1 /* 2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef HEXAGON_MACROS_H 19 #define HEXAGON_MACROS_H 20 21 #include "cpu.h" 22 #include "hex_regs.h" 23 #include "reg_fields.h" 24 25 #define PCALIGN 4 26 #define PCALIGN_MASK (PCALIGN - 1) 27 28 #define GET_FIELD(FIELD, REGIN) \ 29 fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \ 30 reg_field_info[FIELD].offset) 31 32 #ifdef QEMU_GENERATE 33 #define GET_USR_FIELD(FIELD, DST) \ 34 tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \ 35 reg_field_info[FIELD].offset, \ 36 reg_field_info[FIELD].width) 37 38 #define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int) 39 #define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv) 40 #define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64) 41 #else 42 #define GET_USR_FIELD(FIELD) \ 43 fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \ 44 reg_field_info[FIELD].offset) 45 46 #define SET_USR_FIELD(FIELD, VAL) \ 47 fINSERT_BITS(env->new_value[HEX_REG_USR], reg_field_info[FIELD].width, \ 48 reg_field_info[FIELD].offset, (VAL)) 49 #endif 50 51 #ifdef QEMU_GENERATE 52 /* 53 * Section 5.5 of the Hexagon V67 Programmer's Reference Manual 54 * 55 * Slot 1 store with slot 0 load 56 * A slot 1 store operation with a slot 0 load operation can appear in a packet. 57 * The packet attribute :mem_noshuf inhibits the instruction reordering that 58 * would otherwise be done by the assembler. For example: 59 * { 60 * memw(R5) = R2 // slot 1 store 61 * R3 = memh(R6) // slot 0 load 62 * }:mem_noshuf 63 * Unlike most packetized operations, these memory operations are not executed 64 * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1 65 * effectively executes first, followed by the load instruction in Slot 0. If 66 * the addresses of the two operations are overlapping, the load will receive 67 * the newly stored data. This feature is supported in processor versions 68 * V65 or greater. 69 * 70 * 71 * For qemu, we look for a load in slot 0 when there is a store in slot 1 72 * in the same packet. When we see this, we call a helper that probes the 73 * load to make sure it doesn't fault. Then, we process the store ahead of 74 * the actual load. 75 76 */ 77 #define CHECK_NOSHUF(VA, SIZE) \ 78 do { \ 79 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \ 80 probe_noshuf_load(VA, SIZE, ctx->mem_idx); \ 81 process_store(ctx, 1); \ 82 } \ 83 } while (0) 84 85 #define CHECK_NOSHUF_PRED(GET_EA, SIZE, PRED) \ 86 do { \ 87 TCGLabel *label = gen_new_label(); \ 88 tcg_gen_brcondi_tl(TCG_COND_EQ, PRED, 0, label); \ 89 GET_EA; \ 90 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \ 91 probe_noshuf_load(EA, SIZE, ctx->mem_idx); \ 92 } \ 93 gen_set_label(label); \ 94 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \ 95 process_store(ctx, 1); \ 96 } \ 97 } while (0) 98 99 #define MEM_LOAD1s(DST, VA) \ 100 do { \ 101 CHECK_NOSHUF(VA, 1); \ 102 tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \ 103 } while (0) 104 #define MEM_LOAD1u(DST, VA) \ 105 do { \ 106 CHECK_NOSHUF(VA, 1); \ 107 tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \ 108 } while (0) 109 #define MEM_LOAD2s(DST, VA) \ 110 do { \ 111 CHECK_NOSHUF(VA, 2); \ 112 tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \ 113 } while (0) 114 #define MEM_LOAD2u(DST, VA) \ 115 do { \ 116 CHECK_NOSHUF(VA, 2); \ 117 tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \ 118 } while (0) 119 #define MEM_LOAD4s(DST, VA) \ 120 do { \ 121 CHECK_NOSHUF(VA, 4); \ 122 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \ 123 } while (0) 124 #define MEM_LOAD4u(DST, VA) \ 125 do { \ 126 CHECK_NOSHUF(VA, 4); \ 127 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \ 128 } while (0) 129 #define MEM_LOAD8u(DST, VA) \ 130 do { \ 131 CHECK_NOSHUF(VA, 8); \ 132 tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \ 133 } while (0) 134 135 #define MEM_STORE1_FUNC(X) \ 136 __builtin_choose_expr(TYPE_INT(X), \ 