xref: /openbmc/qemu/target/hexagon/mmvec/macros.h (revision 06831001)
1 /*
2  *  Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef HEXAGON_MMVEC_MACROS_H
19 #define HEXAGON_MMVEC_MACROS_H
20 
21 #include "qemu/host-utils.h"
22 #include "arch.h"
23 #include "mmvec/system_ext_mmvec.h"
24 
25 #ifndef QEMU_GENERATE
26 #define VdV      (*(MMVector *)(VdV_void))
27 #define VsV      (*(MMVector *)(VsV_void))
28 #define VuV      (*(MMVector *)(VuV_void))
29 #define VvV      (*(MMVector *)(VvV_void))
30 #define VwV      (*(MMVector *)(VwV_void))
31 #define VxV      (*(MMVector *)(VxV_void))
32 #define VyV      (*(MMVector *)(VyV_void))
33 
34 #define VddV     (*(MMVectorPair *)(VddV_void))
35 #define VuuV     (*(MMVectorPair *)(VuuV_void))
36 #define VvvV     (*(MMVectorPair *)(VvvV_void))
37 #define VxxV     (*(MMVectorPair *)(VxxV_void))
38 
39 #define QeV      (*(MMQReg *)(QeV_void))
40 #define QdV      (*(MMQReg *)(QdV_void))
41 #define QsV      (*(MMQReg *)(QsV_void))
42 #define QtV      (*(MMQReg *)(QtV_void))
43 #define QuV      (*(MMQReg *)(QuV_void))
44 #define QvV      (*(MMQReg *)(QvV_void))
45 #define QxV      (*(MMQReg *)(QxV_void))
46 #endif
47 
48 #define LOG_VTCM_BYTE(VA, MASK, VAL, IDX) \
49     do { \
50         env->vtcm_log.data.ub[IDX] = (VAL); \
51         if (MASK) { \
52             set_bit((IDX), env->vtcm_log.mask); \
53         } else { \
54             clear_bit((IDX), env->vtcm_log.mask); \
55         } \
56         env->vtcm_log.va[IDX] = (VA); \
57     } while (0)
58 
59 #define fNOTQ(VAL) \
60     ({ \
61         MMQReg _ret;  \
62         int _i_;  \
63         for (_i_ = 0; _i_ < fVECSIZE() / 64; _i_++) { \
64             _ret.ud[_i_] = ~VAL.ud[_i_]; \
65         } \
66         _ret;\
67      })
68 #define fGETQBITS(REG, WIDTH, MASK, BITNO) \
69     ((MASK) & (REG.w[(BITNO) >> 5] >> ((BITNO) & 0x1f)))
70 #define fGETQBIT(REG, BITNO) fGETQBITS(REG, 1, 1, BITNO)
71 #define fGENMASKW(QREG, IDX) \
72     (((fGETQBIT(QREG, (IDX * 4 + 0)) ? 0xFF : 0x0) << 0)  | \
73      ((fGETQBIT(QREG, (IDX * 4 + 1)) ? 0xFF : 0x0) << 8)  | \
74      ((fGETQBIT(QREG, (IDX * 4 + 2)) ? 0xFF : 0x0) << 16) | \
75      ((fGETQBIT(QREG, (IDX * 4 + 3)) ? 0xFF : 0x0) << 24))
76 #define fGETNIBBLE(IDX, SRC) (fSXTN(4, 8, (SRC >> (4 * IDX)) & 0xF))
77 #define fGETCRUMB(IDX, SRC) (fSXTN(2, 8, (SRC >> (2 * IDX)) & 0x3))
78 #define fGETCRUMB_SYMMETRIC(IDX, SRC) \
79     ((fGETCRUMB(IDX, SRC) >= 0 ? (2 - fGETCRUMB(IDX, SRC)) \
80                                : fGETCRUMB(IDX, SRC)))
81 #define fGENMASKH(QREG, IDX) \
82     (((fGETQBIT(QREG, (IDX * 2 + 0)) ? 0xFF : 0x0) << 0) | \
83      ((fGETQBIT(QREG, (IDX * 2 + 1)) ? 0xFF : 0x0) << 8))
84 #define fGETMASKW(VREG, QREG, IDX) (VREG.w[IDX] & fGENMASKW((QREG), IDX))
85 #define fGETMASKH(VREG, QREG, IDX) (VREG.h[IDX] & fGENMASKH((QREG), IDX))
86 #define fCONDMASK8(QREG, IDX, YESVAL, NOVAL) \
87     (fGETQBIT(QREG, IDX) ? (YESVAL) : (NOVAL))
88 #define fCONDMASK16(QREG, IDX, YESVAL, NOVAL) \
