1 /* 2 * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef HEXAGON_MACROS_H 19 #define HEXAGON_MACROS_H 20 21 #include "cpu.h" 22 #include "hex_regs.h" 23 #include "reg_fields.h" 24 25 #ifdef QEMU_GENERATE 26 #define READ_REG(dest, NUM) gen_read_reg(dest, NUM) 27 #else 28 #define READ_REG(NUM) (env->gpr[(NUM)]) 29 #define READ_PREG(NUM) (env->pred[NUM]) 30 31 #define WRITE_RREG(NUM, VAL) log_reg_write(env, NUM, VAL, slot) 32 #define WRITE_PREG(NUM, VAL) log_pred_write(env, NUM, VAL) 33 #endif 34 35 #define PCALIGN 4 36 #define PCALIGN_MASK (PCALIGN - 1) 37 38 #define GET_FIELD(FIELD, REGIN) \ 39 fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \ 40 reg_field_info[FIELD].offset) 41 42 #ifdef QEMU_GENERATE 43 #define GET_USR_FIELD(FIELD, DST) \ 44 tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \ 45 reg_field_info[FIELD].offset, \ 46 reg_field_info[FIELD].width) 47 48 #define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int) 49 #define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv) 50 #define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64) 51 52 #define SET_USR_FIELD_FUNC(X) \ 53 __builtin_choose_expr(TYPE_INT(X), \ 54 gen_set_usr_fieldi, \ 55 __builtin_choose_expr(TYPE_TCGV(X), \ 56 gen_set_usr_field, (void)0)) 57 #define SET_USR_FIELD(FIELD, VAL) \ 58 SET_USR_FIELD_FUNC(VAL)(FIELD, VAL) 59 #else 60 #define GET_USR_FIELD(FIELD) \ 61 fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \ 62 reg_field_info[FIELD].offset) 63 64 #define SET_USR_FIELD(FIELD, VAL) \ 65 fINSERT_BITS(env->new_value[HEX_REG_USR], reg_field_info[FIELD].width, \ 66 reg_field_info[FIELD].offset, (VAL)) 67 #endif 68 69 #ifdef QEMU_GENERATE 70 /* 71 * Section 5.5 of the Hexagon V67 Programmer's Reference Manual 72 * 73 * Slot 1 store with slot 0 load 74 * A slot 1 store operation with a slot 0 load operation can appear in a packet. 75 * The packet attribute :mem_noshuf inhibits the instruction reordering that 76 * would otherwise be done by the assembler. For example: 77 * { 78 * memw(R5) = R2 // slot 1 store 79 * R3 = memh(R6) // slot 0 load 80 * }:mem_noshuf 81 * Unlike most packetized operations, these memory operations are not executed 82 * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1 83 * effectively executes first, followed by the load instruction in Slot 0. If 84 * the addresses of the two operations are overlapping, the load will receive 85 * the newly stored data. This feature is supported in processor versions 86 * V65 or greater. 87 * 88 * 89 * For qemu, we look for a load in slot 0 when there is a store in slot 1 90 * in the same packet. When we see this, we call a helper that merges the 91 * bytes from the store buffer with the value loaded from memory. 92 */ 93 #define CHECK_NOSHUF \ 94 do { \ 95 if (insn->slot == 0 && pkt->pkt_has_store_s1) { \ 96 process_store(ctx, pkt, 1); \ 97 } \ 98 } while (0) 99 100 #define MEM_LOAD1s(DST, VA) \ 101 do { \ 102 CHECK_NOSHUF; \ 103 tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \ 104 } while (0) 105 #define MEM_LOAD1u(DST, VA) \ 106 do { \ 107 CHECK_NOSHUF; \ 108 tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \ 109 } while (0) 110 #define MEM_LOAD2s(DST, VA) \ 111 do { \ 112 CHECK_NOSHUF; \ 113 tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \ 114 } while (0) 115 #define MEM_LOAD2u(DST, VA) \ 116 do { \ 117 CHECK_NOSHUF; \ 118 tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \ 119 } while (0) 120 #define MEM_LOAD4s(DST, VA) \ 121 do { \ 122 CHECK_NOSHUF; \ 123 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \ 124 } while (0) 125 #define MEM_LOAD4u(DST, VA) \ 126 do { \ 127 CHECK_NOSHUF; \ 128 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \ 129 } while (0) 130 #define MEM_LOAD8u(DST, VA) \ 131 do { \ 132 CHECK_NOSHUF; \ 133 tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \ 134 } while (0) 135 136 #define MEM_STORE1_FUNC(X) \ 137 __builtin_choose_expr(TYPE_INT(X), \ 138 gen_store1i, \ 139 __builtin_choose_expr(TYPE_TCGV(X), \ 140 gen_store1, (void)0)) 141 #define MEM_STORE1(VA, DATA, SLOT) \ 142 MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT) 143 144 #define MEM_STORE2_FUNC(X) \ 145 __builtin_choose_expr(TYPE_INT(X), \ 146 gen_store2i, \ 147 __builtin_choose_expr(TYPE_TCGV(X), \ 148 gen_store2, (void)0)) 149 #define MEM_STORE2(VA, DATA, SLOT) \ 150 MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT) 151 152 #define MEM_STORE4_FUNC(X) \ 153 __builtin_choose_expr(TYPE_INT(X), \ 154 gen_store4i, \ 155 __builtin_choose_expr(TYPE_TCGV(X), \ 156 gen_store4, (void)0)) 157 #define MEM_STORE4(VA, DATA, SLOT) \ 158 MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT) 159 160 #define MEM_STORE8_FUNC(X) \ 161 __builtin_choose_expr(TYPE_INT(X), \ 162 gen_store8i, \ 163 __builtin_choose_expr(TYPE_TCGV_I64(X), \ 164 gen_store8, (void)0)) 165 #define MEM_STORE8(VA, DATA, SLOT) \ 166 MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT) 167 #else 168 #define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA)) 169 #define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA)) 170 #define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA)) 171 #define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA)) 172 #define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA)) 173 #define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA)) 174 #define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA)) 175 #define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA)) 176 177 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT) 178 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT) 179 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT) 180 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT) 181 #endif 182 183 #define CANCEL cancel_slot(env, slot) 184 185 #define LOAD_CANCEL(EA) do { CANCEL; } while (0) 186 187 #ifdef QEMU_GENERATE 188 static inline void gen_pred_cancel(TCGv pred, int slot_num) 189 { 190 TCGv slot_mask = tcg_temp_new(); 191 TCGv tmp = tcg_temp_new(); 192 TCGv zero = tcg_constant_tl(0); 193 tcg_gen_ori_tl(slot_mask, hex_slot_cancelled, 1 << slot_num); 194 tcg_gen_andi_tl(tmp, pred, 1); 195 tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero, 196 slot_mask, hex_slot_cancelled); 197 tcg_temp_free(slot_mask); 198 tcg_temp_free(tmp); 199 } 200 #define PRED_LOAD_CANCEL(PRED, EA) \ 201 gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot) 202 #endif 203 204 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); } 205 206 #define fMAX(A, B) (((A) > (B)) ? (A) : (B)) 207 208 #define fMIN(A, B) (((A) < (B)) ? (A) : (B)) 209 210 #define fABS(A) (((A) < 0) ? (-(A)) : (A)) 211 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \ 212 REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG) 213 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \ 214 ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL) 215 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \ 216 (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8))) 217 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \ 218 (((HIBIT) - (LOWBIT) + 1) ? \ 219 extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \ 220 0LL) 221 #define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \ 222 do { \ 223 int width = ((HIBIT) - (LOWBIT) + 1); \ 224 INREG = (width >= 0 ? \ 225 deposit64((INREG), (LOWBIT), width, (INVAL)) : \ 226 INREG); \ 227 } while (0) 228 229 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00) 230 231 #ifdef QEMU_GENERATE 232 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1) 233 #else 234 #define fLSBOLD(VAL) ((VAL) & 1) 235 #endif 236 237 #ifdef QEMU_GENERATE 238 #define fLSBNEW(PVAL) tcg_gen_andi_tl(LSB, (PVAL), 1) 239 #define fLSBNEW0 tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1) 240 #define fLSBNEW1 tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1) 241 #else 242 #define fLSBNEW(PVAL) ((PVAL) & 1) 243 #define fLSBNEW0 (env->new_pred_value[0] & 1) 244 #define fLSBNEW1 (env->new_pred_value[1] & 1) 245 #endif 246 247 #ifdef QEMU_GENERATE 248 #define fLSBOLDNOT(VAL) \ 249 do { \ 250 tcg_gen_andi_tl(LSB, (VAL), 1); \ 251 tcg_gen_xori_tl(LSB, LSB, 1); \ 252 } while (0) 253 #define fLSBNEWNOT(PNUM) \ 254 do { \ 255 tcg_gen_andi_tl(LSB, (PNUM), 1); \ 256 tcg_gen_xori_tl(LSB, LSB, 1); \ 257 } while (0) 258 #else 259 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM)) 