137 gen_store1i, \ 138 __builtin_choose_expr(TYPE_TCGV(X), \ 139 gen_store1, (void)0)) 140 #define MEM_STORE1(VA, DATA, SLOT) \ 141 MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, SLOT) 142 143 #define MEM_STORE2_FUNC(X) \ 144 __builtin_choose_expr(TYPE_INT(X), \ 145 gen_store2i, \ 146 __builtin_choose_expr(TYPE_TCGV(X), \ 147 gen_store2, (void)0)) 148 #define MEM_STORE2(VA, DATA, SLOT) \ 149 MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, SLOT) 150 151 #define MEM_STORE4_FUNC(X) \ 152 __builtin_choose_expr(TYPE_INT(X), \ 153 gen_store4i, \ 154 __builtin_choose_expr(TYPE_TCGV(X), \ 155 gen_store4, (void)0)) 156 #define MEM_STORE4(VA, DATA, SLOT) \ 157 MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, SLOT) 158 159 #define MEM_STORE8_FUNC(X) \ 160 __builtin_choose_expr(TYPE_INT(X), \ 161 gen_store8i, \ 162 __builtin_choose_expr(TYPE_TCGV_I64(X), \ 163 gen_store8, (void)0)) 164 #define MEM_STORE8(VA, DATA, SLOT) \ 165 MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, SLOT) 166 #else 167 #define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA)) 168 #define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA)) 169 #define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA)) 170 #define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA)) 171 #define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA)) 172 #define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA)) 173 #define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA)) 174 #define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA)) 175 176 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT) 177 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT) 178 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT) 179 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT) 180 #endif 181 182 #ifdef QEMU_GENERATE 183 static inline void gen_cancel(uint32_t slot) 184 { 185 tcg_gen_ori_tl(hex_slot_cancelled, hex_slot_cancelled, 1 << slot); 186 } 187 188 #define CANCEL gen_cancel(slot); 189 #else 190 #define CANCEL do { } while (0) 191 #endif 192 193 #define LOAD_CANCEL(EA) do { CANCEL; } while (0) 194 195 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); } 196 197 #define fMAX(A, B) (((A) > (B)) ? (A) : (B)) 198 199 #define fMIN(A, B) (((A) < (B)) ? (A) : (B)) 200 201 #define fABS(A) (((A) < 0) ? (-(A)) : (A)) 202 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \ 203 REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG) 204 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \ 205 ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL) 206 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \ 207 (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8))) 208 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \ 209 (((HIBIT) - (LOWBIT) + 1) ? \ 210 extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \ 211 0LL) 212 #define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \ 213 do { \ 214 int width = ((HIBIT) - (LOWBIT) + 1); \ 215 INREG = (width >= 0 ? \ 216 deposit64((INREG), (LOWBIT), width, (INVAL)) : \ 217 INREG); \ 218 } while (0) 219 220 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00) 221 222 #ifdef QEMU_GENERATE 223 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1) 224 #else 225 #define fLSBOLD(VAL) ((VAL) & 1) 226 #endif 227 228 #ifdef QEMU_GENERATE 229 #define fLSBNEW(PVAL) tcg_gen_andi_tl(LSB, (PVAL), 1) 230 #define fLSBNEW0 tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1) 231 #define fLSBNEW1 tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1) 232 #else 233 #define fLSBNEW(PVAL) ((PVAL) & 1) 234 #define fLSBNEW0 (env->new_pred_value[0] & 1) 235 #define fLSBNEW1 (env->new_pred_value[1] & 1) 236 #endif 237 238 #ifdef QEMU_GENERATE 239 #define fLSBOLDNOT(VAL) \ 240 do { \ 241 tcg_gen_andi_tl(LSB, (VAL), 1); \ 242 tcg_gen_xori_tl(LSB, LSB, 1); \ 243 } while (0) 244 #define