1 /* 2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef HEXAGON_MMVEC_MACROS_H 19 #define HEXAGON_MMVEC_MACROS_H 20 21 #include "qemu/host-utils.h" 22 #include "arch.h" 23 #include "mmvec/system_ext_mmvec.h" 24 25 #ifndef QEMU_GENERATE 26 #define VdV (*(MMVector *)(VdV_void)) 27 #define VsV (*(MMVector *)(VsV_void)) 28 #define VuV (*(MMVector *)(VuV_void)) 29 #define VvV (*(MMVector *)(VvV_void)) 30 #define VwV (*(MMVector *)(VwV_void)) 31 #define VxV (*(MMVector *)(VxV_void)) 32 #define VyV (*(MMVector *)(VyV_void)) 33 34 #define VddV (*(MMVectorPair *)(VddV_void)) 35 #define VuuV (*(MMVectorPair *)(VuuV_void)) 36 #define VvvV (*(MMVectorPair *)(VvvV_void)) 37 #define VxxV (*(MMVectorPair *)(VxxV_void)) 38 39 #define QeV (*(MMQReg *)(QeV_void)) 40 #define QdV (*(MMQReg *)(QdV_void)) 41 #define QsV (*(MMQReg *)(QsV_void)) 42 #define QtV (*(MMQReg *)(QtV_void)) 43 #define QuV (*(MMQReg *)(QuV_void)) 44 #define QvV (*(MMQReg *)(QvV_void)) 45 #define QxV (*(MMQReg *)(QxV_void)) 46 #endif 47 48 #define LOG_VTCM_BYTE(VA, MASK, VAL, IDX) \ 49 do { \ 50 env->vtcm_log.data.ub[IDX] = (VAL); \ 51 if (MASK) { \ 52 set_bit((IDX), env->vtcm_log.mask); \ 53 } else { \ 54 clear_bit((IDX), env->vtcm_log.mask); \ 55 } \ 56 env->vtcm_log.va[IDX] = (VA); \ 57 } while (0) 58 59 #define fNOTQ(VAL) \ 60 ({ \ 61 MMQReg _ret; \ 62 int _i_; \ 63 for (_i_ = 0; _i_ < fVECSIZE() / 64; _i_++) { \ 64 _ret.ud[_i_] = ~VAL.ud[_i_]; \ 65 } \ 66 _ret;\ 67 }) 68 #define fGETQBITS(REG, WIDTH, MASK, BITNO) \ 69 ((MASK) & (REG.w[(BITNO) >> 5] >> ((BITNO) & 0x1f))) 70 #define fGETQBIT(REG, BITNO) fGETQBITS(REG, 1, 1, BITNO) 71 #define fGENMASKW(QREG, IDX) \ 72 (((fGETQBIT(QREG, (IDX * 4 + 0)) ? 0xFF : 0x0) << 0) | \ 73 ((fGETQBIT(QREG, (IDX * 4 + 1)) ? 0xFF : 0x0) << 8) | \ 74 ((fGETQBIT(QREG, (IDX * 4 + 2)) ? 0xFF : 0x0) << 16) | \ 75 ((fGETQBIT(QREG, (IDX * 4 + 3)) ? 0xFF : 0x0) << 24)) 76 #define fGETNIBBLE(IDX, SRC) (fSXTN(4, 8, (SRC >> (4 * IDX)) & 0xF)) 77 #define fGETCRUMB(IDX, SRC) (fSXTN(2, 8, (SRC >> (2 * IDX)) & 0x3)) 78 #define fGETCRUMB_SYMMETRIC(IDX, SRC) \ 79 ((fGETCRUMB(IDX, SRC) >= 0 ? (2 - fGETCRUMB(IDX, SRC)) \ 80 : fGETCRUMB(IDX, SRC))) 81 #define fGENMASKH(QREG, IDX) \ 82 (((fGETQBIT(QREG, (IDX * 2 + 0)) ? 0xFF : 0x0) << 0) | \ 83 ((fGETQBIT(QREG, (IDX * 2 + 1)) ? 