260 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL)) 261 #define fLSBNEW0NOT (!fLSBNEW0) 262 #define fLSBNEW1NOT (!fLSBNEW1) 263 #endif 264 265 #define fNEWREG(VAL) ((int32_t)(VAL)) 266 267 #define fNEWREG_ST(VAL) (VAL) 268 269 #define fVSATUVALN(N, VAL) \ 270 ({ \ 271 (((int)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \ 272 }) 273 #define fSATUVALN(N, VAL) \ 274 ({ \ 275 fSET_OVERFLOW(); \ 276 ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \ 277 }) 278 #define fSATVALN(N, VAL) \ 279 ({ \ 280 fSET_OVERFLOW(); \ 281 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \ 282 }) 283 #define fVSATVALN(N, VAL) \ 284 ({ \ 285 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \ 286 }) 287 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL) 288 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL) 289 #define fSATN(N, VAL) \ 290 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL)) 291 #define fVSATN(N, VAL) \ 292 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL)) 293 #define fADDSAT64(DST, A, B) \ 294 do { \ 295 uint64_t __a = fCAST8u(A); \ 296 uint64_t __b = fCAST8u(B); \ 297 uint64_t __sum = __a + __b; \ 298 uint64_t __xor = __a ^ __b; \ 299 const uint64_t __mask = 0x8000000000000000ULL; \ 300 if (__xor & __mask) { \ 301 DST = __sum; \ 302 } \ 303 else if ((__a ^ __sum) & __mask) { \ 304 if (__sum & __mask) { \ 305 DST = 0x7FFFFFFFFFFFFFFFLL; \ 306 fSET_OVERFLOW(); \ 307 } else { \ 308 DST = 0x8000000000000000LL; \ 309 fSET_OVERFLOW(); \ 310 } \ 311 } else { \ 312 DST = __sum; \ 313 } \ 314 } while (0) 315 #define fVSATUN(N, VAL) \ 316 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL)) 317 #define fSATUN(N, VAL) \ 318 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL)) 319 #define fSATH(VAL) (fSATN(16, VAL)) 320 #define fSATUH(VAL) (fSATUN(16, VAL)) 321 #define fVSATH(VAL) (fVSATN(16, VAL)) 322 #define fVSATUH(VAL) (fVSATUN(16, VAL)) 323 #define fSATUB(VAL) (fSATUN(8, VAL)) 324 #define fSATB(VAL) (fSATN(8, VAL)) 325 #define fVSATUB(VAL) (fVSATUN(8, VAL)) 326 #define fVSATB(VAL) (fVSATN(8, VAL)) 327 #define fIMMEXT(IMM) (IMM = IMM) 328 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM) 329 330 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK) 331 332 #ifdef QEMU_GENERATE 333 static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift) 334 { 335 /* 336 * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual 337 * 338 * The "I" value from a modifier register is divided into two pieces 339 * LSB bits 23:17 340 * MSB bits 31:28 341 * The value is signed 342 * 343 * At the end we shift the result according to the shift argument 344 */ 345 TCGv msb = tcg_temp_new(); 346 TCGv lsb = tcg_temp_new(); 347 348 tcg_gen_extract_tl(lsb, val, 17, 7); 349 tcg_gen_sari_tl(msb, val, 21); 350 tcg_gen_deposit_tl(result, msb, lsb, 0, 7); 351 352 tcg_gen_shli_tl(result, result, shift); 353 354 tcg_temp_free(msb); 355 tcg_temp_free(lsb); 356 357 return result; 358 } 359 #define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT)) 360 #else 361 #define fREAD_IREG(VAL) \ 362 (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f))) 363 #endif 364 365 #define fREAD_LR() (READ_REG(HEX_REG_LR)) 366 367 #define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A) 368 #define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A) 369 #define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A) 370 371 #define fREAD_SP() (READ_REG(HEX_REG_SP)) 372 #define fREAD_LC0 (READ_REG(HEX_REG_LC0)) 373 #define fREAD_LC1 (READ_REG(HEX_REG_LC1)) 374 #define fREAD_SA0 (READ_REG(HEX_REG_SA0)) 375 #define fREAD_SA1 (READ_REG(HEX_REG_SA1)) 376 #define fREAD_FP() (READ_REG(HEX_REG_FP)) 377 #ifdef FIXME 378 /* Figure out how to get insn->extension_valid to helper */ 379 #define fREAD_GP() \ 380 (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP)) 381 #else 382 #define fREAD_GP() READ_REG(HEX_REG_GP) 383 #endif 384 #define fREAD_PC() (READ_REG(HEX_REG_PC)) 385 386 #define fREAD_NPC() (env->next_PC & (0xfffffffe)) 387 388 #define fREAD_P0() (READ_PREG(0)) 389 #define fREAD_P3() (READ_PREG(3)) 390 391 #define fCHECK_PCALIGN(A) 392 393 #define fWRITE_NPC(A) write_new_pc(env, A) 