1 /* 2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #define QEMU_GENERATE 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "tcg/tcg-op.h" 22 #include "tcg/tcg-op-gvec.h" 23 #include "exec/helper-gen.h" 24 #include "exec/helper-proto.h" 25 #include "exec/translation-block.h" 26 #include "exec/log.h" 27 #include "internal.h" 28 #include "attribs.h" 29 #include "insn.h" 30 #include "decode.h" 31 #include "translate.h" 32 #include "genptr.h" 33 #include "printinsn.h" 34 35 #define HELPER_H "helper.h" 36 #include "exec/helper-info.c.inc" 37 #undef HELPER_H 38 39 #include "analyze_funcs_generated.c.inc" 40 41 typedef void (*AnalyzeInsn)(DisasContext *ctx); 42 static const AnalyzeInsn opcode_analyze[XX_LAST_OPCODE] = { 43 #define OPCODE(X) [X] = analyze_##X 44 #include "opcodes_def_generated.h.inc" 45 #undef OPCODE 46 }; 47 48 TCGv hex_gpr[TOTAL_PER_THREAD_REGS]; 49 TCGv hex_pred[NUM_PREGS]; 50 TCGv hex_slot_cancelled; 51 TCGv hex_new_value_usr; 52 TCGv hex_reg_written[TOTAL_PER_THREAD_REGS]; 53 TCGv hex_store_addr[STORES_MAX]; 54 TCGv hex_store_width[STORES_MAX]; 55 TCGv hex_store_val32[STORES_MAX]; 56 TCGv_i64 hex_store_val64[STORES_MAX]; 57 TCGv hex_llsc_addr; 58 TCGv hex_llsc_val; 59 TCGv_i64 hex_llsc_val_i64; 60 TCGv hex_vstore_addr[VSTORES_MAX]; 61 TCGv hex_vstore_size[VSTORES_MAX]; 62 TCGv hex_vstore_pending[VSTORES_MAX]; 63 64 static const char * const hexagon_prednames[] = { 65 "p0", "p1", "p2", "p3" 66 }; 67 68 intptr_t ctx_future_vreg_off(DisasContext *ctx, int regnum, 69 int num, bool alloc_ok) 70 { 71 intptr_t offset; 72 73 if (!ctx->need_commit) { 74 return offsetof(CPUHexagonState, VRegs[regnum]); 75 } 76 77 /* See if it is already allocated */ 78 for (int i = 0; i < ctx->future_vregs_idx; i++) { 79 if (ctx->future_vregs_num[i] == regnum) { 80 return offsetof(CPUHexagonState, future_VRegs[i]); 81 } 82 } 83 84 g_assert(alloc_ok); 85 offset = offsetof(CPUHexagonState, future_VRegs[ctx->future_vregs_idx]); 86 for (int i = 0; i < num; i++) { 87 ctx->future_vregs_num[ctx->future_vregs_idx + i] = regnum++; 88 } 89 ctx->future_vregs_idx += num; 90 g_assert(ctx->future_vregs_idx <= VECTOR_TEMPS_MAX); 91 return offset; 92 } 93 94 intptr_t ctx_tmp_vreg_off(DisasContext *ctx, int regnum, 95 int num, bool alloc_ok) 96 { 97 intptr_t offset; 98 99 /* See if it is already allocated */ 100 for (int i = 0; i < ctx->tmp_vregs_idx; i++) { 101 if (ctx->tmp_vregs_num[i] == regnum) { 102 return offsetof(CPUHexagonState, tmp_VRegs[i]); 103 } 104 } 105 106 g_assert(alloc_ok); 107 offset = offsetof(CPUHexagonState, tmp_VRegs[ctx->tmp_vregs_idx]); 108 for (int i = 0; i < num; i++) { 109 ctx->tmp_vregs_num[ctx->tmp_vregs_idx + i] = regnum++; 110 } 111 ctx->tmp_vregs_idx += num; 112 g_assert(ctx->tmp_vregs_idx <= VECTOR_TEMPS_MAX); 113 return offset; 114 } 115 116 static void gen_exception_raw(int excp) 117 { 118 gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp)); 119 } 120 121 static void gen_exec_counters(DisasContext *ctx) 122 { 123 tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_PKT_CNT], 124 hex_gpr[HEX_REG_QEMU_PKT_CNT], ctx->num_packets); 125 tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_INSN_CNT], 126 hex_gpr[HEX_REG_QEMU_INSN_CNT], ctx->num_insns); 127 tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_HVX_CNT], 128 hex_gpr[HEX_REG_QEMU_HVX_CNT], ctx->num_hvx_insns); 129 } 130 131 static bool use_goto_tb(DisasContext *ctx, target_ulong dest) 132 { 133 return translator_use_goto_tb(&ctx->base, dest); 134 } 135 136 static void gen_goto_tb(DisasContext *ctx, int idx, target_ulong dest, bool 137 move_to_pc) 138 { 139 if (use_goto_tb(ctx, dest)) { 140 tcg_gen_goto_tb(idx); 141 if (move_to_pc) { 142 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest); 143 } 144 tcg_gen_exit_tb(ctx->base.tb, idx); 145 } else { 146 if (move_to_pc) { 147 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest); 148 } 149 tcg_gen_lookup_and_goto_ptr(); 150 } 151 } 152 153 static void gen_end_tb(DisasContext *ctx) 154 { 155 Packet *pkt = ctx->pkt; 156 157 gen_exec_counters(ctx); 158 159 if (ctx->branch_cond != TCG_COND_NEVER) { 160 if (ctx->branch_cond != TCG_COND_ALWAYS) { 161 TCGLabel *skip = gen_new_label(); 162 tcg_gen_brcondi_tl(ctx->branch_cond, ctx->branch_taken, 0, skip); 163 gen_goto_tb(ctx, 0, ctx->branch_dest, true); 164 gen_set_label(skip); 165 gen_goto_tb(ctx, 1, ctx->next_PC, false); 166 } else { 167 gen_goto_tb(ctx, 0, ctx->branch_dest, true); 168 } 169 } else if (ctx->is_tight_loop && 170 pkt->insn[pkt->num_insns - 1].opcode == J2_endloop0) { 171 /* 172 * When we're in a tight loop, we defer the endloop0 processing 173 * to take advantage of direct block chaining 174 */ 175 