89     ((fGENMASKH(QREG, IDX) & (YESVAL)) | \
90      (fGENMASKH(fNOTQ(QREG), IDX) & (NOVAL)))
91 #define fCONDMASK32(QREG, IDX, YESVAL, NOVAL) \
92     ((fGENMASKW(QREG, IDX) & (YESVAL)) | \
93      (fGENMASKW(fNOTQ(QREG), IDX) & (NOVAL)))
94 #define fSETQBITS(REG, WIDTH, MASK, BITNO, VAL) \
95     do { \
96         uint32_t __TMP = (VAL); \
97         REG.w[(BITNO) >> 5] &= ~((MASK) << ((BITNO) & 0x1f)); \
98         REG.w[(BITNO) >> 5] |= (((__TMP) & (MASK)) << ((BITNO) & 0x1f)); \
99     } while (0)
100 #define fSETQBIT(REG, BITNO, VAL) fSETQBITS(REG, 1, 1, BITNO, VAL)
101 #define fVBYTES() (fVECSIZE())
102 #define fVALIGN(ADDR, LOG2_ALIGNMENT) (ADDR = ADDR & ~(LOG2_ALIGNMENT - 1))
103 #define fVLASTBYTE(ADDR, LOG2_ALIGNMENT) (ADDR = ADDR | (LOG2_ALIGNMENT - 1))
104 #define fVELEM(WIDTH) ((fVECSIZE() * 8) / WIDTH)
105 #define fVECLOGSIZE() (7)
106 #define fVECSIZE() (1 << fVECLOGSIZE())
107 #define fSWAPB(A, B) do { uint8_t tmp = A; A = B; B = tmp; } while (0)
108 #define fV_AL_CHECK(EA, MASK) \
109     if ((EA) & (MASK)) { \
110         warn("aligning misaligned vector. EA=%08x", (EA)); \
111     }
112 #define fSCATTER_INIT(REGION_START, LENGTH, ELEMENT_SIZE) \
113     mem_vector_scatter_init(env)
114 #define fGATHER_INIT(REGION_START, LENGTH, ELEMENT_SIZE) \
115     mem_vector_gather_init(env)
116 #define fSCATTER_FINISH(OP)
117 #define fGATHER_FINISH()
118 #define fLOG_SCATTER_OP(SIZE) \
119     do { \
120         env->vtcm_log.op = true; \
121         env->vtcm_log.op_size = SIZE; \
122     } while (0)
123 #define fVLOG_VTCM_WORD_INCREMENT(EA, OFFSET, INC, IDX, ALIGNMENT, LEN) \
124     do { \
125         int log_byte = 0; \
126         target_ulong va = EA; \
127         target_ulong va_high = EA + LEN; \
128         for (int i0 = 0; i0 < 4; i0++) { \
129             log_byte = (va + i0) <= va_high; \
130             LOG_VTCM_BYTE(va + i0, log_byte, INC. ub[4 * IDX + i0], \
131                           4 * IDX + i0); \
132         } \
133     } while (0)
134 #define fVLOG_VTCM_HALFWORD_INCREMENT(EA, OFFSET, INC, IDX, ALIGNMENT, LEN) \
135     do { \
136         int log_byte = 0; \
137         target_ulong va = EA; \
138         target_ulong va_high = EA + LEN; \
139         for (int i0 = 0; i0 < 2; i0++) { \
140             log_byte = (va + i0) <= va_high; \
141             LOG_VTCM_BYTE(va + i0, log_byte, INC.ub[2 * IDX + i0], \
142                           2 * IDX + i0); \
143         } \
144     } while (0)
145 
146 #define fVLOG_VTCM_HALFWORD_INCREMENT_DV(EA, OFFSET, INC, IDX, IDX2, IDX_H, \
147                                          ALIGNMENT, LEN) \
148     do { \
149         int log_byte = 0; \
150         target_ulong va = EA; \
151         target_ulong va_high = EA + LEN; \
152         for (int i0 = 0; i0 < 2; i0++) { \
153             log_byte = (va + i0) <= va_high; \
154             LOG_VTCM_BYTE(va + i0, log_byte, INC.ub[2 * IDX + i0], \
155                           2 * IDX + i0); \
156         } \