394 395 #define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC) 396 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR) 397 #define fHINTJR(TARGET) { /* Not modelled in qemu */} 398 #define fCALL(A) \ 399 do { \ 400 fWRITE_LR(fREAD_NPC()); \ 401 fBRANCH(A, COF_TYPE_CALL); \ 402 } while (0) 403 #define fCALLR(A) \ 404 do { \ 405 fWRITE_LR(fREAD_NPC()); \ 406 fBRANCH(A, COF_TYPE_CALLR); \ 407 } while (0) 408 #define fWRITE_LOOP_REGS0(START, COUNT) \ 409 do { \ 410 WRITE_RREG(HEX_REG_LC0, COUNT); \ 411 WRITE_RREG(HEX_REG_SA0, START); \ 412 } while (0) 413 #define fWRITE_LOOP_REGS1(START, COUNT) \ 414 do { \ 415 WRITE_RREG(HEX_REG_LC1, COUNT); \ 416 WRITE_RREG(HEX_REG_SA1, START);\ 417 } while (0) 418 #define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL) 419 #define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL) 420 421 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1) 422 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL)) 423 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG)) 424 #define fWRITE_P0(VAL) WRITE_PREG(0, VAL) 425 #define fWRITE_P1(VAL) WRITE_PREG(1, VAL) 426 #define fWRITE_P2(VAL) WRITE_PREG(2, VAL) 427 #define fWRITE_P3(VAL) WRITE_PREG(3, VAL) 428 #define fPART1(WORK) if (part1) { WORK; return; } 429 #define fCAST4u(A) ((uint32_t)(A)) 430 #define fCAST4s(A) ((int32_t)(A)) 431 #define fCAST8u(A) ((uint64_t)(A)) 432 #define fCAST8s(A) ((int64_t)(A)) 433 #define fCAST2_2s(A) ((int16_t)(A)) 434 #define fCAST2_2u(A) ((uint16_t)(A)) 435 #define fCAST4_4s(A) ((int32_t)(A)) 436 #define fCAST4_4u(A) ((uint32_t)(A)) 437 #define fCAST4_8s(A) ((int64_t)((int32_t)(A))) 438 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A))) 439 #define fCAST8_8s(A) ((int64_t)(A)) 440 #define fCAST8_8u(A) ((uint64_t)(A)) 441 #define fCAST2_8s(A) ((int64_t)((int16_t)(A))) 442 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A))) 443 #define fZE8_16(A) ((int16_t)((uint8_t)(A))) 444 #define fSE8_16(A) ((int16_t)((int8_t)(A))) 445 #define fSE16_32(A) ((int32_t)((int16_t)(A))) 446 #define fZE16_32(A) ((uint32_t)((uint16_t)(A))) 447 #define fSE32_64(A) ((int64_t)((int32_t)(A))) 448 #define fZE32_64(A) ((uint64_t)((uint32_t)(A))) 449 #define fSE8_32(A) ((int32_t)((int8_t)(A))) 450 #define fZE8_32(A) ((int32_t)((uint8_t)(A))) 451 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B)) 452 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B)) 453 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B)) 454 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B)) 455 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B)) 456 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B)) 457 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B)) 458 #define fMPY16US(A, B) fMPY16SU(B, A) 459 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B)) 460 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B)) 461 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B)) 462 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B)) 463 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B)) 464 #define fROUND(A) (A + 0x8000) 465 #define fCLIP(DST, SRC, U) \ 466 do { \ 467 int32_t maxv = (1 << U) - 1; \ 468 int32_t minv = -(1 << U); \ 469 DST = fMIN(maxv, fMAX(SRC, minv)); \ 470 } while (0) 471 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A))) 472 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1)))))) 473 #define fCRNDN(A, N) (conv_round(A, N)) 474 #define fADD128(A, B) (int128_add(A, B)) 475 #define fSUB128(A, B) (int128_sub(A, B)) 476 #define fSHIFTR128(A, B) (int128_rshift(A, B)) 477 #define fSHIFTL128(A, B) (int128_lshift(A, B)) 478 #define fAND128(A, B) (int128_and(A, B)) 479 #define fCAST8S_16S(A) (int128_exts64(A)) 480 #define fCAST16S_8S(A) (int128_getlo(A)) 481 482 #ifdef QEMU_GENERATE 483 #define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM) 484 #define fEA_RRs(REG, REG2, SCALE) \ 485 do { \ 486 TCGv tmp = tcg_temp_new(); \ 487 tcg_gen_shli_tl(tmp, REG2, SCALE); \ 488 tcg_gen_add_tl(EA, REG, tmp); \ 489 tcg_temp_free(tmp); \ 490 } while (0) 491 #define fEA_IRs(IMM, REG, SCALE) \ 492 do { \ 493 tcg_gen_shli_tl(EA, REG, SCALE); \ 494 