TCGLabel *skip = gen_new_label(); 176 tcg_gen_brcondi_tl(TCG_COND_LEU, hex_gpr[HEX_REG_LC0], 1, skip); 177 tcg_gen_subi_tl(hex_gpr[HEX_REG_LC0], hex_gpr[HEX_REG_LC0], 1); 178 gen_goto_tb(ctx, 0, ctx->base.tb->pc, true); 179 gen_set_label(skip); 180 gen_goto_tb(ctx, 1, ctx->next_PC, false); 181 } else { 182 tcg_gen_lookup_and_goto_ptr(); 183 } 184 185 ctx->base.is_jmp = DISAS_NORETURN; 186 } 187 188 static void gen_exception_end_tb(DisasContext *ctx, int excp) 189 { 190 gen_exec_counters(ctx); 191 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->next_PC); 192 gen_exception_raw(excp); 193 ctx->base.is_jmp = DISAS_NORETURN; 194 195 } 196 197 #define PACKET_BUFFER_LEN 1028 198 static void print_pkt(Packet *pkt) 199 { 200 GString *buf = g_string_sized_new(PACKET_BUFFER_LEN); 201 snprint_a_pkt_debug(buf, pkt); 202 HEX_DEBUG_LOG("%s", buf->str); 203 g_string_free(buf, true); 204 } 205 #define HEX_DEBUG_PRINT_PKT(pkt) \ 206 do { \ 207 if (HEX_DEBUG) { \ 208 print_pkt(pkt); \ 209 } \ 210 } while (0) 211 212 static int read_packet_words(CPUHexagonState *env, DisasContext *ctx, 213 uint32_t words[]) 214 { 215 bool found_end = false; 216 int nwords, max_words; 217 218 memset(words, 0, PACKET_WORDS_MAX * sizeof(uint32_t)); 219 for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) { 220 words[nwords] = 221 translator_ldl(env, &ctx->base, 222 ctx->base.pc_next + nwords * sizeof(uint32_t)); 223 found_end = is_packet_end(words[nwords]); 224 } 225 if (!found_end) { 226 /* Read too many words without finding the end */ 227 return 0; 228 } 229 230 /* Check for page boundary crossing */ 231 max_words = -(ctx->base.pc_next | TARGET_PAGE_MASK) / sizeof(uint32_t); 232 if (nwords > max_words) { 233 /* We can only cross a page boundary at the beginning of a TB */ 234 g_assert(ctx->base.num_insns == 1); 235 } 236 237 HEX_DEBUG_LOG("decode_packet: pc = 0x%x\n", ctx->base.pc_next); 238 HEX_DEBUG_LOG(" words = { "); 239 for (int i = 0; i < nwords; i++) { 240 HEX_DEBUG_LOG("0x%x, ", words[i]); 241 } 242 HEX_DEBUG_LOG("}\n"); 243 244 return nwords; 245 } 246 247 static bool check_for_attrib(Packet *pkt, int attrib) 248 { 249 for (int i = 0; i < pkt->num_insns; i++) { 250 if (GET_ATTRIB(pkt->insn[i].opcode, attrib)) { 251 return true; 252 } 253 } 254 return false; 255 } 256 257 static bool need_slot_cancelled(Packet *pkt) 258 { 259 /* We only need slot_cancelled for conditional store instructions */ 260 for (int i = 0; i < pkt->num_insns; i++) { 261 uint16_t opcode = pkt->insn[i].opcode; 262 if (GET_ATTRIB(opcode, A_CONDEXEC) && 263 GET_ATTRIB(opcode, A_SCALAR_STORE)) { 264 return true; 265 } 266 } 267 return false; 268 } 269 270 static bool need_next_PC(DisasContext *ctx) 271 { 272 Packet *pkt = ctx->pkt; 273 274 /* Check for conditional control flow or HW loop end */ 275 for (int i = 0; i < pkt->num_insns; i++) { 276 uint16_t opcode = pkt->insn[i].opcode; 277 if (GET_ATTRIB(opcode, A_CONDEXEC) && GET_ATTRIB(opcode, A_COF)) { 278 return true; 279 } 280 if (GET_ATTRIB(opcode, A_HWLOOP0_END) || 281 GET_ATTRIB(opcode, A_HWLOOP1_END)) { 282 return true; 283 } 284 } 285 return false; 286 } 287 288 /* 289 * The opcode_analyze functions mark most of the writes in a packet 290 * However, there are some implicit writes marked as attributes 291 * of the applicable instructions. 292 */ 293 static void mark_implicit_reg_write(DisasContext *ctx, int attrib, int rnum) 294 { 295 uint16_t opcode = ctx->insn->opcode; 296 if (GET_ATTRIB(opcode, attrib)) { 297 /* 298 * USR is used to set overflow and FP exceptions, 299 * so treat it as conditional 300 */ 301 bool is_predicated = GET_ATTRIB(opcode, A_CONDEXEC) || 302 rnum == HEX_REG_USR; 303 304 /* LC0/LC1 is conditionally written by endloop instructions */ 305 if ((rnum == HEX_REG_LC0 || rnum == HEX_REG_LC1) && 306 (opcode == J2_endloop0 || 307 opcode == J2_endloop1 || 308 opcode == J2_endloop01)) { 309 is_predicated = true; 310 } 311 312 ctx_log_reg_write(ctx, rnum, is_predicated); 313 } 314 } 315 316 static void mark_implicit_reg_writes(DisasContext *ctx) 317 { 318 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_FP, HEX_REG_FP); 319 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SP, HEX_REG_SP); 320 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LR, HEX_REG_LR); 321 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC0, HEX_REG_LC0); 322 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA0, HEX_REG_SA0); 323 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC1, HEX_REG_LC1); 324 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA1, HEX_REG_SA1); 325 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_USR, HEX_REG_USR); 326 mark_implicit_reg_write(ctx, A_FPOP, HEX_REG_USR); 