fLSBNEWNOT(PNUM) \ 245 do { \ 246 tcg_gen_andi_tl(LSB, (PNUM), 1); \ 247 tcg_gen_xori_tl(LSB, LSB, 1); \ 248 } while (0) 249 #else 250 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM)) 251 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL)) 252 #define fLSBNEW0NOT (!fLSBNEW0) 253 #define fLSBNEW1NOT (!fLSBNEW1) 254 #endif 255 256 #define fNEWREG(VAL) ((int32_t)(VAL)) 257 258 #define fNEWREG_ST(VAL) (VAL) 259 260 #define fVSATUVALN(N, VAL) \ 261 ({ \ 262 (((int64_t)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \ 263 }) 264 #define fSATUVALN(N, VAL) \ 265 ({ \ 266 fSET_OVERFLOW(); \ 267 ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \ 268 }) 269 #define fSATVALN(N, VAL) \ 270 ({ \ 271 fSET_OVERFLOW(); \ 272 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \ 273 }) 274 #define fVSATVALN(N, VAL) \ 275 ({ \ 276 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \ 277 }) 278 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL) 279 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL) 280 #define fSATN(N, VAL) \ 281 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL)) 282 #define fVSATN(N, VAL) \ 283 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL)) 284 #define fADDSAT64(DST, A, B) \ 285 do { \ 286 uint64_t __a = fCAST8u(A); \ 287 uint64_t __b = fCAST8u(B); \ 288 uint64_t __sum = __a + __b; \ 289 uint64_t __xor = __a ^ __b; \ 290 const uint64_t __mask = 0x8000000000000000ULL; \ 291 if (__xor & __mask) { \ 292 DST = __sum; \ 293 } \ 294 else if ((__a ^ __sum) & __mask) { \ 295 if (__sum & __mask) { \ 296 DST = 0x7FFFFFFFFFFFFFFFLL; \ 297 fSET_OVERFLOW(); \ 298 } else { \ 299 DST = 0x8000000000000000LL; \ 300 fSET_OVERFLOW(); \ 301 } \ 302 } else { \ 303 DST = __sum; \ 304 } \ 305 } while (0) 306 #define fVSATUN(N, VAL) \ 307 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL)) 308 #define fSATUN(N, VAL) \ 309 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL)) 310 #define fSATH(VAL) (fSATN(16, VAL)) 311 #define fSATUH(VAL) (fSATUN(16, VAL)) 312 #define fVSATH(VAL) (fVSATN(16, VAL)) 313 #define fVSATUH(VAL) (fVSATUN(16, VAL)) 314 #define fSATUB(VAL) (fSATUN(8, VAL)) 315 #define fSATB(VAL) (fSATN(8, VAL)) 316 #define fVSATUB(VAL) (fVSATUN(8, VAL)) 317 #define fVSATB(VAL) (fVSATN(8, VAL)) 318 #define fIMMEXT(IMM) (IMM = IMM) 319 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM) 320 321 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK) 322 323 #ifdef QEMU_GENERATE 324 static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift) 325 { 326 /* 327 * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual 328 * 329 * The "I" value from a modifier register is divided into two pieces 330 * LSB bits 23:17 331 * MSB bits 31:28 332 * The value is signed 333 * 334 * At the end we shift the result according to the shift argument 335 */ 336 TCGv msb = tcg_temp_new(); 337 TCGv lsb = tcg_temp_new(); 338 339 tcg_gen_extract_tl(lsb, val, 17, 7); 340 tcg_gen_sari_tl(msb, val, 21); 341 tcg_gen_deposit_tl(result, msb, lsb, 0, 7); 342 343 tcg_gen_shli_tl(result, result, shift); 344 return result; 345 } 346 #endif 347 348 #define fREAD_LR() (env->gpr[HEX_REG_LR]) 349 350 #define fWRITE_LR(A) log_reg_write(env, HEX_REG_LR, A) 351 #define fWRITE_FP(A) log_reg_write(env, HEX_REG_FP, A) 352 #define fWRITE_SP(A) log_reg_write(env, HEX_REG_SP, A) 353 354 #define fREAD_SP() (env->gpr[HEX_REG_SP]) 355 #define fREAD_LC0 (env->gpr[HEX_REG_LC0]) 356 #define fREAD_LC1 (env->gpr[HEX_REG_LC1]) 357 #define fREAD_SA0 (env->gpr[HEX_REG_SA0]) 358 #define fREAD_SA1 (env->gpr[HEX_REG_SA1]) 359 #define fREAD_FP() (env->gpr[HEX_REG_FP]) 360 #ifdef FIXME 361 /* Figure out how to get insn->extension_valid to helper */ 362 #define fREAD_GP() \ 363 (insn->extension_valid ? 