1 /* 2 * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef HEXAGON_MMVEC_MACROS_H 19 #define HEXAGON_MMVEC_MACROS_H 20 21 #include "qemu/osdep.h" 22 #include "qemu/host-utils.h" 23 #include "arch.h" 24 #include "mmvec/system_ext_mmvec.h" 25 26 #ifndef QEMU_GENERATE 27 #define VdV (*(MMVector *)(VdV_void)) 28 #define VsV (*(MMVector *)(VsV_void)) 29 #define VuV (*(MMVector *)(VuV_void)) 30 #define VvV (*(MMVector *)(VvV_void)) 31 #define VwV (*(MMVector *)(VwV_void)) 32 #define VxV (*(MMVector *)(VxV_void)) 33 #define VyV (*(MMVector *)(VyV_void)) 34 35 #define VddV (*(MMVectorPair *)(VddV_void)) 36 #define VuuV (*(MMVectorPair *)(VuuV_void)) 37 #define VvvV (*(MMVectorPair *)(VvvV_void)) 38 #define VxxV (*(MMVectorPair *)(VxxV_void)) 39 40 #define QeV (*(MMQReg *)(QeV_void)) 41 #define QdV (*(MMQReg *)(QdV_void)) 42 #define QsV (*(MMQReg *)(QsV_void)) 43 #define QtV (*(MMQReg *)(QtV_void)) 44 #define QuV (*(MMQReg *)(QuV_void)) 45 #define QvV (*(MMQReg *)(QvV_void)) 46 #define QxV (*(MMQReg *)(QxV_void)) 47 #endif 48 49 #define LOG_VTCM_BYTE(VA, MASK, VAL, IDX) \ 50 do { \ 51 env->vtcm_log.data.ub[IDX] = (VAL); \ 52 if (MASK) { \ 53 set_bit((IDX), env->vtcm_log.mask); \ 54 } else { \ 55 clear_bit((IDX), env->vtcm_log.mask); \ 56 } \ 57 env->vtcm_log.va[IDX] = (VA); \ 58 } while (0) 59 60 #define fNOTQ(VAL) \ 61 ({ \ 62 MMQReg _ret; \ 63 int _i_; \ 64 for (_i_ = 0; _i_ < fVECSIZE() / 64; _i_++) { \ 65 _ret.ud[_i_] = ~VAL.ud[_i_]; \ 66 } \ 67 _ret;\ 68 }) 69 #define fGETQBITS(REG, WIDTH, MASK, BITNO) \ 70 ((MASK) & (REG.w[(BITNO) >> 5] >> ((BITNO) & 0x1f))) 71 #define fGETQBIT(REG, BITNO) fGETQBITS(REG, 1, 1, BITNO) 72 #define fGENMASKW(QREG, IDX) \ 73 (((fGETQBIT(QREG, (IDX * 4 + 0)) ? 0xFF : 0x0) << 0) | \ 74 ((fGETQBIT(QREG, (IDX * 4 + 1)) ? 0xFF : 0x0) << 8) | \ 75 ((fGETQBIT(QREG, (IDX * 4 + 2)) ? 0xFF : 0x0) << 16) | \ 76 ((fGETQBIT(QREG, (IDX * 4 + 3)) ? 0xFF : 0x0) << 24)) 77 #define fGETNIBBLE(IDX, SRC) (fSXTN(4, 8, (SRC >> (4 * IDX)) & 0xF)) 78 #define fGETCRUMB(IDX, SRC) (fSXTN(2, 8, (SRC >> (2 * IDX)) & 0x3)) 79 #define fGETCRUMB_SYMMETRIC(IDX, SRC) \ 80 ((fGETCRUMB(IDX, SRC) >= 0 ? (2 - fGETCRUMB(IDX, SRC)) \ 81 : fGETCRUMB(IDX, SRC))) 82 #define fGENMASKH(QREG, IDX) \ 83 (((fGETQBIT(QREG, (IDX * 2 + 0)) ? 0xFF : 0x0) << 0) | \ 84 ((fGETQBIT(QREG, (IDX * 2 + 1)) ? 