327 } 328 329 static void mark_implicit_pred_write(DisasContext *ctx, int attrib, int pnum) 330 { 331 if (GET_ATTRIB(ctx->insn->opcode, attrib)) { 332 ctx_log_pred_write(ctx, pnum); 333 } 334 } 335 336 static void mark_implicit_pred_writes(DisasContext *ctx) 337 { 338 mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P0, 0); 339 mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P1, 1); 340 mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P2, 2); 341 mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P3, 3); 342 } 343 344 static bool pkt_raises_exception(Packet *pkt) 345 { 346 if (check_for_attrib(pkt, A_LOAD) || 347 check_for_attrib(pkt, A_STORE)) { 348 return true; 349 } 350 return false; 351 } 352 353 static bool need_commit(DisasContext *ctx) 354 { 355 Packet *pkt = ctx->pkt; 356 357 /* 358 * If the short-circuit property is set to false, we'll always do the commit 359 */ 360 if (!ctx->short_circuit) { 361 return true; 362 } 363 364 if (pkt_raises_exception(pkt)) { 365 return true; 366 } 367 368 /* Registers with immutability flags require new_value */ 369 for (int i = 0; i < ctx->reg_log_idx; i++) { 370 int rnum = ctx->reg_log[i]; 371 if (reg_immut_masks[rnum]) { 372 return true; 373 } 374 } 375 376 /* Floating point instructions are hard-coded to use new_value */ 377 if (check_for_attrib(pkt, A_FPOP)) { 378 return true; 379 } 380 381 if (pkt->num_insns == 1) { 382 if (pkt->pkt_has_hvx) { 383 /* 384 * The HVX instructions with generated helpers use 385 * pass-by-reference, so they need the read/write overlap 386 * check below. 387 * The HVX instructions with overrides are OK. 388 */ 389 if (!ctx->has_hvx_helper) { 390 return false; 391 } 392 } else { 393 return false; 394 } 395 } 396 397 /* Check for overlap between register reads and writes */ 398 for (int i = 0; i < ctx->reg_log_idx; i++) { 399 int rnum = ctx->reg_log[i]; 400 if (test_bit(rnum, ctx->regs_read)) { 401 return true; 402 } 403 } 404 405 /* Check for overlap between predicate reads and writes */ 406 for (int i = 0; i < ctx->preg_log_idx; i++) { 407 int pnum = ctx->preg_log[i]; 408 if (test_bit(pnum, ctx->pregs_read)) { 409 return true; 410 } 411 } 412 413 /* Check for overlap between HVX reads and writes */ 414 for (int i = 0; i < ctx->vreg_log_idx; i++) { 415 int vnum = ctx->vreg_log[i]; 416 if (test_bit(vnum, ctx->vregs_read)) { 417 return true; 418 } 419 } 420 if (!bitmap_empty(ctx->vregs_updated_tmp, NUM_VREGS)) { 421 int i = find_first_bit(ctx->vregs_updated_tmp, NUM_VREGS); 422 while (i < NUM_VREGS) { 423 if (test_bit(i, ctx->vregs_read)) { 424 return true; 425 } 426 i = find_next_bit(ctx->vregs_updated_tmp, NUM_VREGS, i + 1); 427 } 428 } 429 if (!bitmap_empty(ctx->vregs_select, NUM_VREGS)) { 430 int i = find_first_bit(ctx->vregs_select, NUM_VREGS); 431 while (i < NUM_VREGS) { 432 if (test_bit(i, ctx->vregs_read)) { 433 return true; 434 } 435 i = find_next_bit(ctx->vregs_select, NUM_VREGS, i + 1); 436 } 437 } 438 439 /* Check for overlap between HVX predicate reads and writes */ 440 for (int i = 0; i < ctx->qreg_log_idx; i++) { 441 int qnum = ctx->qreg_log[i]; 442 if (test_bit(qnum, ctx->qregs_read)) { 443 return true; 444 } 445 } 446 447 return false; 448 } 449 450 static void mark_implicit_pred_read(DisasContext *ctx, int attrib, int pnum) 451 { 452 if (GET_ATTRIB(ctx->insn->opcode, attrib)) { 453 ctx_log_pred_read(ctx, pnum); 454 } 455 } 456 457 static void mark_implicit_pred_reads(DisasContext *ctx) 458 { 459 mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P0, 0); 460 mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P1, 1); 461 mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P3, 2); 462 mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P3, 3); 463 } 464 465 static void analyze_packet(DisasContext *ctx) 466 { 467 Packet *pkt = ctx->pkt; 468 ctx->has_hvx_helper = false; 469 for (int i = 0; i < pkt->num_insns; i++) { 470 Insn *insn = &pkt->insn[i]; 471 ctx->insn = insn; 472 if (opcode_analyze[insn->opcode]) { 473 opcode_analyze[insn->opcode](ctx); 474 } 475 mark_implicit_reg_writes(ctx); 476 mark_implicit_pred_writes(ctx); 477 mark_implicit_pred_reads(ctx); 478 } 479 480 ctx->need_commit = need_commit(ctx); 481 } 482 483 static void gen_start_packet(DisasContext *ctx) 484 { 485 Packet *pkt = ctx->pkt; 486 target_ulong next_PC = ctx->base.pc_next + pkt->encod_pkt_size_in_bytes; 487 int i; 488 489 /* Clear out the disassembly context */ 490 ctx->next_PC = next_PC; 491 ctx->reg_log_idx = 0; 492 bitmap_zero(ctx->regs_written, TOTAL_PER_THREAD_REGS); 493 bitmap_zero(ctx->regs_read, TOTAL_PER_THREAD_REGS); 494 bitmap_zero(ctx->predicated_regs, TOTAL_PER_THREAD_REGS); 495 