0 : env->gpr[HEX_REG_GP]) 364 #else 365 #define fREAD_GP() (env->gpr[HEX_REG_GP]) 366 #endif 367 #define fREAD_PC() (PC) 368 369 #define fREAD_P0() (env->pred[0]) 370 371 #define fCHECK_PCALIGN(A) 372 373 #define fWRITE_NPC(A) write_new_pc(env, pkt_has_multi_cof != 0, A) 374 375 #define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC) 376 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR) 377 #define fHINTJR(TARGET) { /* Not modelled in qemu */} 378 #define fWRITE_LOOP_REGS0(START, COUNT) \ 379 do { \ 380 log_reg_write(env, HEX_REG_LC0, COUNT); \ 381 log_reg_write(env, HEX_REG_SA0, START); \ 382 } while (0) 383 #define fWRITE_LOOP_REGS1(START, COUNT) \ 384 do { \ 385 log_reg_write(env, HEX_REG_LC1, COUNT); \ 386 log_reg_write(env, HEX_REG_SA1, START);\ 387 } while (0) 388 389 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1) 390 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL)) 391 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG)) 392 #define fWRITE_P0(VAL) log_pred_write(env, 0, VAL) 393 #define fWRITE_P1(VAL) log_pred_write(env, 1, VAL) 394 #define fWRITE_P2(VAL) log_pred_write(env, 2, VAL) 395 #define fWRITE_P3(VAL) log_pred_write(env, 3, VAL) 396 #define fPART1(WORK) if (part1) { WORK; return; } 397 #define fCAST4u(A) ((uint32_t)(A)) 398 #define fCAST4s(A) ((int32_t)(A)) 399 #define fCAST8u(A) ((uint64_t)(A)) 400 #define fCAST8s(A) ((int64_t)(A)) 401 #define fCAST2_2s(A) ((int16_t)(A)) 402 #define fCAST2_2u(A) ((uint16_t)(A)) 403 #define fCAST4_4s(A) ((int32_t)(A)) 404 #define fCAST4_4u(A) ((uint32_t)(A)) 405 #define fCAST4_8s(A) ((int64_t)((int32_t)(A))) 406 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A))) 407 #define fCAST8_8s(A) ((int64_t)(A)) 408 #define fCAST8_8u(A) ((uint64_t)(A)) 409 #define fCAST2_8s(A) ((int64_t)((int16_t)(A))) 410 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A))) 411 #define fZE8_16(A) ((int16_t)((uint8_t)(A))) 412 #define fSE8_16(A) ((int16_t)((int8_t)(A))) 413 #define fSE16_32(A) ((int32_t)((int16_t)(A))) 414 #define fZE16_32(A) ((uint32_t)((uint16_t)(A))) 415 #define fSE32_64(A) ((int64_t)((int32_t)(A))) 416 #define fZE32_64(A) ((uint64_t)((uint32_t)(A))) 417 #define fSE8_32(A) ((int32_t)((int8_t)(A))) 418 #define fZE8_32(A) ((int32_t)((uint8_t)(A))) 419 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B)) 420 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B)) 421 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B)) 422 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B)) 423 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B)) 424 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B)) 425 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B)) 426 #define fMPY16US(A, B) fMPY16SU(B, A) 427 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B)) 428 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B)) 429 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B)) 430 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B)) 431 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B)) 432 #define fROUND(A) (A + 0x8000) 433 #define fCLIP(DST, SRC, U) \ 434 do { \ 435 int32_t maxv = (1 << U) - 1; \ 436 int32_t minv = -(1 << U); \ 437 DST = fMIN(maxv, fMAX(SRC, minv)); \ 438 } while (0) 439 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A))) 440 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1)))))) 441 #define fCRNDN(A, N) (conv_round(A, N)) 442 #define fADD128(A, B) (int128_add(A, B)) 443 #define fSUB128(A, B) (int128_sub(A, B)) 444 #define fSHIFTR128(A, B) (int128_rshift(A, B)) 445 #define fSHIFTL128(A, B) (int128_lshift(A, B)) 446 #define fAND128(A, B) (int128_and(A, B)) 447 #define fCAST8S_16S(A) (int128_exts64(A)) 448 #define fCAST16S_8S(A) (int128_getlo(A)) 449 450 #ifdef QEMU_GENERATE 451 #define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM) 452 #define fEA_RRs(REG, REG2, SCALE) \ 453 do { \ 454 TCGv tmp = tcg_temp_new(); \ 455 tcg_gen_shli_tl(tmp, REG2, SCALE); \ 456 tcg_gen_add_tl(EA, REG, tmp); \ 457 } while (0) 458 #define fEA_IRs(IMM, REG, SCALE) \ 459 do { \ 460 tcg_gen_shli_tl(EA, REG, SCALE); \ 