0xFF : 0x0) << 8)) 85 #define fGETMASKW(VREG, QREG, IDX) (VREG.w[IDX] & fGENMASKW((QREG), IDX)) 86 #define fGETMASKH(VREG, QREG, IDX) (VREG.h[IDX] & fGENMASKH((QREG), IDX)) 87 #define fCONDMASK8(QREG, IDX, YESVAL, NOVAL) \ 88 (fGETQBIT(QREG, IDX) ? (YESVAL) : (NOVAL)) 89 #define fCONDMASK16(QREG, IDX, YESVAL, NOVAL) \ 90 ((fGENMASKH(QREG, IDX) & (YESVAL)) | \ 91 (fGENMASKH(fNOTQ(QREG), IDX) & (NOVAL))) 92 #define fCONDMASK32(QREG, IDX, YESVAL, NOVAL) \ 93 ((fGENMASKW(QREG, IDX) & (YESVAL)) | \ 94 (fGENMASKW(fNOTQ(QREG), IDX) & (NOVAL))) 95 #define fSETQBITS(REG, WIDTH, MASK, BITNO, VAL) \ 96 do { \ 97 uint32_t __TMP = (VAL); \ 98 REG.w[(BITNO) >> 5] &= ~((MASK) << ((BITNO) & 0x1f)); \ 99 REG.w[(BITNO) >> 5] |= (((__TMP) & (MASK)) << ((BITNO) & 0x1f)); \ 100 } while (0) 101 #define fSETQBIT(REG, BITNO, VAL) fSETQBITS(REG, 1, 1, BITNO, VAL) 102 #define fVBYTES() (fVECSIZE()) 103 #define fVALIGN(ADDR, LOG2_ALIGNMENT) (ADDR = ADDR & ~(LOG2_ALIGNMENT - 1)) 104 #define fVLASTBYTE(ADDR, LOG2_ALIGNMENT) (ADDR = ADDR | (LOG2_ALIGNMENT - 1)) 105 #define fVELEM(WIDTH) ((fVECSIZE() * 8) / WIDTH) 106 #define fVECLOGSIZE() (7) 107 #define fVECSIZE() (1 << fVECLOGSIZE()) 108 #define fSWAPB(A, B) do { uint8_t tmp = A; A = B; B = tmp; } while (0) 109 #define fV_AL_CHECK(EA, MASK) \ 110 if ((EA) & (MASK)) { \ 111 warn("aligning misaligned vector. EA=%08x", (EA)); \ 112 } 113 #define fSCATTER_INIT(REGION_START, LENGTH, ELEMENT_SIZE) \ 114 mem_vector_scatter_init(env) 115 #define fGATHER_INIT(REGION_START, LENGTH, ELEMENT_SIZE) \ 116 mem_vector_gather_init(env) 117 #define fSCATTER_FINISH(OP) 118 #define fGATHER_FINISH() 119 #define fLOG_SCATTER_OP(SIZE) \ 120 do { \ 121 env->vtcm_log.op = true; \ 122 env->vtcm_log.op_size = SIZE; \ 123 } while (0) 124 #define fVLOG_VTCM_WORD_INCREMENT(EA, OFFSET, INC, IDX, ALIGNMENT, LEN) \ 125 do { \ 126 int log_byte = 0; \ 127 target_ulong va = EA; \ 128 target_ulong va_high = EA + LEN; \ 129 for (int i0 = 0; i0 < 4; i0++) { \ 130 log_byte = (va + i0) <= va_high; \ 131 LOG_VTCM_BYTE(va + i0, log_byte, INC. ub[4 * IDX + i0], \ 132 4 * IDX + i0); \ 133 } \ 134 } while (0) 135 #define fVLOG_VTCM_HALFWORD_INCREMENT(EA, OFFSET, INC, IDX, ALIGNMENT, LEN) \ 136 do { \ 137 int log_byte = 0; \ 138 target_ulong va = EA; \ 139 target_ulong va_high = EA + LEN; \ 140 for (int i0 = 0; i0 < 2; i0++) { \ 141 log_byte = (va + i0) <= va_high; \ 142 LOG_VTCM_BYTE(va + i0, log_byte, INC.ub[2 * IDX + i0], \ 143 2 * IDX + i0); \ 144 } \ 145 } while (0) 146 147 #define fVLOG_VTCM_HALFWORD_INCREMENT_DV(EA, OFFSET, INC, IDX, IDX2, IDX_H, \ 148 ALIGNMENT, LEN) \ 149 do { \ 150 int log_byte = 0; \ 151 target_ulong va = EA; \ 152 target_ulong va_high = EA + LEN; \ 153 for (int i0 = 0; i0 < 2; i0++) { \ 154 log_byte = (va + i0) <= va_high; \ 155 LOG_VTCM_BYTE(va + i0, log_byte, INC.ub[2 * IDX + i0], \ 156 2 * IDX + i0); \ 157 } \ 158 } while (0) 159 160 /* NOTE - Will this always be tmp_VRegs[0]; */ 161 #define GATHER_FUNCTION(EA, OFFSET, IDX, LEN, ELEMENT_SIZE, BANK_IDX, QVAL) \ 162 do { \ 163 int i0; \ 164 target_ulong va = EA; \ 165 target_ulong va_high = EA + LEN; \ 166 uintptr_t ra = GETPC(); \ 167 int log_bank = 0; \ 168 int log_byte = 0; \ 169 for (i0 = 0; i0 < ELEMENT_SIZE; i0++) { \ 170 log_byte = ((va + i0) <= va_high) && QVAL; \ 171 log_bank |= (log_byte << i0); \ 172 uint8_t B; \ 173 B = cpu_ldub_data_ra(env, EA + i0, ra); \ 174 env->tmp_VRegs[0].ub[ELEMENT_SIZE * IDX + i0] = B; \ 175 LOG_VTCM_BYTE(va + i0, log_byte, B, ELEMENT_SIZE * IDX + i0); \ 176 } \ 177 } while (0) 178 #define fVLOG_VTCM_GATHER_WORD(EA, OFFSET, IDX, LEN) \ 179 do { \ 180 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, 1); \ 181 } while (0) 182 #define fVLOG_VTCM_GATHER_HALFWORD(EA, OFFSET, IDX, LEN) \ 183 do { \ 184 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, 1); \ 185 } while (0) 186 #define fVLOG_VTCM_GATHER_HALFWORD_DV(EA, OFFSET, IDX, IDX2, IDX_H, LEN) \ 187 do { \ 188 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), 1); \ 189 } while (0) 190 #define fVLOG_VTCM_GATHER_WORDQ(EA, OFFSET, IDX, Q, LEN) \ 191 do { \ 192 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, \ 193 fGETQBIT(QsV, 4 * IDX + i0)); \ 194 } while (0) 195 #define fVLOG_VTCM_GATHER_HALFWORDQ(EA, OFFSET, IDX, Q, LEN) \ 196 do { \ 197 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, \ 198 fGETQBIT(QsV, 2 * IDX + i0)); \ 199 } while (0) 200 #define fVLOG_VTCM_GATHER_HALFWORDQ_DV(EA, OFFSET, IDX, IDX2, IDX_H, Q, LEN) \ 201 do { \ 202 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), \ 203 fGETQBIT(QsV, 2 * IDX + i0)); \ 204 } while (0) 205 #define SCATTER_OP_WRITE_TO_MEM(TYPE) \ 206 do { \ 207 uintptr_t ra = GETPC(); \ 208 for (int i = 0; i < sizeof(MMVector); i += sizeof(TYPE)) { \ 209 if (test_bit(i, env->vtcm_log.mask)) { \ 210 TYPE dst = 0; \ 211 TYPE inc = 0; \ 212 for (int j = 0; j < sizeof(TYPE); j++) { \ 213 uint8_t val; \ 214 val = cpu_ldub_data_ra(env, env->vtcm_log.va[i + j], ra); \ 215 dst |= val << (8 * j); \ 216 inc |= env->vtcm_log.data.ub[j + i] << (8 * j); \ 217 clear_bit(j + i, env->vtcm_log.mask); \ 218 env->vtcm_log.data.ub[j + i] = 0; \ 219 } \ 220 dst += inc; \ 221 for (int j = 0; j < sizeof(TYPE); j++) { \ 222 cpu_stb_data_ra(env, env->vtcm_log.va[i + j], \ 223 (dst >> (8 * j)) & 0xFF, ra); \ 224 } \ 225 } \ 226 } \ 227 } while (0) 228 #define