ctx->preg_log_idx = 0; 496 bitmap_zero(ctx->pregs_written, NUM_PREGS); 497 bitmap_zero(ctx->pregs_read, NUM_PREGS); 498 ctx->future_vregs_idx = 0; 499 ctx->tmp_vregs_idx = 0; 500 ctx->vreg_log_idx = 0; 501 bitmap_zero(ctx->vregs_updated_tmp, NUM_VREGS); 502 bitmap_zero(ctx->vregs_updated, NUM_VREGS); 503 bitmap_zero(ctx->vregs_select, NUM_VREGS); 504 bitmap_zero(ctx->predicated_future_vregs, NUM_VREGS); 505 bitmap_zero(ctx->predicated_tmp_vregs, NUM_VREGS); 506 bitmap_zero(ctx->vregs_read, NUM_VREGS); 507 bitmap_zero(ctx->qregs_read, NUM_QREGS); 508 ctx->qreg_log_idx = 0; 509 for (i = 0; i < STORES_MAX; i++) { 510 ctx->store_width[i] = 0; 511 } 512 ctx->s1_store_processed = false; 513 ctx->pre_commit = true; 514 for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) { 515 ctx->new_value[i] = NULL; 516 } 517 for (i = 0; i < NUM_PREGS; i++) { 518 ctx->new_pred_value[i] = NULL; 519 } 520 521 analyze_packet(ctx); 522 523 /* 524 * pregs_written is used both in the analyze phase as well as the code 525 * gen phase, so clear it again. 526 */ 527 bitmap_zero(ctx->pregs_written, NUM_PREGS); 528 529 if (HEX_DEBUG) { 530 /* Handy place to set a breakpoint before the packet executes */ 531 gen_helper_debug_start_packet(cpu_env); 532 } 533 534 /* Initialize the runtime state for packet semantics */ 535 if (need_slot_cancelled(pkt)) { 536 tcg_gen_movi_tl(hex_slot_cancelled, 0); 537 } 538 ctx->branch_taken = NULL; 539 if (pkt->pkt_has_cof) { 540 ctx->branch_taken = tcg_temp_new(); 541 if (pkt->pkt_has_multi_cof) { 542 tcg_gen_movi_tl(ctx->branch_taken, 0); 543 } 544 if (need_next_PC(ctx)) { 545 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], next_PC); 546 } 547 } 548 if (HEX_DEBUG) { 549 ctx->pred_written = tcg_temp_new(); 550 tcg_gen_movi_tl(ctx->pred_written, 0); 551 } 552 553 /* Preload the predicated registers into get_result_gpr(ctx, i) */ 554 if (ctx->need_commit && 555 !bitmap_empty(ctx->predicated_regs, TOTAL_PER_THREAD_REGS)) { 556 int i = find_first_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS); 557 while (i < TOTAL_PER_THREAD_REGS) { 558 tcg_gen_mov_tl(get_result_gpr(ctx, i), hex_gpr[i]); 559 i = find_next_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS, 560 i + 1); 561 } 562 } 563 564 /* 565 * Preload the predicated pred registers into ctx->new_pred_value[pred_num] 566 * Only endloop instructions conditionally write to pred registers 567 */ 568 if (ctx->need_commit && pkt->pkt_has_endloop) { 569 for (int i = 0; i < ctx->preg_log_idx; i++) { 570 int pred_num = ctx->preg_log[i]; 571 ctx->new_pred_value[pred_num] = tcg_temp_new(); 572 tcg_gen_mov_tl(ctx->new_pred_value[pred_num], hex_pred[pred_num]); 573 } 574 } 575 576 /* Preload the predicated HVX registers into future_VRegs and tmp_VRegs */ 577 if (!bitmap_empty(ctx->predicated_future_vregs, NUM_VREGS)) { 578 int i = find_first_bit(ctx->predicated_future_vregs, NUM_VREGS); 579 while (i < NUM_VREGS) { 580 const intptr_t VdV_off = 581 ctx_future_vreg_off(ctx, i, 1, true); 582 intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]); 583 tcg_gen_gvec_mov(MO_64, VdV_off, 584 src_off, 585 sizeof(MMVector), 586 sizeof(MMVector)); 587 i = find_next_bit(ctx->predicated_future_vregs, NUM_VREGS, i + 1); 588 } 589 } 590 if (!bitmap_empty(ctx->predicated_tmp_vregs, NUM_VREGS)) { 591 int i = find_first_bit(ctx->predicated_tmp_vregs, NUM_VREGS); 592 while (i < NUM_VREGS) { 593 const intptr_t VdV_off = 594 ctx_tmp_vreg_off(ctx, i, 1, true); 595 intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]); 596 tcg_gen_gvec_mov(MO_64, VdV_off, 597 src_off, 598 sizeof(MMVector), 599 sizeof(MMVector)); 600 i = find_next_bit(ctx->predicated_tmp_vregs, NUM_VREGS, i + 1); 601 } 602 } 603 } 604 605 bool is_gather_store_insn(DisasContext *ctx) 606 { 607 Packet *pkt = ctx->pkt; 608 Insn *insn = ctx->insn; 609 if (GET_ATTRIB(insn->opcode, A_CVI_NEW) && 610 insn->new_value_producer_slot == 1) { 611 /* Look for gather instruction */ 612 for (int i = 0; i < pkt->num_insns; i++) { 613 Insn *in = &pkt->insn[i]; 614 if (GET_ATTRIB(in->opcode, A_CVI_GATHER) && in->slot == 1) { 615 return true; 616 } 617 } 618 } 619 return false; 620 } 621 622 static void mark_store_width(DisasContext *ctx) 623 { 624 uint16_t opcode = ctx->insn->opcode; 625 uint32_t slot = ctx->insn->slot; 626 uint8_t width = 0; 627 628 if (GET_ATTRIB(opcode, A_SCALAR_STORE)) { 629 if (GET_ATTRIB(opcode, A_MEMSIZE_0B)) { 630 return; 631 } 632 if (GET_ATTRIB(opcode, A_MEMSIZE_1B)) { 633 width |= 1; 634 } 635 if (GET_ATTRIB(opcode, A_MEMSIZE_2B)) { 636 width |= 2; 637 } 638 if (GET_ATTRIB(opcode, A_MEMSIZE_4B)) { 639 width |= 4; 640 } 641 if (GET_ATTRIB(opcode, A_MEMSIZE_8B)) { 642 width |= 8; 