461 tcg_gen_addi_tl(EA, EA, IMM); \ 462 } while (0) 463 #else 464 #define fEA_RI(REG, IMM) \ 465 do { \ 466 EA = REG + IMM; \ 467 } while (0) 468 #define fEA_RRs(REG, REG2, SCALE) \ 469 do { \ 470 EA = REG + (REG2 << SCALE); \ 471 } while (0) 472 #define fEA_IRs(IMM, REG, SCALE) \ 473 do { \ 474 EA = IMM + (REG << SCALE); \ 475 } while (0) 476 #endif 477 478 #ifdef QEMU_GENERATE 479 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM) 480 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG) 481 #define fEA_BREVR(REG) gen_helper_fbrev(EA, REG) 482 #define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM) 483 #define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL) 484 #define fPM_CIRI(REG, IMM, MVAL) \ 485 do { \ 486 TCGv tcgv_siV = tcg_constant_tl(siV); \ 487 gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \ 488 hex_gpr[HEX_REG_CS0 + MuN]); \ 489 } while (0) 490 #else 491 #define fEA_IMM(IMM) do { EA = (IMM); } while (0) 492 #define fEA_REG(REG) do { EA = (REG); } while (0) 493 #define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0) 494 #define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0) 495 #define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0) 496 #endif 497 #define fSCALE(N, A) (((int64_t)(A)) << N) 498 #define fVSATW(A) fVSATN(32, ((long long)A)) 499 #define fSATW(A) fSATN(32, ((long long)A)) 500 #define fVSAT(A) fVSATN(32, (A)) 501 #define fSAT(A) fSATN(32, (A)) 502 #define fSAT_ORIG_SHL(A, ORIG_REG) \ 503 ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \ 504 ? fSATVALN(32, ((int32_t)(ORIG_REG))) \ 505 : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \ 506 : fSAT(A))) 507 #define fPASS(A) A 508 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \ 509 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \ 510 : (fCAST##REGSTYPE(SRC) << (SHAMT))) 511 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \ 512 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s) 513 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \ 514 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u) 515 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \ 516 (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \ 517 : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC))) 518 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \ 519 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \ 520 : (fCAST##REGSTYPE(SRC) >> (SHAMT))) 521 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \ 522 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s) 523 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \ 524 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u) 525 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \ 526 (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \ 527 << ((-(SHAMT)) - 1)) << 1, (SRC)) \ 528 : (fCAST##REGSTYPE##s(SRC) >> (SHAMT))) 529 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT)) 530 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \ 531 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT))) 532 #define fROTL(SRC, SHAMT, REGSTYPE) \ 533 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \ 534 ((fCAST##REGSTYPE##u(SRC) >> \ 535 ((sizeof(SRC) * 8) - (SHAMT)))))) 536 #define fROTR(SRC, SHAMT, REGSTYPE) \ 537 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \ 538 ((fCAST##REGSTYPE##u(SRC) << \ 539 ((sizeof(SRC) * 8) - (SHAMT)))))) 540 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \ 541 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT))) 542 543 #ifdef QEMU_GENERATE 544 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA) 545 #else 546 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \ 547 DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA) 548 #endif 549 550 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE) 551 552 #define fGET_FRAMEKEY() (env->gpr[HEX_REG_FRAMEKEY]) 553 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32)) 