SCATTER_OP_PROBE_MEM(TYPE, MMU_IDX, RETADDR) \ 229 do { \ 230 for (int i = 0; i < sizeof(MMVector); i += sizeof(TYPE)) { \ 231 if (test_bit(i, env->vtcm_log.mask)) { \ 232 for (int j = 0; j < sizeof(TYPE); j++) { \ 233 probe_read(env, env->vtcm_log.va[i + j], 1, \ 234 MMU_IDX, RETADDR); \ 235 probe_write(env, env->vtcm_log.va[i + j], 1, \ 236 MMU_IDX, RETADDR); \ 237 } \ 238 } \ 239 } \ 240 } while (0) 241 #define SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, ELEM_SIZE, BANK_IDX, QVAL, IN) \ 242 do { \ 243 int i0; \ 244 target_ulong va = EA; \ 245 target_ulong va_high = EA + LEN; \ 246 int log_bank = 0; \ 247 int log_byte = 0; \ 248 for (i0 = 0; i0 < ELEM_SIZE; i0++) { \ 249 log_byte = ((va + i0) <= va_high) && QVAL; \ 250 log_bank |= (log_byte << i0); \ 251 LOG_VTCM_BYTE(va + i0, log_byte, IN.ub[ELEM_SIZE * IDX + i0], \ 252 ELEM_SIZE * IDX + i0); \ 253 } \ 254 } while (0) 255 #define fVLOG_VTCM_HALFWORD(EA, OFFSET, IN, IDX, LEN) \ 256 do { \ 257 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, 1, IN); \ 258 } while (0) 259 #define fVLOG_VTCM_WORD(EA, OFFSET, IN, IDX, LEN) \ 260 do { \ 261 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, 1, IN); \ 262 } while (0) 263 #define fVLOG_VTCM_HALFWORDQ(EA, OFFSET, IN, IDX, Q, LEN) \ 264 do { \ 265 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, \ 266 fGETQBIT(QsV, 2 * IDX + i0), IN); \ 267 } while (0) 268 #define fVLOG_VTCM_WORDQ(EA, OFFSET, IN, IDX, Q, LEN) \ 269 do { \ 270 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, \ 271 fGETQBIT(QsV, 4 * IDX + i0), IN); \ 272 } while (0) 273 #define fVLOG_VTCM_HALFWORD_DV(EA, OFFSET, IN, IDX, IDX2, IDX_H, LEN) \ 274 do { \ 275 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, \ 276 (2 * IDX2 + IDX_H), 1, IN); \ 277 } while (0) 278 #define fVLOG_VTCM_HALFWORDQ_DV(EA, OFFSET, IN, IDX, Q, IDX2, IDX_H, LEN) \ 279 do { \ 280 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), \ 281 fGETQBIT(QsV, 2 * IDX + i0), IN); \ 282 } while (0) 283 #define fSTORERELEASE(EA, TYPE) \ 284 do { \ 285 fV_AL_CHECK(EA, fVECSIZE() - 1); \ 286 } while (0) 287 #ifdef QEMU_GENERATE 288 #define fLOADMMV(EA, DST) gen_vreg_load(ctx, DST##_off, EA, true) 289 #endif 290 #ifdef QEMU_GENERATE 291 #define fLOADMMVU(EA, DST) gen_vreg_load(ctx, DST##_off, EA, false) 292 #endif 293 #ifdef QEMU_GENERATE 294 #define fSTOREMMV(EA, SRC) \ 295 gen_vreg_store(ctx, insn, pkt, EA, SRC##_off, insn->slot, true) 296 #endif 297 #ifdef QEMU_GENERATE 298 #define fSTOREMMVQ(EA, SRC, MASK) \ 299 gen_vreg_masked_store(ctx, EA, SRC##_off, MASK##_off, insn->slot, false) 