tcg_gen_addi_tl(EA, EA, IMM); \ 495 } while (0) 496 #else 497 #define fEA_RI(REG, IMM) \ 498 do { \ 499 EA = REG + IMM; \ 500 } while (0) 501 #define fEA_RRs(REG, REG2, SCALE) \ 502 do { \ 503 EA = REG + (REG2 << SCALE); \ 504 } while (0) 505 #define fEA_IRs(IMM, REG, SCALE) \ 506 do { \ 507 EA = IMM + (REG << SCALE); \ 508 } while (0) 509 #endif 510 511 #ifdef QEMU_GENERATE 512 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM) 513 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG) 514 #define fEA_BREVR(REG) gen_helper_fbrev(EA, REG) 515 #define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM) 516 #define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL) 517 #define fPM_CIRI(REG, IMM, MVAL) \ 518 do { \ 519 TCGv tcgv_siV = tcg_constant_tl(siV); \ 520 gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \ 521 hex_gpr[HEX_REG_CS0 + MuN]); \ 522 } while (0) 523 #else 524 #define fEA_IMM(IMM) do { EA = (IMM); } while (0) 525 #define fEA_REG(REG) do { EA = (REG); } while (0) 526 #define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0) 527 #define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0) 528 #define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0) 529 #endif 530 #define fSCALE(N, A) (((int64_t)(A)) << N) 531 #define fVSATW(A) fVSATN(32, ((long long)A)) 532 #define fSATW(A) fSATN(32, ((long long)A)) 533 #define fVSAT(A) fVSATN(32, (A)) 534 #define fSAT(A) fSATN(32, (A)) 535 #define fSAT_ORIG_SHL(A, ORIG_REG) \ 536 ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \ 537 ? fSATVALN(32, ((int32_t)(ORIG_REG))) \ 538 : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \ 539 : fSAT(A))) 540 #define fPASS(A) A 541 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \ 542 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \ 543 : (fCAST##REGSTYPE(SRC) << (SHAMT))) 544 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \ 545 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s) 546 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \ 547 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u) 548 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \ 549 (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \ 550 : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC))) 551 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \ 552 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \ 553 : (fCAST##REGSTYPE(SRC) >> (SHAMT))) 554 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \ 555 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s) 556 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \ 557 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u) 558 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \ 559 (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \ 560 << ((-(SHAMT)) - 1)) << 1, (SRC)) \ 561 : (fCAST##REGSTYPE##s(SRC) >> (SHAMT))) 562 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT)) 563 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \ 564 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT))) 565 #define fROTL(SRC, SHAMT, REGSTYPE) \ 566 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \ 567 ((fCAST##REGSTYPE##u(SRC) >> \ 568 ((sizeof(SRC) * 8) - (SHAMT)))))) 569 #define fROTR(SRC, SHAMT, REGSTYPE) \ 570 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \ 571 ((fCAST##REGSTYPE##u(SRC) << \ 572 ((sizeof(SRC) * 8) - (SHAMT)))))) 573 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \ 574 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT))) 575 576 #ifdef QEMU_GENERATE 577 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA) 578 #else 579 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \ 580 DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA) 581 #endif 582 583 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE) 584 585 #define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY) 586 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32)) 587 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL) 588 589 #ifdef CONFIG_USER_ONLY 590 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */ 591 #else 592 /* System mode not implemented yet */ 593 #define fFRAMECHECK(ADDR, EA) g_assert_not_reached(); 