_store_addr[slot_num]); 738 739 /* 740 * If we know the width from the DisasContext, we can 741 * generate much cleaner code. 742 * Unfortunately, not all instructions execute the fSTORE 743 * macro during code generation. Anything that uses the 744 * generic helper will have this problem. Instructions 745 * that use fWRAP to generate proper TCG code will be OK. 746 */ 747 switch (ctx->store_width[slot_num]) { 748 case 1: 749 gen_check_store_width(ctx, slot_num); 750 tcg_gen_qemu_st_tl(hex_store_val32[slot_num], 751 hex_store_addr[slot_num], 752 ctx->mem_idx, MO_UB); 753 break; 754 case 2: 755 gen_check_store_width(ctx, slot_num); 756 tcg_gen_qemu_st_tl(hex_store_val32[slot_num], 757 hex_store_addr[slot_num], 758 ctx->mem_idx, MO_TEUW); 759 break; 760 case 4: 761 gen_check_store_width(ctx, slot_num); 762 tcg_gen_qemu_st_tl(hex_store_val32[slot_num], 763 hex_store_addr[slot_num], 764 ctx->mem_idx, MO_TEUL); 765 break; 766 case 8: 767 gen_check_store_width(ctx, slot_num); 768 tcg_gen_qemu_st_i64(hex_store_val64[slot_num], 769 hex_store_addr[slot_num], 770 ctx->mem_idx, MO_TEUQ); 771 break; 772 default: 773 { 774 /* 775 * If we get to here, we don't know the width at 776 * TCG generation time, we'll use a helper to 777 * avoid branching based on the width at runtime. 778 */ 779 TCGv slot = tcg_constant_tl(slot_num); 780 gen_helper_commit_store(cpu_env, slot); 781 } 782 } 783 } 784 if (is_predicated) { 785 gen_set_label(label_end); 786 } 787 } 788 789 static void process_store_log(DisasContext *ctx) 790 { 791 /* 792 * When a packet has two stores, the hardware processes 793 * slot 1 and then slot 0. This will be important when 794 * the memory accesses overlap. 795 */ 796 Packet *pkt = ctx->pkt; 797 if (pkt->pkt_has_store_s1) { 798 g_assert(!pkt->pkt_has_dczeroa); 799 process_store(ctx, 1); 800 } 801 if (pkt->pkt_has_store_s0) { 802 g_assert(!pkt->pkt_has_dczeroa); 803 process_store(ctx, 0); 804 } 805 } 806 807 /* Zero out a 32-bit cache line */ 808 static void process_dczeroa(DisasContext *ctx) 809 { 810 if (ctx->pkt->pkt_has_dczeroa) { 811 /* Store 32 bytes of zero starting at (addr & ~0x1f) */ 812 TCGv addr = tcg_temp_new(); 813 TCGv_i64 zero = tcg_constant_i64(0); 814 815 tcg_gen_andi_tl(addr, ctx->dczero_addr, ~0x1f); 816 tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ); 817 tcg_gen_addi_tl(addr, addr, 8); 818 tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ); 819 tcg_gen_addi_tl(addr, addr, 8); 820 tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ); 821 tcg_gen_addi_tl(addr, addr, 8); 822 tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ); 823 } 824 } 825 826 static bool pkt_has_hvx_store(Packet *pkt) 827 { 828 int i; 829 for (i = 0; i < pkt->num_insns; i++) { 830 int opcode = pkt->insn[i].opcode; 831 if (GET_ATTRIB(opcode, A_CVI) && GET_ATTRIB(opcode, A_STORE)) { 832 return true; 833 } 834 } 835 return false; 836 } 837 838 static void gen_commit_hvx(DisasContext *ctx) 839 { 840 int i; 841 842 /* Early exit if not needed */ 843 if (!ctx->need_commit) { 844 g_assert(!pkt_has_hvx_store(ctx->pkt)); 845 return; 846 } 847 848 /* 849 * for (i = 0; i < ctx->vreg_log_idx; i++) { 850 * int rnum = ctx->vreg_log[i]; 851 * env->VRegs[rnum] = env->future_VRegs[rnum]; 