643 } 644 tcg_debug_assert(is_power_of_2(width)); 645 ctx->store_width[slot] = width; 646 } 647 } 648 649 static void gen_insn(DisasContext *ctx) 650 { 651 if (ctx->insn->generate) { 652 ctx->insn->generate(ctx); 653 mark_store_width(ctx); 654 } else { 655 gen_exception_end_tb(ctx, HEX_EXCP_INVALID_OPCODE); 656 } 657 } 658 659 /* 660 * Helpers for generating the packet commit 661 */ 662 static void gen_reg_writes(DisasContext *ctx) 663 { 664 int i; 665 666 /* Early exit if not needed */ 667 if (!ctx->need_commit) { 668 return; 669 } 670 671 for (i = 0; i < ctx->reg_log_idx; i++) { 672 int reg_num = ctx->reg_log[i]; 673 674 tcg_gen_mov_tl(hex_gpr[reg_num], get_result_gpr(ctx, reg_num)); 675 676 /* 677 * ctx->is_tight_loop is set when SA0 points to the beginning of the TB. 678 * If we write to SA0, we have to turn off tight loop handling. 679 */ 680 if (reg_num == HEX_REG_SA0) { 681 ctx->is_tight_loop = false; 682 } 683 } 684 } 685 686 static void gen_pred_writes(DisasContext *ctx) 687 { 688 /* Early exit if not needed or the log is empty */ 689 if (!ctx->need_commit || !ctx->preg_log_idx) { 690 return; 691 } 692 693 for (int i = 0; i < ctx->preg_log_idx; i++) { 694 int pred_num = ctx->preg_log[i]; 695 tcg_gen_mov_tl(hex_pred[pred_num], ctx->new_pred_value[pred_num]); 696 } 697 } 698 699 static void gen_check_store_width(DisasContext *ctx, int slot_num) 700 { 701 if (HEX_DEBUG) { 702 TCGv slot = tcg_constant_tl(slot_num); 703 TCGv check = tcg_constant_tl(ctx->store_width[slot_num]); 704 gen_helper_debug_check_store_width(cpu_env, slot, check); 705 } 706 } 707 708 static bool slot_is_predicated(Packet *pkt, int slot_num) 709 { 710 for (int i = 0; i < pkt->num_insns; i++) { 711 if (pkt->insn[i].slot == slot_num) { 712 return GET_ATTRIB(pkt->insn[i].opcode, A_CONDEXEC); 713 } 714 } 715 /* If we get to here, we didn't find an instruction in the requested slot */ 716 g_assert_not_reached(); 717 } 718 719 void process_store(DisasContext *ctx, int slot_num) 720 { 721 bool is_predicated = slot_is_predicated(ctx->pkt, slot_num); 722 TCGLabel *label_end = NULL; 723 724 /* 725 * We may have already processed this store 726 * See CHECK_NOSHUF in macros.h 727 */ 728 if (slot_num == 1 && ctx->s1_store_processed) { 729 return; 730 } 731 ctx->s1_store_processed = true; 732 733 if (is_predicated) { 734 TCGv cancelled = tcg_temp_new(); 735 label_end = gen_new_label(); 736 737 /* Don't do anything if the slot was cancelled */ 738 tcg_gen_extract_tl(cancelled, hex_slot_cancelled, slot_num, 1); 739 tcg_gen_brcondi_tl(TCG_COND_NE, cancelled, 0, label_end); 740 } 741 { 742 TCGv address = tcg_temp_new(); 743 tcg_gen_mov_tl(address, hex_store_addr[slot_num]); 744 745 /* 746 * If we know the width from the DisasContext, we can 747 * generate much cleaner code. 748 * Unfortunately, not all instructions execute the fSTORE 749 * macro during code generation. Anything that uses the 750 * generic helper will have this problem. Instructions 751 * that use fWRAP to generate proper TCG code will be OK. 752 */ 753 switch (ctx->store_width[slot_num]) { 754 case 1: 755 gen_check_store_width(ctx, slot_num); 756 tcg_gen_qemu_st_tl(hex_store_val32[slot_num], 757 hex_store_addr[slot_num], 758 ctx->mem_idx, MO_UB); 759 break; 760 case 2: 761 gen_check_store_width(ctx, slot_num); 762 tcg_gen_qemu_st_tl(hex_store_val32[slot_num], 763 hex_store_addr[slot_num], 764 ctx->mem_idx, MO_TEUW); 765 break; 766 case 4: 767 gen_check_store_width(ctx, slot_num); 768 tcg_gen_qemu_st_tl(hex_store_val32[slot_num], 769 hex_store_addr[slot_num], 770 ctx->mem_idx, MO_TEUL); 771 break; 772 case 8: 773 gen_check_store_width(ctx, slot_num); 774 tcg_gen_qemu_st_i64(hex_store_val64[slot_num], 775 hex_store_addr[slot_num], 776 ctx->mem_idx, MO_TEUQ); 777 break; 778 default: 779 { 780 /* 781 * If we get to here, we don't know the width at 782 * TCG generation time, we'll use a helper to 783 * avoid branching based on the width at runtime. 784 */ 785 TCGv slot = tcg_constant_tl(slot_num); 786 gen_helper_commit_store(cpu_env, slot); 787 } 788 } 789 } 790 if (is_predicated) { 791 gen_set_label(label_end); 792 } 793 } 794 795 static void process_store_log(DisasContext *ctx) 796 { 797 /* 798 * When a packet has two stores, the hardware processes 799 * slot 1 and then slot 0. This will be important when 800 * the memory accesses overlap. 