554 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL) 555 556 #ifdef CONFIG_USER_ONLY 557 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */ 558 #else 559 /* System mode not implemented yet */ 560 #define fFRAMECHECK(ADDR, EA) g_assert_not_reached(); 561 #endif 562 563 #ifdef QEMU_GENERATE 564 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \ 565 gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx); 566 #endif 567 568 #ifdef QEMU_GENERATE 569 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot) 570 #else 571 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot) 572 #endif 573 574 #ifdef QEMU_GENERATE 575 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \ 576 gen_store_conditional##SIZE(ctx, PRED, EA, SRC); 577 #endif 578 579 #ifdef QEMU_GENERATE 580 #define GETBYTE_FUNC(X) \ 581 __builtin_choose_expr(TYPE_TCGV(X), \ 582 gen_get_byte, \ 583 __builtin_choose_expr(TYPE_TCGV_I64(X), \ 584 gen_get_byte_i64, (void)0)) 585 #define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true) 586 #define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false) 587 #else 588 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff)) 589 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff)) 590 #endif 591 592 #define fSETBYTE(N, DST, VAL) \ 593 do { \ 594 DST = (DST & ~(0x0ffLL << ((N) * 8))) | \ 595 (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \ 596 } while (0) 597 598 #ifdef QEMU_GENERATE 599 #define fGETHALF(N, SRC) gen_get_half(HALF, N, SRC, true) 600 #define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false) 601 #else 602 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff)) 603 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff)) 604 #endif 605 #define fSETHALF(N, DST, VAL) \ 606 do { \ 607 DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \ 608 (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \ 609 } while (0) 610 #define fSETHALFw fSETHALF 611 #define fSETHALFd fSETHALF 612 613 #define fGETWORD(N, SRC) \ 614 ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL))) 615 #define fGETUWORD(N, SRC) \ 616 ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL))) 617 618 #define fSETWORD(N, DST, VAL) \ 619 do { \ 620 DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \ 621 (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \ 622 } while (0) 623 624 #define fSETBIT(N, DST, VAL) \ 625 do { \ 626 DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \ 627 } while (0) 628 629 #define fGETBIT(N, SRC) (((SRC) >> N) & 1) 630 #define fSETBITS(HI, LO, DST, VAL) \ 631 do { \ 632 int j; \ 633 for (j = LO; j <= HI; j++) { \ 634 fSETBIT(j, DST, VAL); \ 635 } \ 636 } while (0) 637 #define fCOUNTONES_2(VAL) ctpop16(VAL) 638 #define fCOUNTONES_4(VAL) ctpop32(VAL) 639 #define fCOUNTONES_8(VAL) ctpop64(VAL) 640 #define fBREV_8(VAL) revbit64(VAL) 641 #define fBREV_4(VAL) revbit32(VAL) 642 #define fCL1_8(VAL) clo64(VAL) 643 #define fCL1_4(VAL) clo32(VAL) 644 #define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16) 645 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN) 646 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED) 647 #define fHIDE(A) A 648 #define fCONSTLL(A) A##LL 649 #define fECHO(A) (A) 650 651 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0) 652 #define fPAUSE(IMM) 653 654 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \ 655 ((VAL) << reg_field_info[FIELD].offset) 656 #define fGET_REG_FIELD_MASK(FIELD) \ 657 (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset) 658 #define fREAD_REG_FIELD(REG, FIELD) \ 659 fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \ 660 reg_field_info[FIELD].width, \ 661 reg_field_info[FIELD].offset) 662 663 #ifdef QEMU_GENERATE 664 #define fDCZEROA(REG) tcg_gen_mov_tl(hex_dczero_addr, (REG)) 665 #endif 666 667 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \ 668 STRBITNUM) /* Nothing */ 669 670 671 #endif 672