157     } while (0)
158 
159 /* NOTE - Will this always be tmp_VRegs[0]; */
160 #define GATHER_FUNCTION(EA, OFFSET, IDX, LEN, ELEMENT_SIZE, BANK_IDX, QVAL) \
161     do { \
162         int i0; \
163         target_ulong va = EA; \
164         target_ulong va_high = EA + LEN; \
165         uintptr_t ra = GETPC(); \
166         int log_byte = 0; \
167         for (i0 = 0; i0 < ELEMENT_SIZE; i0++) { \
168             log_byte = ((va + i0) <= va_high) && QVAL; \
169             uint8_t B; \
170             B = cpu_ldub_data_ra(env, EA + i0, ra); \
171             env->tmp_VRegs[0].ub[ELEMENT_SIZE * IDX + i0] = B; \
172             LOG_VTCM_BYTE(va + i0, log_byte, B, ELEMENT_SIZE * IDX + i0); \
173         } \
174     } while (0)
175 #define fVLOG_VTCM_GATHER_WORD(EA, OFFSET, IDX, LEN) \
176     do { \
177         GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, 1); \
178     } while (0)
179 #define fVLOG_VTCM_GATHER_HALFWORD(EA, OFFSET, IDX, LEN) \
180     do { \
181         GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, 1); \
182     } while (0)
183 #define fVLOG_VTCM_GATHER_HALFWORD_DV(EA, OFFSET, IDX, IDX2, IDX_H, LEN) \
184     do { \
185         GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), 1); \
186     } while (0)
187 #define fVLOG_VTCM_GATHER_WORDQ(EA, OFFSET, IDX, Q, LEN) \
188     do { \
189         GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, \
190                         fGETQBIT(QsV, 4 * IDX + i0)); \
191     } while (0)
192 #define fVLOG_VTCM_GATHER_HALFWORDQ(EA, OFFSET, IDX, Q, LEN) \
193     do { \
194         GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, \
195                         fGETQBIT(QsV, 2 * IDX + i0)); \
196     } while (0)
197 #define fVLOG_VTCM_GATHER_HALFWORDQ_DV(EA, OFFSET, IDX, IDX2, IDX_H, Q, LEN) \
198     do { \
199         GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), \
200                         fGETQBIT(QsV, 2 * IDX + i0)); \
201     } while (0)
202 #define SCATTER_OP_WRITE_TO_MEM(TYPE) \
203     do { \
204         uintptr_t ra = GETPC(); \
205         for (int i = 0; i < sizeof(MMVector); i += sizeof(TYPE)) { \
206             if (test_bit(i, env->vtcm_log.mask)) { \
207                 TYPE dst = 0; \
208                 TYPE inc = 0; \
209                 for (int j = 0; j < sizeof(TYPE); j++) { \
210                     uint8_t val; \
211                     val = cpu_ldub_data_ra(env, env->vtcm_log.va[i + j], ra); \
212                     dst |= val << (8 * j); \
213                     inc |= env->vtcm_log.data.ub[j + i] << (8 * j); \
214                     clear_bit(j + i, env->vtcm_log.mask); \
215                     env->vtcm_log.data.ub[j + i] = 0; \
216                 } \
217                 dst += inc; \
218                 for (int j = 0; j < sizeof(TYPE); j++) { \
219                     cpu_stb_data_ra(env, env->vtcm_log.va[i + j], \
220                                     (dst >> (8 * j)) & 0xFF, ra); \
221                 } \