852 * } 853 */ 854 for (i = 0; i < ctx->vreg_log_idx; i++) { 855 int rnum = ctx->vreg_log[i]; 856 intptr_t dstoff = offsetof(CPUHexagonState, VRegs[rnum]); 857 intptr_t srcoff = ctx_future_vreg_off(ctx, rnum, 1, false); 858 size_t size = sizeof(MMVector); 859 860 tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size); 861 } 862 863 /* 864 * for (i = 0; i < ctx->qreg_log_idx; i++) { 865 * int rnum = ctx->qreg_log[i]; 866 * env->QRegs[rnum] = env->future_QRegs[rnum]; 867 * } 868 */ 869 for (i = 0; i < ctx->qreg_log_idx; i++) { 870 int rnum = ctx->qreg_log[i]; 871 intptr_t dstoff = offsetof(CPUHexagonState, QRegs[rnum]); 872 intptr_t srcoff = offsetof(CPUHexagonState, future_QRegs[rnum]); 873 size_t size = sizeof(MMQReg); 874 875 tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size); 876 } 877 878 if (pkt_has_hvx_store(ctx->pkt)) { 879 gen_helper_commit_hvx_stores(cpu_env); 880 } 881 } 882 883 static void update_exec_counters(DisasContext *ctx) 884 { 885 Packet *pkt = ctx->pkt; 886 int num_insns = pkt->num_insns; 887 int num_real_insns = 0; 888 int num_hvx_insns = 0; 889 890 for (int i = 0; i < num_insns; i++) { 891 if (!pkt->insn[i].is_endloop && 892 !pkt->insn[i].part1 && 893 !GET_ATTRIB(pkt->insn[i].opcode, A_IT_NOP)) { 894 num_real_insns++; 895 } 896 if (GET_ATTRIB(pkt->insn[i].opcode, A_CVI)) { 897 num_hvx_insns++; 898 } 899 } 900 901 ctx->num_packets++; 902 ctx->num_insns += num_real_insns; 903 ctx->num_hvx_insns += num_hvx_insns; 904 } 905 906 static void gen_commit_packet(DisasContext *ctx) 907 { 908 /* 909 * If there is more than one store in a packet, make sure they are all OK 910 * before proceeding with the rest of the packet commit. 911 * 912 * dczeroa has to be the only store operation in the packet, so we go 913 * ahead and process that first. 914 * 915 * When there is an HVX store, there can also be a scalar store in either 916 * slot 0 or slot1, so we create a mask for the helper to indicate what 917 * work to do. 918 * 919 * When there are two scalar stores, we probe the one in slot 0. 920 * 921 * Note that we don't call the probe helper for packets with only one 922 * store. Therefore, we call process_store_log before anything else 923 * involved in committing the packet. 924 */ 925 Packet *pkt = ctx->pkt; 926 bool has_store_s0 = pkt->pkt_has_store_s0; 927 bool has_store_s1 = (pkt->pkt_has_store_s1 && !ctx->s1_store_processed); 928 bool has_hvx_store = pkt_has_hvx_store(pkt); 929 if (pkt->pkt_has_dczeroa) { 930 /* 931 * The dczeroa will be the store in slot 0, check that we don't have 932 * a store in slot 1 or an HVX store. 933 */ 934 g_assert(!has_store_s1 && !has_hvx_store); 935 process_dczeroa(ctx); 936 } else if (has_hvx_store) { 937 if (!has_store_s0 && !has_store_s1) { 938 TCGv mem_idx = tcg_constant_tl(ctx->mem_idx); 939 gen_helper_probe_hvx_stores(cpu_env, mem_idx); 940 } else { 941 int mask = 0; 942 943 if (has_store_s0) { 944 mask = 945 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST0, 1); 946 } 947 if (has_store_s1) { 948 mask = 949 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST1, 1); 950 } 951 if (has_hvx_store) { 952 mask = 953 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, 