801 */ 802 Packet *pkt = ctx->pkt; 803 if (pkt->pkt_has_store_s1) { 804 g_assert(!pkt->pkt_has_dczeroa); 805 process_store(ctx, 1); 806 } 807 if (pkt->pkt_has_store_s0) { 808 g_assert(!pkt->pkt_has_dczeroa); 809 process_store(ctx, 0); 810 } 811 } 812 813 /* Zero out a 32-bit cache line */ 814 static void process_dczeroa(DisasContext *ctx) 815 { 816 if (ctx->pkt->pkt_has_dczeroa) { 817 /* Store 32 bytes of zero starting at (addr & ~0x1f) */ 818 TCGv addr = tcg_temp_new(); 819 TCGv_i64 zero = tcg_constant_i64(0); 820 821 tcg_gen_andi_tl(addr, ctx->dczero_addr, ~0x1f); 822 tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ); 823 tcg_gen_addi_tl(addr, addr, 8); 824 tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ); 825 tcg_gen_addi_tl(addr, addr, 8); 826 tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ); 827 tcg_gen_addi_tl(addr, addr, 8); 828 tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ); 829 } 830 } 831 832 static bool pkt_has_hvx_store(Packet *pkt) 833 { 834 int i; 835 for (i = 0; i < pkt->num_insns; i++) { 836 int opcode = pkt->insn[i].opcode; 837 if (GET_ATTRIB(opcode, A_CVI) && GET_ATTRIB(opcode, A_STORE)) { 838 return true; 839 } 840 } 841 return false; 842 } 843 844 static void gen_commit_hvx(DisasContext *ctx) 845 { 846 int i; 847 848 /* Early exit if not needed */ 849 if (!ctx->need_commit) { 850 g_assert(!pkt_has_hvx_store(ctx->pkt)); 851 return; 852 } 853 854 /* 855 * for (i = 0; i < ctx->vreg_log_idx; i++) { 856 * int rnum = ctx->vreg_log[i]; 857 * env->VRegs[rnum] = env->future_VRegs[rnum]; 858 * } 859 */ 860 for (i = 0; i < ctx->vreg_log_idx; i++) { 861 int rnum = ctx->vreg_log[i]; 862 intptr_t dstoff = offsetof(CPUHexagonState, VRegs[rnum]); 863 intptr_t srcoff = ctx_future_vreg_off(ctx, rnum, 1, false); 864 size_t size = sizeof(MMVector); 865 866 tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size); 867 } 868 869 /* 870 * for (i = 0; i < ctx->qreg_log_idx; i++) { 871 * int rnum = ctx->qreg_log[i]; 872 * env->QRegs[rnum] = env->future_QRegs[rnum]; 873 * } 874 */ 875 for (i = 0; i < ctx->qreg_log_idx; i++) { 876 int rnum = ctx->qreg_log[i]; 877 intptr_t dstoff = offsetof(CPUHexagonState, QRegs[rnum]); 878 intptr_t srcoff = offsetof(CPUHexagonState, future_QRegs[rnum]); 879 size_t size = sizeof(MMQReg); 880 881 tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size); 882 } 883 884 if (pkt_has_hvx_store(ctx->pkt)) { 885 gen_helper_commit_hvx_stores(cpu_env); 886 } 887 } 888 889 static void update_exec_counters(DisasContext *ctx) 890 { 891 Packet *pkt = ctx->pkt; 892 int num_insns = pkt->num_insns; 893 int num_real_insns = 0; 894 int num_hvx_insns = 0; 895 896 for (int i = 0; i < num_insns; i++) { 897 if (!pkt->insn[i].is_endloop && 898 !pkt->insn[i].part1 && 899 !GET_ATTRIB(pkt->insn[i].opcode, A_IT_NOP)) { 900 num_real_insns++; 901 } 902 if (GET_ATTRIB(pkt->insn[i].opcode, A_CVI)) { 903 num_hvx_insns++; 904 } 905 } 906 907 ctx->num_packets++; 908 ctx->num_insns += num_real_insns; 909 ctx->num_hvx_insns += num_hvx_insns; 910 } 911 912 static void gen_commit_packet(DisasContext *ctx) 913 { 914 /* 915 * If there is more than one store in a packet, make sure they are all OK 916 * before proceeding with the rest of the packet commit. 917 * 918 * dczeroa has to be the only store operation in the packet, so we go 919 * ahead and process that first. 920 * 921 * When there is an HVX store, there can also be a scalar store in either 922 * slot 0 or slot1, so we create a mask for the helper to indicate what 923 * work to do. 924 * 925 * When there are two scalar stores, we probe the one in slot 0. 926 * 927 * Note that we don't call the probe helper for packets with only one 928 * store. Therefore, we call process_store_log before anything else 929 * involved in committing the packet. 930 */ 931 Packet *pkt = ctx->pkt; 932 bool has_store_s0 = pkt->pkt_has_store_s0; 933 bool has_store_s1 = (pkt->pkt_has_store_s1 && !ctx->s1_store_processed); 934 bool has_hvx_store = pkt_has_hvx_store(pkt); 935 if (pkt->pkt_has_dczeroa) { 936 /* 937 * The dczeroa will be the store in slot 0, check that we don't have 938 * a store in slot 1 or an HVX store. 939 */ 940 g_assert(!has_store_s1 && !has_hvx_store); 941 process_dczeroa(ctx); 942 } else if (has_hvx_store) { 943 if (!has_store_s0 && !has_store_s1) { 944 TCGv mem_idx = tcg_constant_tl(ctx->mem_idx); 945 gen_helper_probe_hvx_stores(cpu_env, mem_idx); 946 } else { 947 int mask = 0; 948 949 if (has_store_s0) { 950 mask = 951 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST0, 1); 952 } 953 if (has_store_s1) { 954 mask = 955 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST1, 1); 956 } 957 if (has_hvx_store) { 958 mask = 959 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, 960 HAS_HVX_STORES, 1); 961 } 962 if (has_store_s0 && slot_is_predicated(pkt, 0)) { 963 mask = 964 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, 965 S0_IS_PRED, 1); 966 } 967 if (has_store_s1 && slot_is_predicated(pkt, 1)) { 968 mask = 969 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, 