594 #endif 595 596 #ifdef QEMU_GENERATE 597 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \ 598 gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx); 599 #endif 600 601 #ifdef QEMU_GENERATE 602 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot) 603 #else 604 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot) 605 #endif 606 607 #ifdef QEMU_GENERATE 608 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \ 609 gen_store_conditional##SIZE(ctx, PRED, EA, SRC); 610 #endif 611 612 #ifdef QEMU_GENERATE 613 #define GETBYTE_FUNC(X) \ 614 __builtin_choose_expr(TYPE_TCGV(X), \ 615 gen_get_byte, \ 616 __builtin_choose_expr(TYPE_TCGV_I64(X), \ 617 gen_get_byte_i64, (void)0)) 618 #define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true) 619 #define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false) 620 #else 621 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff)) 622 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff)) 623 #endif 624 625 #define fSETBYTE(N, DST, VAL) \ 626 do { \ 627 DST = (DST & ~(0x0ffLL << ((N) * 8))) | \ 628 (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \ 629 } while (0) 630 631 #ifdef QEMU_GENERATE 632 #define fGETHALF(N, SRC) gen_get_half(HALF, N, SRC, true) 633 #define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false) 634 #else 635 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff)) 636 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff)) 637 #endif 638 #define fSETHALF(N, DST, VAL) \ 639 do { \ 640 DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \ 641 (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \ 642 } while (0) 643 #define fSETHALFw fSETHALF 644 #define fSETHALFd fSETHALF 645 646 #define fGETWORD(N, SRC) \ 647 ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL))) 648 #define fGETUWORD(N, SRC) \ 649 ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL))) 650 651 #define fSETWORD(N, DST, VAL) \ 652 do { \ 653 DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \ 654 (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \ 655 } while (0) 656 657 #define fSETBIT(N, DST, VAL) \ 658 do { \ 659 DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \ 660 } while (0) 661 662 #define fGETBIT(N, SRC) (((SRC) >> N) & 1) 663 #define fSETBITS(HI, LO, DST, VAL) \ 664 do { \ 665 int j; \ 666 for (j = LO; j <= HI; j++) { \ 667 fSETBIT(j, DST, VAL); \ 668 } \ 669 } while (0) 670 #define fCOUNTONES_2(VAL) ctpop16(VAL) 671 #define fCOUNTONES_4(VAL) ctpop32(VAL) 672 #define fCOUNTONES_8(VAL) ctpop64(VAL) 673 #define fBREV_8(VAL) revbit64(VAL) 674 #define fBREV_4(VAL) revbit32(VAL) 675 #define fCL1_8(VAL) clo64(VAL) 676 #define fCL1_4(VAL) clo32(VAL) 677 #define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16) 678 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN) 679 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED) 680 #define fHIDE(A) A 681 #define fCONSTLL(A) A##LL 682 #define fECHO(A) (A) 683 684 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0) 685 #define fPAUSE(IMM) 686 687 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \ 688 ((VAL) << reg_field_info[FIELD].offset) 689 #define fGET_REG_FIELD_MASK(FIELD) \ 690 (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset) 691 #define fREAD_REG_FIELD(REG, FIELD) \ 692 fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \ 693 reg_field_info[FIELD].width, \ 694 reg_field_info[FIELD].offset) 695 #define fGET_FIELD(VAL, FIELD) 696 #define fSET_FIELD(VAL, FIELD, NEWVAL) 697 #define fBARRIER() 698 #define fSYNCH() 699 #define fISYNC() 700 #define fDCFETCH(REG) \ 701 do { (void)REG; } while (0) /* Nothing to do in qemu */ 702 #define fICINVA(REG) \ 703 do { (void)REG; } while (0) /* Nothing to do in qemu */ 704 #define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS) 705 #define fDCCLEANA(REG) \ 706 do { (void)REG; } while (0) /* Nothing to do in qemu */ 707 #define fDCCLEANINVA(REG) \ 708 do { (void)REG; } while (0) /* Nothing to do in qemu */ 709 710 #define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0) 711 712 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \ 713 STRBITNUM) /* Nothing */ 714 715 716 #endif 717