954 HAS_HVX_STORES, 1); 955 } 956 if (has_store_s0 && slot_is_predicated(pkt, 0)) { 957 mask = 958 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, 959 S0_IS_PRED, 1); 960 } 961 if (has_store_s1 && slot_is_predicated(pkt, 1)) { 962 mask = 963 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, 964 S1_IS_PRED, 1); 965 } 966 mask = FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, MMU_IDX, 967 ctx->mem_idx); 968 gen_helper_probe_pkt_scalar_hvx_stores(cpu_env, 969 tcg_constant_tl(mask)); 970 } 971 } else if (has_store_s0 && has_store_s1) { 972 /* 973 * process_store_log will execute the slot 1 store first, 974 * so we only have to probe the store in slot 0 975 */ 976 int args = 0; 977 args = 978 FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, MMU_IDX, ctx->mem_idx); 979 if (slot_is_predicated(pkt, 0)) { 980 args = 981 FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, IS_PREDICATED, 1); 982 } 983 TCGv args_tcgv = tcg_constant_tl(args); 984 gen_helper_probe_pkt_scalar_store_s0(cpu_env, args_tcgv); 985 } 986 987 process_store_log(ctx); 988 989 gen_reg_writes(ctx); 990 gen_pred_writes(ctx); 991 if (pkt->pkt_has_hvx) { 992 gen_commit_hvx(ctx); 993 } 994 update_exec_counters(ctx); 995 if (HEX_DEBUG) { 996 TCGv has_st0 = 997 tcg_constant_tl(pkt->pkt_has_store_s0 && !pkt->pkt_has_dczeroa); 998 TCGv has_st1 = 999 tcg_constant_tl(pkt->pkt_has_store_s1 && !pkt->pkt_has_dczeroa); 1000 1001 /* Handy place to set a breakpoint at the end of execution */ 1002 gen_helper_debug_commit_end(cpu_env, tcg_constant_tl(ctx->pkt->pc), 1003 ctx->pred_written, has_st0, has_st1); 1004 } 1005 1006 if (pkt->vhist_insn != NULL) { 1007 ctx->pre_commit = false; 1008 ctx->insn = pkt->vhist_insn; 1009 pkt->vhist_insn->generate(ctx); 1010 } 1011 1012 if (pkt->pkt_has_cof) { 1013 gen_end_tb(ctx); 1014 } 1015 } 1016 1017 static void decode_and_translate_packet(CPUHexagonState *env, DisasContext *ctx) 1018 { 1019 uint32_t words[PACKET_WORDS_MAX]; 1020 int nwords; 1021 Packet pkt; 1022 int i; 1023 1024 nwords = read_packet_words(env, ctx, words); 1025 if (!nwords) { 1026 gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET); 1027 return; 1028 } 1029 1030 if (decode_packet(nwords, words, &pkt, false) > 0) { 1031 pkt.pc = ctx->base.pc_next; 1032 HEX_DEBUG_PRINT_PKT(&pkt); 1033 ctx->pkt = &pkt; 1034 gen_start_packet(ctx); 1035 for (i = 0; i < pkt.num_insns; i++) { 1036 ctx->insn = &pkt.insn[i]; 1037 gen_insn(ctx); 1038 } 1039 gen_commit_packet(ctx); 1040 ctx->base.pc_next += pkt.encod_pkt_size_in_bytes; 1041 } else { 1042 gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET); 1043 } 1044 } 1045 1046 static void hexagon_tr_init_disas_context(DisasContextBase *dcbase, 1047 CPUState *cs) 1048 { 1049 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1050 HexagonCPU *hex_cpu = env_archcpu(cs->env_ptr); 1051 uint32_t hex_flags = dcbase->tb->flags; 1052 1053 ctx->mem_idx = MMU_USER_IDX; 1054 ctx->num_packets = 0; 1055 ctx->num_insns = 0; 1056 ctx->num_hvx_insns = 0; 1057 ctx->branch_cond = TCG_COND_NEVER; 1058 ctx->is_tight_loop = FIELD_EX32(hex_flags, TB_FLAGS, IS_TIGHT_LOOP); 1059 ctx->short_circuit = hex_cpu->short_circuit; 1060 } 1061 1062 static void