970 S1_IS_PRED, 1); 971 } 972 mask = FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, MMU_IDX, 973 ctx->mem_idx); 974 gen_helper_probe_pkt_scalar_hvx_stores(cpu_env, 975 tcg_constant_tl(mask)); 976 } 977 } else if (has_store_s0 && has_store_s1) { 978 /* 979 * process_store_log will execute the slot 1 store first, 980 * so we only have to probe the store in slot 0 981 */ 982 int args = 0; 983 args = 984 FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, MMU_IDX, ctx->mem_idx); 985 if (slot_is_predicated(pkt, 0)) { 986 args = 987 FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, IS_PREDICATED, 1); 988 } 989 TCGv args_tcgv = tcg_constant_tl(args); 990 gen_helper_probe_pkt_scalar_store_s0(cpu_env, args_tcgv); 991 } 992 993 process_store_log(ctx); 994 995 gen_reg_writes(ctx); 996 gen_pred_writes(ctx); 997 if (pkt->pkt_has_hvx) { 998 gen_commit_hvx(ctx); 999 } 1000 update_exec_counters(ctx); 1001 if (HEX_DEBUG) { 1002 TCGv has_st0 = 1003 tcg_constant_tl(pkt->pkt_has_store_s0 && !pkt->pkt_has_dczeroa); 1004 TCGv has_st1 = 1005 tcg_constant_tl(pkt->pkt_has_store_s1 && !pkt->pkt_has_dczeroa); 1006 1007 /* Handy place to set a breakpoint at the end of execution */ 1008 gen_helper_debug_commit_end(cpu_env, tcg_constant_tl(ctx->pkt->pc), 1009 ctx->pred_written, has_st0, has_st1); 1010 } 1011 1012 if (pkt->vhist_insn != NULL) { 1013 ctx->pre_commit = false; 1014 ctx->insn = pkt->vhist_insn; 1015 pkt->vhist_insn->generate(ctx); 1016 } 1017 1018 if (pkt->pkt_has_cof) { 1019 gen_end_tb(ctx); 1020 } 1021 } 1022 1023 static void decode_and_translate_packet(CPUHexagonState *env, DisasContext *ctx) 1024 { 1025 uint32_t words[PACKET_WORDS_MAX]; 1026 int nwords; 1027 Packet pkt; 1028 int i; 1029 1030 nwords = read_packet_words(env, ctx, words); 1031 if (!nwords) { 1032 gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET); 1033 return; 1034 } 1035 1036 if (decode_packet(nwords, words, &pkt, false) > 0) { 1037 pkt.pc = ctx->base.pc_next; 1038 HEX_DEBUG_PRINT_PKT(&pkt); 1039 ctx->pkt = &pkt; 1040 gen_start_packet(ctx); 1041 for (i = 0; i < pkt.num_insns; i++) { 1042 ctx->insn = &pkt.insn[i]; 1043 gen_insn(ctx); 1044 } 1045 gen_commit_packet(ctx); 1046 ctx->base.pc_next += pkt.encod_pkt_size_in_bytes; 1047 } else { 1048 gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET); 1049 } 1050 } 1051 1052 static void hexagon_tr_init_disas_context(DisasContextBase *dcbase, 1053 CPUState *cs) 1054 { 1055 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1056 HexagonCPU *hex_cpu = env_archcpu(cs->env_ptr); 1057 uint32_t hex_flags = dcbase->tb->flags; 1058 1059 ctx->mem_idx = MMU_USER_IDX; 1060 ctx->num_packets = 0; 1061 ctx->num_insns = 0; 1062 ctx->num_hvx_insns = 0; 1063 ctx->branch_cond = TCG_COND_NEVER; 1064 ctx->is_tight_loop = FIELD_EX32(hex_flags, TB_FLAGS, IS_TIGHT_LOOP); 1065 ctx->short_circuit = hex_cpu->short_circuit; 1066 } 1067 1068 static void hexagon_tr_tb_start(DisasContextBase *db, CPUState *cpu) 1069 { 1070 } 1071 1072 static void hexagon_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 1073 { 1074 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1075 1076 tcg_gen_insn_start(ctx->base.pc_next); 1077 } 1078 1079 static bool pkt_crosses_page(CPUHexagonState *env, DisasContext *ctx) 1080 { 1081 target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK; 1082 bool found_end = false; 1083 int nwords; 1084 1085 for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) { 1086 uint32_t word = cpu_ldl_code(env, 1087 ctx->base.pc_next + nwords * sizeof(uint32_t)); 1088 found_end = is_packet_end(word); 1089 } 1090 uint32_t next_ptr = ctx->base.pc_next + nwords * sizeof(uint32_t); 1091 return found_end && next_ptr - page_start >= TARGET_PAGE_SIZE; 1092 } 1093 1094 static void hexagon_tr_translate_packet(DisasContextBase *dcbase, CPUState *cpu) 1095 { 1096 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1097 CPUHexagonState *env = cpu->env_ptr; 1098 1099 decode_and_translate_packet(env, ctx); 1100 1101 if (ctx->base.is_jmp == DISAS_NEXT) { 1102 target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK; 1103 target_ulong bytes_max = PACKET_WORDS_MAX * sizeof(target_ulong); 1104 1105 if (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE || 1106 (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE - bytes_max && 1107 pkt_crosses_page(env, ctx))) { 1108 ctx->base.is_jmp = DISAS_TOO_MANY; 1109 } 1110 1111 /* 1112 * The CPU log is used to compare against LLDB single stepping, 1113 * so end the TLB after every packet. 