0xFF : 0x0) << 8)) 84 #define fGETMASKW(VREG, QREG, IDX) (VREG.w[IDX] & fGENMASKW((QREG), IDX)) 85 #define fGETMASKH(VREG, QREG, IDX) (VREG.h[IDX] & fGENMASKH((QREG), IDX)) 86 #define fCONDMASK8(QREG, IDX, YESVAL, NOVAL) \ 87 (fGETQBIT(QREG, IDX) ? (YESVAL) : (NOVAL)) 88 #define fCONDMASK16(QREG, IDX, YESVAL, NOVAL) \ 89 ((fGENMASKH(QREG, IDX) & (YESVAL)) | \ 90 (fGENMASKH(fNOTQ(QREG), IDX) & (NOVAL))) 91 #define fCONDMASK32(QREG, IDX, YESVAL, NOVAL) \ 92 ((fGENMASKW(QREG, IDX) & (YESVAL)) | \ 93 (fGENMASKW(fNOTQ(QREG), IDX) & (NOVAL))) 94 #define fSETQBITS(REG, WIDTH, MASK, BITNO, VAL) \ 95 do { \ 96 uint32_t __TMP = (VAL); \ 97 REG.w[(BITNO) >> 5] &= ~((MASK) << ((BITNO) & 0x1f)); \ 98 REG.w[(BITNO) >> 5] |= (((__TMP) & (MASK)) << ((BITNO) & 0x1f)); \ 99 } while (0) 100 #define fSETQBIT(REG, BITNO, VAL) fSETQBITS(REG, 1, 1, BITNO, VAL) 101 #define fVBYTES() (fVECSIZE()) 102 #define fVALIGN(ADDR, LOG2_ALIGNMENT) (ADDR = ADDR & ~(LOG2_ALIGNMENT - 1)) 103 #define fVLASTBYTE(ADDR, LOG2_ALIGNMENT) (ADDR = ADDR | (LOG2_ALIGNMENT - 1)) 104 #define fVELEM(WIDTH) ((fVECSIZE() * 8) / WIDTH) 105 #define fVECLOGSIZE() (7) 106 #define fVECSIZE() (1 << fVECLOGSIZE()) 107 #define fSWAPB(A, B) do { uint8_t tmp = A; A = B; B = tmp; } while (0) 108 #define fV_AL_CHECK(EA, MASK) \ 109 if ((EA) & (MASK)) { \ 110 warn("aligning misaligned vector. EA=%08x", (EA)); \ 111 } 112 #define fSCATTER_INIT(REGION_START, LENGTH, ELEMENT_SIZE) \ 113 mem_vector_scatter_init(env) 114 #define fGATHER_INIT(REGION_START, LENGTH, ELEMENT_SIZE) \ 115 mem_vector_gather_init(env) 116 #define fSCATTER_FINISH(OP) 117 #define fGATHER_FINISH() 118 #define fLOG_SCATTER_OP(SIZE) \ 119 do { \ 120 env->vtcm_log.op = true; \ 121 env->vtcm_log.op_size = SIZE; \ 122 } while (0) 123 #define fVLOG_VTCM_WORD_INCREMENT(EA, OFFSET, INC, IDX, ALIGNMENT, LEN) \ 124 do { \ 125 int log_byte = 0; \ 126 target_ulong va = EA; \ 127 target_ulong va_high = EA + LEN; \ 128 for (int i0 = 0; i0 < 4; i0++) { \ 129 log_byte = (va + i0) <= va_high; \ 130 LOG_VTCM_BYTE(va + i0, log_byte, INC. ub[4 * IDX + i0], \ 131 4 * IDX + i0); \ 132 } \ 133 } while (0) 134 #define fVLOG_VTCM_HALFWORD_INCREMENT(EA, OFFSET, INC, IDX, ALIGNMENT, LEN) \ 135 do { \ 136 int log_byte = 0; \ 137 target_ulong va = EA; \ 138 target_ulong va_high = EA + LEN; \ 139 for (int i0 = 0; i0 < 2; i0++) { \ 140 log_byte = (va + i0) <= va_high; \ 141 LOG_VTCM_BYTE(va + i0, log_byte, INC.ub[2 * IDX + i0], \ 142 2 * IDX + i0); \ 143 } \ 144 } while (0) 145 146 #define fVLOG_VTCM_HALFWORD_INCREMENT_DV(EA, OFFSET, INC, IDX, IDX2, IDX_H, \ 147 ALIGNMENT, LEN) \ 148 do { \ 149 int log_byte = 0; \ 150 target_ulong va = EA; \ 151 target_ulong va_high = EA + LEN; \ 152 for (int i0 = 0; i0 < 2; i0++) { \ 153 log_byte = (va + i0) <= va_high; \ 154 LOG_VTCM_BYTE(va + i0, log_byte, INC.ub[2 * IDX + i0], \ 155 2 * IDX + i0); \ 156 } \ 157 } while (0) 158 159 /* NOTE - Will this always be tmp_VRegs[0]; */ 160 #define GATHER_FUNCTION(EA, OFFSET, IDX, LEN, ELEMENT_SIZE, BANK_IDX, QVAL) \ 161 do { \ 162 int i0; \ 163 target_ulong va = EA; \ 164 target_ulong va_high = EA + LEN; \ 165 uintptr_t ra = GETPC(); \ 166 int log_byte = 0; \ 167 for (i0 = 0; i0 < ELEMENT_SIZE; i0++) { \ 168 log_byte = ((va + i0) <= va_high) && QVAL; \ 169 uint8_t B; \ 170 B = cpu_ldub_data_ra(env, EA + i0, ra); \ 171 env->tmp_VRegs[0].ub[ELEMENT_SIZE * IDX + i0] = B; \ 172 LOG_VTCM_BYTE(va + i0, log_byte, B, ELEMENT_SIZE * IDX + i0); \ 173 } \ 174 } while (0) 175 #define fVLOG_VTCM_GATHER_WORD(EA, OFFSET, IDX, LEN) \ 176 do { \ 177 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, 1); \ 178 } while (0) 179 #define fVLOG_VTCM_GATHER_HALFWORD(EA, OFFSET, IDX, LEN) \ 180 do { \ 181 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, 1); \ 182 } while (0) 183 #define fVLOG_VTCM_GATHER_HALFWORD_DV(EA, OFFSET, IDX, IDX2, IDX_H, LEN) \ 184 do { \ 185 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), 1); \ 186 } while (0) 187 #define fVLOG_VTCM_GATHER_WORDQ(EA, OFFSET, IDX, Q, LEN) \ 188 do { \ 189 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, \ 190 fGETQBIT(QsV, 4 * IDX + i0)); \ 191 } while (0) 192 #define fVLOG_VTCM_GATHER_HALFWORDQ(EA, OFFSET, IDX, Q, LEN) \ 193 do { \ 194 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, \ 195 fGETQBIT(QsV, 2 * IDX + i0)); \ 196 } while (0) 197 #define fVLOG_VTCM_GATHER_HALFWORDQ_DV(EA, OFFSET, IDX, IDX2, IDX_H, Q, LEN) \ 198 do { \ 199 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), \ 200 fGETQBIT(QsV, 2 * IDX + i0)); \ 201 } while (0) 202 #define SCATTER_OP_WRITE_TO_MEM(TYPE) \ 203 do { \ 204 uintptr_t ra = GETPC(); \ 205 for (int i = 0; i < sizeof(MMVector); i += sizeof(TYPE)) { \ 206 if (test_bit(i, env->vtcm_log.mask)) { \ 207 TYPE dst = 0; \ 208 TYPE inc = 0; \ 209 for (int j = 0; j < sizeof(TYPE); j++) { \ 210 uint8_t val; \ 211 val = cpu_ldub_data_ra(env, env->vtcm_log.va[i + j], ra); \ 212 dst |= val << (8 * j); \ 213 inc |= env->vtcm_log.data.ub[j + i] << (8 * j); \ 214 clear_bit(j + i, env->vtcm_log.mask); \ 215 env->vtcm_log.data.ub[j + i] = 0; \ 216 } \ 217 dst += inc; \ 218 for (int j = 0; j < sizeof(TYPE); j++) { \ 219 cpu_stb_data_ra(env, env->vtcm_log.va[i + j], \ 220 (dst >> (8 * j)) & 0xFF, ra); \ 221 } \ 222 } \ 223 } \ 224 } while (0) 225 #define SCATTER_OP_PROBE_MEM(TYPE, MMU_IDX, RETADDR) \ 226 do { \ 227 for (int i = 0; i < sizeof(MMVector); i += sizeof(TYPE)) { \ 228 if (test_bit(i, env->vtcm_log.mask)) { \ 229 for (int j = 0; j < sizeof(TYPE); j++) { \ 230 probe_read(env, env->vtcm_log.va[i + j], 1, \ 231 MMU_IDX, RETADDR); \ 232 probe_write(env, env->vtcm_log.va[i + j], 1, \ 233 MMU_IDX, RETADDR); \ 234 } \ 235 } \ 236 } \ 237 } while (0) 238 #define SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, ELEM_SIZE, BANK_IDX, QVAL, IN) \ 239 do { \ 240 int i0; \ 241 target_ulong va = EA; \ 242 target_ulong va_high = EA + LEN; \ 243 int log_byte = 0; \ 244 for (i0 = 0; i0 < ELEM_SIZE; i0++) { \ 245 log_byte = ((va + i0) <= va_high) && QVAL; \ 246 LOG_VTCM_BYTE(va + i0, log_byte, IN.ub[ELEM_SIZE * IDX + i0], \ 247 ELEM_SIZE * IDX + i0); \ 248 } \ 249 } while (0) 250 #define fVLOG_VTCM_HALFWORD(EA, OFFSET, IN, IDX, LEN) \ 251 do { \ 252 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, 1, IN); \ 253 } while (0) 254 #define fVLOG_VTCM_WORD(EA, OFFSET, IN, IDX, LEN) \ 255 do { \ 256 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, 1, IN); \ 257 } while (0) 258 #define fVLOG_VTCM_HALFWORDQ(EA, OFFSET, IN, IDX, Q, LEN) \ 259 do { \ 260 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, \ 261 fGETQBIT(QsV, 2 * IDX + i0), IN); \ 262 } while (0) 263 #define fVLOG_VTCM_WORDQ(EA, OFFSET, IN, IDX, Q, LEN) \ 264 do { \ 265 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, \ 266 fGETQBIT(QsV, 4 * IDX + i0), IN); \ 267 } while (0) 268 #define fVLOG_VTCM_HALFWORD_DV(EA, OFFSET, IN, IDX, IDX2, IDX_H, LEN) \ 269 do { \ 270 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, \ 271 (2 * IDX2 + IDX_H), 1, IN); \ 272 } while (0) 273 #define fVLOG_VTCM_HALFWORDQ_DV(EA, OFFSET, IN, IDX, Q, IDX2, IDX_H, LEN) \ 274 do { \ 275 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), \ 276 fGETQBIT(QsV, 2 * IDX + i0), IN); \ 277 } while (0) 278 #define fSTORERELEASE(EA, TYPE) \ 279 do { \ 280 fV_AL_CHECK(EA, fVECSIZE() - 1); \ 281 } while (0) 282 #ifdef QEMU_GENERATE 283 #define fLOADMMV(EA, DST) gen_vreg_load(ctx, DST##_off, EA, true) 284 #endif 285 #ifdef QEMU_GENERATE 286 #define fLOADMMVU(EA, DST) gen_vreg_load(ctx, DST##_off, EA, false) 287 #endif 288 #ifdef QEMU_GENERATE 289 #define fSTOREMMV(EA, SRC) \ 290 gen_vreg_store(ctx, EA, SRC##_off, insn->slot, true) 291 #endif 292 #ifdef QEMU_GENERATE 293 #define fSTOREMMVQ(EA, SRC, MASK) \ 294 gen_vreg_masked_store(ctx, EA, SRC##_off, MASK##_off, insn->slot, false) 295 #endif 296 #ifdef QEMU_GENERATE 297 #define fSTOREMMVNQ(EA, SRC, MASK) \ 298 gen_vreg_masked_store(ctx, EA, SRC##_off, MASK##_off, insn->slot, true) 