300 #endif 301 #ifdef QEMU_GENERATE 302 #define fSTOREMMVNQ(EA, SRC, MASK) \ 303 gen_vreg_masked_store(ctx, EA, SRC##_off, MASK##_off, insn->slot, true) 304 #endif 305 #ifdef QEMU_GENERATE 306 #define fSTOREMMVU(EA, SRC) \ 307 gen_vreg_store(ctx, insn, pkt, EA, SRC##_off, insn->slot, false) 308 #endif 309 #define fVFOREACH(WIDTH, VAR) for (VAR = 0; VAR < fVELEM(WIDTH); VAR++) 310 #define fVARRAY_ELEMENT_ACCESS(ARRAY, TYPE, INDEX) \ 311 ARRAY.v[(INDEX) / (fVECSIZE() / (sizeof(ARRAY.TYPE[0])))].TYPE[(INDEX) % \ 312 (fVECSIZE() / (sizeof(ARRAY.TYPE[0])))] 313 314 #define fVSATDW(U, V) fVSATW(((((long long)U) << 32) | fZXTN(32, 64, V))) 315 #define fVASL_SATHI(U, V) fVSATW(((U) << 1) | ((V) >> 31)) 316 #define fVUADDSAT(WIDTH, U, V) \ 317 fVSATUN(WIDTH, fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V)) 318 #define fVSADDSAT(WIDTH, U, V) \ 319 fVSATN(WIDTH, fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V)) 320 #define fVUSUBSAT(WIDTH, U, V) \ 321 fVSATUN(WIDTH, fZXTN(WIDTH, 2 * WIDTH, U) - fZXTN(WIDTH, 2 * WIDTH, V)) 322 #define fVSSUBSAT(WIDTH, U, V) \ 323 fVSATN(WIDTH, fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V)) 324 #define fVAVGU(WIDTH, U, V) \ 325 ((fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V)) >> 1) 326 #define fVAVGURND(WIDTH, U, V) \ 327 ((fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1) 328 #define fVNAVGU(WIDTH, U, V) \ 329 ((fZXTN(WIDTH, 2 * WIDTH, U) - fZXTN(WIDTH, 2 * WIDTH, V)) >> 1) 330 #define fVNAVGURNDSAT(WIDTH, U, V) \ 331 fVSATUN(WIDTH, ((fZXTN(WIDTH, 2 * WIDTH, U) - \ 332 fZXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)) 333 #define fVAVGS(WIDTH, U, V) \ 334 ((fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V)) >> 1) 335 #define fVAVGSRND(WIDTH, U, V) \ 336 ((fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1) 337 #define fVNAVGS(WIDTH, U, V) \ 338 ((fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V)) >> 1) 339 #define fVNAVGSRND(WIDTH, U, V) \ 340 ((fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1) 341 #define fVNAVGSRNDSAT(WIDTH, U, V) \ 342 fVSATN(WIDTH, ((fSXTN(WIDTH, 2 * WIDTH, U) - \ 343 fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)) 344 #define fVNOROUND(VAL, SHAMT) VAL 345 #define fVNOSAT(VAL) VAL 346 #define fVROUND(VAL, SHAMT) \ 347 ((VAL) + (((SHAMT) > 0) ? (1LL << ((SHAMT) - 1)) : 0)) 348 #define fCARRY_FROM_ADD32(A, B, C) \ 349 (((fZXTN(32, 64, A) + fZXTN(32, 64, B) + C) >> 32) & 1) 350 #define fUARCH_NOTE_PUMP_4X() 351 #define fUARCH_NOTE_PUMP_2X() 352 353 #define IV1DEAD() 354 #endif 355