222             } \
223         } \
224     } while (0)
225 #define SCATTER_OP_PROBE_MEM(TYPE, MMU_IDX, RETADDR) \
226     do { \
227         for (int i = 0; i < sizeof(MMVector); i += sizeof(TYPE)) { \
228             if (test_bit(i, env->vtcm_log.mask)) { \
229                 for (int j = 0; j < sizeof(TYPE); j++) { \
230                     probe_read(env, env->vtcm_log.va[i + j], 1, \
231                                MMU_IDX, RETADDR); \
232                     probe_write(env, env->vtcm_log.va[i + j], 1, \
233                                 MMU_IDX, RETADDR); \
234                 } \
235             } \
236         } \
237     } while (0)
238 #define SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, ELEM_SIZE, BANK_IDX, QVAL, IN) \
239     do { \
240         int i0; \
241         target_ulong va = EA; \
242         target_ulong va_high = EA + LEN; \
243         int log_byte = 0; \
244         for (i0 = 0; i0 < ELEM_SIZE; i0++) { \
245             log_byte = ((va + i0) <= va_high) && QVAL; \
246             LOG_VTCM_BYTE(va + i0, log_byte, IN.ub[ELEM_SIZE * IDX + i0], \
247                           ELEM_SIZE * IDX + i0); \
248         } \
249     } while (0)
250 #define fVLOG_VTCM_HALFWORD(EA, OFFSET, IN, IDX, LEN) \
251     do { \
252         SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, 1, IN); \
253     } while (0)
254 #define fVLOG_VTCM_WORD(EA, OFFSET, IN, IDX, LEN) \
255     do { \
256         SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, 1, IN); \
257     } while (0)
258 #define fVLOG_VTCM_HALFWORDQ(EA, OFFSET, IN, IDX, Q, LEN) \
259     do { \
260         SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, \
261                          fGETQBIT(QsV, 2 * IDX + i0), IN); \
262     } while (0)
263 #define fVLOG_VTCM_WORDQ(EA, OFFSET, IN, IDX, Q, LEN) \
264     do { \
265         SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, \
266                          fGETQBIT(QsV, 4 * IDX + i0), IN); \
267     } while (0)
268 #define fVLOG_VTCM_HALFWORD_DV(EA, OFFSET, IN, IDX, IDX2, IDX_H, LEN) \
269     do { \
270         SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, \
271                          (2 * IDX2 + IDX_H), 1, IN); \
272     } while (0)
273 #define fVLOG_VTCM_HALFWORDQ_DV(EA, OFFSET, IN, IDX, Q, IDX2, IDX_H, LEN) \
274     do { \
275         SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), \
276                          fGETQBIT(QsV, 2 * IDX + i0), IN); \
277     } while (0)
278 #define fSTORERELEASE(EA, TYPE) \
279     do { \
280         fV_AL_CHECK(EA, fVECSIZE() - 1); \
281     } while (0)
282 #ifdef QEMU_GENERATE
283 #define fLOADMMV(EA, DST) gen_vreg_load(ctx, DST##_off, EA, true)
284 #endif
285 #ifdef QEMU_GENERATE
286 #define fLOADMMVU(EA, DST) gen_vreg_load(ctx, DST##_off, EA, false)
287 #endif
288 #ifdef QEMU_GENERATE
289 #define fSTOREMMV(EA, SRC) \
290     gen_vreg_store(ctx, EA, SRC##_off, insn->slot, true)
291 #endif
292 #ifdef QEMU_GENERATE