hexagon_tr_tb_start(DisasContextBase *db, CPUState *cpu) 1063 { 1064 } 1065 1066 static void hexagon_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 1067 { 1068 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1069 1070 tcg_gen_insn_start(ctx->base.pc_next); 1071 } 1072 1073 static bool pkt_crosses_page(CPUHexagonState *env, DisasContext *ctx) 1074 { 1075 target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK; 1076 bool found_end = false; 1077 int nwords; 1078 1079 for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) { 1080 uint32_t word = cpu_ldl_code(env, 1081 ctx->base.pc_next + nwords * sizeof(uint32_t)); 1082 found_end = is_packet_end(word); 1083 } 1084 uint32_t next_ptr = ctx->base.pc_next + nwords * sizeof(uint32_t); 1085 return found_end && next_ptr - page_start >= TARGET_PAGE_SIZE; 1086 } 1087 1088 static void hexagon_tr_translate_packet(DisasContextBase *dcbase, CPUState *cpu) 1089 { 1090 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1091 CPUHexagonState *env = cpu->env_ptr; 1092 1093 decode_and_translate_packet(env, ctx); 1094 1095 if (ctx->base.is_jmp == DISAS_NEXT) { 1096 target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK; 1097 target_ulong bytes_max = PACKET_WORDS_MAX * sizeof(target_ulong); 1098 1099 if (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE || 1100 (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE - bytes_max && 1101 pkt_crosses_page(env, ctx))) { 1102 ctx->base.is_jmp = DISAS_TOO_MANY; 1103 } 1104 1105 /* 1106 * The CPU log is used to compare against LLDB single stepping, 1107 * so end the TLB after every packet. 1108 */ 1109 HexagonCPU *hex_cpu = env_archcpu(env); 1110 if (hex_cpu->lldb_compat && qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 1111 ctx->base.is_jmp = DISAS_TOO_MANY; 1112 } 1113 } 1114 } 1115 1116 static void hexagon_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 1117 { 1118 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1119 1120 switch (ctx->base.is_jmp) { 1121 case DISAS_TOO_MANY: 1122 gen_exec_counters(ctx); 1123 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next); 1124 tcg_gen_exit_tb(NULL, 0); 1125 break; 1126 case DISAS_NORETURN: 1127 break; 1128 default: 1129 g_assert_not_reached(); 1130 } 1131 } 1132 1133 static void hexagon_tr_disas_log(const DisasContextBase *dcbase, 1134 CPUState *cpu, FILE *logfile) 1135 { 1136 fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first)); 1137 target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size); 1138 } 1139 1140 1141 static const TranslatorOps hexagon_tr_ops = { 1142 .init_disas_context = hexagon_tr_init_disas_context, 1143 .tb_start = hexagon_tr_tb_start, 1144 .insn_start = hexagon_tr_insn_start, 1145 .translate_insn = hexagon_tr_translate_packet, 1146 .tb_stop = hexagon_tr_tb_stop, 1147 .disas_log = hexagon_tr_disas_log, 1148 }; 1149 1150 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns, 1151 target_ulong pc, void *host_pc) 1152 { 1153 DisasContext ctx; 1154 1155 translator_loop(cs, tb, max_insns, pc, host_pc, 1156 &hexagon_tr_ops, &ctx.base); 1157 } 1158 1159 #define NAME_LEN 64 1160 static char reg_written_names[TOTAL_PER_THREAD_REGS][NAME_LEN]; 1161 static char