1114 */ 1115 HexagonCPU *hex_cpu = env_archcpu(env); 1116 if (hex_cpu->lldb_compat && qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 1117 ctx->base.is_jmp = DISAS_TOO_MANY; 1118 } 1119 } 1120 } 1121 1122 static void hexagon_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 1123 { 1124 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1125 1126 switch (ctx->base.is_jmp) { 1127 case DISAS_TOO_MANY: 1128 gen_exec_counters(ctx); 1129 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next); 1130 tcg_gen_exit_tb(NULL, 0); 1131 break; 1132 case DISAS_NORETURN: 1133 break; 1134 default: 1135 g_assert_not_reached(); 1136 } 1137 } 1138 1139 static void hexagon_tr_disas_log(const DisasContextBase *dcbase, 1140 CPUState *cpu, FILE *logfile) 1141 { 1142 fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first)); 1143 target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size); 1144 } 1145 1146 1147 static const TranslatorOps hexagon_tr_ops = { 1148 .init_disas_context = hexagon_tr_init_disas_context, 1149 .tb_start = hexagon_tr_tb_start, 1150 .insn_start = hexagon_tr_insn_start, 1151 .translate_insn = hexagon_tr_translate_packet, 1152 .tb_stop = hexagon_tr_tb_stop, 1153 .disas_log = hexagon_tr_disas_log, 1154 }; 1155 1156 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns, 1157 target_ulong pc, void *host_pc) 1158 { 1159 DisasContext ctx; 1160 1161 translator_loop(cs, tb, max_insns, pc, host_pc, 1162 &hexagon_tr_ops, &ctx.base); 1163 } 1164 1165 #define NAME_LEN 64 1166 static char reg_written_names[TOTAL_PER_THREAD_REGS][NAME_LEN]; 1167 static char store_addr_names[STORES_MAX][NAME_LEN]; 1168 static char store_width_names[STORES_MAX][NAME_LEN]; 1169 static char store_val32_names[STORES_MAX][NAME_LEN]; 1170 static char store_val64_names[STORES_MAX][NAME_LEN]; 1171 static char vstore_addr_names[VSTORES_MAX][NAME_LEN]; 1172 static char vstore_size_names[VSTORES_MAX][NAME_LEN]; 1173 static char vstore_pending_names[VSTORES_MAX][NAME_LEN]; 1174 1175 void hexagon_translate_init(void) 1176 { 1177 int i; 1178 1179 opcode_init(); 1180 1181 for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) { 1182 hex_gpr[i] = tcg_global_mem_new(cpu_env, 1183 offsetof(CPUHexagonState, gpr[i]), 1184 hexagon_regnames[i]); 1185 1186 if (HEX_DEBUG) { 1187 snprintf(reg_written_names[i], NAME_LEN, "reg_written_%s", 1188 hexagon_regnames[i]); 1189 hex_reg_written[i] = tcg_global_mem_new(cpu_env, 1190 offsetof(CPUHexagonState, reg_written[i]), 1191 reg_written_names[i]); 1192 } 1193 } 1194 hex_new_value_usr = tcg_global_mem_new(cpu_env, 1195 offsetof(CPUHexagonState, new_value_usr), "new_value_usr"); 1196 1197 for (i = 0; i < NUM_PREGS; i++) { 1198 hex_pred[i] = tcg_global_mem_new(cpu_env, 1199 offsetof(CPUHexagonState, pred[i]), 1200 hexagon_prednames[i]); 1201 } 1202 hex_slot_cancelled = tcg_global_mem_new(cpu_env, 1203 offsetof(CPUHexagonState, slot_cancelled), "slot_cancelled"); 1204 hex_llsc_addr = tcg_global_mem_new(cpu_env, 1205 offsetof(CPUHexagonState, llsc_addr), "llsc_addr"); 1206 hex_llsc_val = tcg_global_mem_new(cpu_env, 1207 offsetof(CPUHexagonState, llsc_val), "llsc_val"); 1208 hex_llsc_val_i64 = tcg_global_mem_new_i64(cpu_env, 1209 offsetof(CPUHexagonState, llsc_val_i64), "llsc_val_i64"); 1210 for (i = 0; i < STORES_MAX; i++) { 1211 snprintf(store_addr_names[i], NAME_LEN, "store_addr_%d", i); 1212 hex_store_addr[i] = tcg_global_mem_new(cpu_env, 1213 offsetof(CPUHexagonState, mem_log_stores[i].va), 1214 store_addr_names[i]); 1215 1216 snprintf(store_width_names[i], NAME_LEN, "store_width_%d", i); 1217 hex_store_width[i] = tcg_global_mem_new(cpu_env, 1218 offsetof(CPUHexagonState, mem_log_stores[i].width), 1219 store_width_names[i]); 1220 1221 snprintf(store_val32_names[i], NAME_LEN, "store_val32_%d", i); 1222 hex_store_val32[i] = tcg_global_mem_new(cpu_env, 1223 offsetof(CPUHexagonState, mem_log_stores[i].data32), 1224 store_val32_names[i]); 1225 1226 snprintf(store_val64_names[i], NAME_LEN, "store_val64_%d", i); 1227 hex_store_val64[i] = tcg_global_mem_new_i64(cpu_env, 1228 offsetof(CPUHexagonState, mem_log_stores[i].data64), 1229 store_val64_names[i]); 1230 } 1231 for (int i = 0; i < VSTORES_MAX; i++) { 1232 snprintf(vstore_addr_names[i], NAME_LEN, "vstore_addr_%d", i); 1233 hex_vstore_addr[i] = tcg_global_mem_new(cpu_env, 1234 offsetof(CPUHexagonState, vstore[i].va), 1235 vstore_addr_names[i]); 1236 1237 snprintf(vstore_size_names[i], NAME_LEN, "vstore_size_%d", i); 1238 hex_vstore_size[i] = tcg_global_mem_new(cpu_env, 1239 offsetof(CPUHexagonState, vstore[i].size), 1240 vstore_size_names[i]); 1241 1242 snprintf(vstore_pending_names[i], NAME_LEN, "vstore_pending_%d", i); 1243 hex_vstore_pending[i] = tcg_global_mem_new(cpu_env, 1244 offsetof(CPUHexagonState, vstore_pending[i]), 1245 vstore_pending_names[i]); 1246 } 1247 } 1248