293 #define fSTOREMMVQ(EA, SRC, MASK) \
294     gen_vreg_masked_store(ctx, EA, SRC##_off, MASK##_off, insn->slot, false)
295 #endif
296 #ifdef QEMU_GENERATE
297 #define fSTOREMMVNQ(EA, SRC, MASK) \
298     gen_vreg_masked_store(ctx, EA, SRC##_off, MASK##_off, insn->slot, true)
299 #endif
300 #ifdef QEMU_GENERATE
301 #define fSTOREMMVU(EA, SRC) \
302     gen_vreg_store(ctx, EA, SRC##_off, insn->slot, false)
303 #endif
304 #define fVFOREACH(WIDTH, VAR) for (VAR = 0; VAR < fVELEM(WIDTH); VAR++)
305 #define fVARRAY_ELEMENT_ACCESS(ARRAY, TYPE, INDEX) \
306     ARRAY.v[(INDEX) / (fVECSIZE() / (sizeof(ARRAY.TYPE[0])))].TYPE[(INDEX) % \
307     (fVECSIZE() / (sizeof(ARRAY.TYPE[0])))]
308 
309 #define fVSATDW(U, V) fVSATW(((((long long)U) << 32) | fZXTN(32, 64, V)))
310 #define fVASL_SATHI(U, V) fVSATW(((U) << 1) | ((V) >> 31))
311 #define fVUADDSAT(WIDTH, U, V) \
312     fVSATUN(WIDTH, fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V))
313 #define fVSADDSAT(WIDTH, U, V) \
314     fVSATN(WIDTH, fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V))
315 #define fVUSUBSAT(WIDTH, U, V) \
316     fVSATUN(WIDTH, fZXTN(WIDTH, 2 * WIDTH, U) - fZXTN(WIDTH, 2 * WIDTH, V))
317 #define fVSSUBSAT(WIDTH, U, V) \
318     fVSATN(WIDTH, fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V))
319 #define fVAVGU(WIDTH, U, V) \
320     ((fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V)) >> 1)
321 #define fVAVGURND(WIDTH, U, V) \
322     ((fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)
323 #define fVNAVGU(WIDTH, U, V) \
324     ((fZXTN(WIDTH, 2 * WIDTH, U) - fZXTN(WIDTH, 2 * WIDTH, V)) >> 1)
325 #define fVNAVGURNDSAT(WIDTH, U, V) \
326     fVSATUN(WIDTH, ((fZXTN(WIDTH, 2 * WIDTH, U) - \
327                      fZXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1))
328 #define fVAVGS(WIDTH, U, V) \
329     ((fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V)) >> 1)
330 #define fVAVGSRND(WIDTH, U, V) \
331     ((fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)
332 #define fVNAVGS(WIDTH, U, V) \
333     ((fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V)) >> 1)
334 #define fVNAVGSRND(WIDTH, U, V) \
335     ((fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)
336 #define fVNAVGSRNDSAT(WIDTH, U, V) \
337     fVSATN(WIDTH, ((fSXTN(WIDTH, 2 * WIDTH, U) - \
338                     fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1))
339 #define fVNOROUND(VAL, SHAMT) VAL
340 #define fVNOSAT(VAL) VAL
341 #define fVROUND(VAL, SHAMT) \
342     ((VAL) + (((SHAMT) > 0) ? (1LL << ((SHAMT) - 1)) : 0))
343 #define fCARRY_FROM_ADD32(A, B, C) \
344     (((fZXTN(32, 64, A) + fZXTN(32, 64, B) + C) >> 32) & 1)
345 #define fUARCH_NOTE_PUMP_4X()
346 #define fUARCH_NOTE_PUMP_2X()
347 
348 #define IV1DEAD()
349 
350 #define fGET10BIT(COE, VAL, POS) \
351     do { \
352         COE = (sextract32(VAL, 24 + 2 * POS, 2) << 8) | \
353                extract32(VAL, POS * 8, 8); \
354     } while (0);
355 
356 #endif
357