store_addr_names[STORES_MAX][NAME_LEN]; 1162 static char store_width_names[STORES_MAX][NAME_LEN]; 1163 static char store_val32_names[STORES_MAX][NAME_LEN]; 1164 static char store_val64_names[STORES_MAX][NAME_LEN]; 1165 static char vstore_addr_names[VSTORES_MAX][NAME_LEN]; 1166 static char vstore_size_names[VSTORES_MAX][NAME_LEN]; 1167 static char vstore_pending_names[VSTORES_MAX][NAME_LEN]; 1168 1169 void hexagon_translate_init(void) 1170 { 1171 int i; 1172 1173 opcode_init(); 1174 1175 for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) { 1176 hex_gpr[i] = tcg_global_mem_new(cpu_env, 1177 offsetof(CPUHexagonState, gpr[i]), 1178 hexagon_regnames[i]); 1179 1180 if (HEX_DEBUG) { 1181 snprintf(reg_written_names[i], NAME_LEN, "reg_written_%s", 1182 hexagon_regnames[i]); 1183 hex_reg_written[i] = tcg_global_mem_new(cpu_env, 1184 offsetof(CPUHexagonState, reg_written[i]), 1185 reg_written_names[i]); 1186 } 1187 } 1188 hex_new_value_usr = tcg_global_mem_new(cpu_env, 1189 offsetof(CPUHexagonState, new_value_usr), "new_value_usr"); 1190 1191 for (i = 0; i < NUM_PREGS; i++) { 1192 hex_pred[i] = tcg_global_mem_new(cpu_env, 1193 offsetof(CPUHexagonState, pred[i]), 1194 hexagon_prednames[i]); 1195 } 1196 hex_slot_cancelled = tcg_global_mem_new(cpu_env, 1197 offsetof(CPUHexagonState, slot_cancelled), "slot_cancelled"); 1198 hex_llsc_addr = tcg_global_mem_new(cpu_env, 1199 offsetof(CPUHexagonState, llsc_addr), "llsc_addr"); 1200 hex_llsc_val = tcg_global_mem_new(cpu_env, 1201 offsetof(CPUHexagonState, llsc_val), "llsc_val"); 1202 hex_llsc_val_i64 = tcg_global_mem_new_i64(cpu_env, 1203 offsetof(CPUHexagonState, llsc_val_i64), "llsc_val_i64"); 1204 for (i = 0; i < STORES_MAX; i++) { 1205 snprintf(store_addr_names[i], NAME_LEN, "store_addr_%d", i); 1206 hex_store_addr[i] = tcg_global_mem_new(cpu_env, 1207 offsetof(CPUHexagonState, mem_log_stores[i].va), 1208 store_addr_names[i]); 1209 1210 snprintf(store_width_names[i], NAME_LEN, "store_width_%d", i); 1211 hex_store_width[i] = tcg_global_mem_new(cpu_env, 1212 offsetof(CPUHexagonState, mem_log_stores[i].width), 1213 store_width_names[i]); 1214 1215 snprintf(store_val32_names[i], NAME_LEN, "store_val32_%d", i); 1216 hex_store_val32[i] = tcg_global_mem_new(cpu_env, 1217 offsetof(CPUHexagonState, mem_log_stores[i].data32), 1218 store_val32_names[i]); 1219 1220 snprintf(store_val64_names[i], NAME_LEN, "store_val64_%d", i); 1221 hex_store_val64[i] = tcg_global_mem_new_i64(cpu_env, 1222 offsetof(CPUHexagonState, mem_log_stores[i].data64), 1223 store_val64_names[i]); 1224 } 1225 for (int i = 0; i < VSTORES_MAX; i++) { 1226 snprintf(vstore_addr_names[i], NAME_LEN, "vstore_addr_%d", i); 1227 hex_vstore_addr[i] = tcg_global_mem_new(cpu_env, 1228 offsetof(CPUHexagonState, vstore[i].va), 1229 vstore_addr_names[i]); 1230 1231 snprintf(vstore_size_names[i], NAME_LEN, "vstore_size_%d", i); 1232 hex_vstore_size[i] = tcg_global_mem_new(cpu_env, 1233 offsetof(CPUHexagonState, vstore[i].size), 1234 vstore_size_names[i]); 1235 1236 snprintf(vstore_pending_names[i], NAME_LEN, "vstore_pending_%d", i); 1237 hex_vstore_pending[i] = tcg_global_mem_new(cpu_env, 1238 offsetof(CPUHexagonState, vstore_pending[i]), 1239 vstore_pending_names[i]); 1240 } 1241 } 1242