299 #endif 300 #ifdef QEMU_GENERATE 301 #define fSTOREMMVU(EA, SRC) \ 302 gen_vreg_store(ctx, EA, SRC##_off, insn->slot, false) 303 #endif 304 #define fVFOREACH(WIDTH, VAR) for (VAR = 0; VAR < fVELEM(WIDTH); VAR++) 305 #define fVARRAY_ELEMENT_ACCESS(ARRAY, TYPE, INDEX) \ 306 ARRAY.v[(INDEX) / (fVECSIZE() / (sizeof(ARRAY.TYPE[0])))].TYPE[(INDEX) % \ 307 (fVECSIZE() / (sizeof(ARRAY.TYPE[0])))] 308 309 #define fVSATDW(U, V) fVSATW(((((long long)U) << 32) | fZXTN(32, 64, V))) 310 #define fVASL_SATHI(U, V) fVSATW(((U) << 1) | ((V) >> 31)) 311 #define fVUADDSAT(WIDTH, U, V) \ 312 fVSATUN(WIDTH, fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V)) 313 #define fVSADDSAT(WIDTH, U, V) \ 314 fVSATN(WIDTH, fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V)) 315 #define fVUSUBSAT(WIDTH, U, V) \ 316 fVSATUN(WIDTH, fZXTN(WIDTH, 2 * WIDTH, U) - fZXTN(WIDTH, 2 * WIDTH, V)) 317 #define fVSSUBSAT(WIDTH, U, V) \ 318 fVSATN(WIDTH, fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V)) 319 #define fVAVGU(WIDTH, U, V) \ 320 ((fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V)) >> 1) 321 #define fVAVGURND(WIDTH, U, V) \ 322 ((fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1) 323 #define fVNAVGU(WIDTH, U, V) \ 324 ((fZXTN(WIDTH, 2 * WIDTH, U) - fZXTN(WIDTH, 2 * WIDTH, V)) >> 1) 325 #define fVNAVGURNDSAT(WIDTH, U, V) \ 326 fVSATUN(WIDTH, ((fZXTN(WIDTH, 2 * WIDTH, U) - \ 327 fZXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)) 328 #define fVAVGS(WIDTH, U, V) \ 329 ((fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V)) >> 1) 330 #define fVAVGSRND(WIDTH, U, V) \ 331 ((fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1) 332 #define fVNAVGS(WIDTH, U, V) \ 333 ((fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V)) >> 1) 334 #define fVNAVGSRND(WIDTH, U, V) \ 335 ((fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1) 336 #define fVNAVGSRNDSAT(WIDTH, U, V) \ 337 fVSATN(WIDTH, ((fSXTN(WIDTH, 2 * WIDTH, U) - \ 338 fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)) 339 #define fVNOROUND(VAL, SHAMT) VAL 340 #define fVNOSAT(VAL) VAL 341 #define fVROUND(VAL, SHAMT) \ 342 ((VAL) + (((SHAMT) > 0) ? (1LL << ((SHAMT) - 1)) : 0)) 343 #define fCARRY_FROM_ADD32(A, B, C) \ 344 (((fZXTN(32, 64, A) + fZXTN(32, 64, B) + C) >> 32) & 1) 345 #define fUARCH_NOTE_PUMP_4X() 346 #define fUARCH_NOTE_PUMP_2X() 347 348 #define IV1DEAD() 349 350 #define fGET10BIT(COE, VAL, POS) \ 351 do { \ 352 COE = (sextract32(VAL, 24 + 2 * POS, 2) << 8) | \ 353 extract32(VAL, POS * 8, 8); \ 354 } while (0); 355 356 #endif 357