1 /* 2 * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef HEXAGON_MACROS_H 19 #define HEXAGON_MACROS_H 20 21 #include "cpu.h" 22 #include "hex_regs.h" 23 #include "reg_fields.h" 24 25 #ifdef QEMU_GENERATE 26 #define READ_REG(dest, NUM) gen_read_reg(dest, NUM) 27 #define READ_PREG(dest, NUM) gen_read_preg(dest, (NUM)) 28 #else 29 #define READ_REG(NUM) (env->gpr[(NUM)]) 30 #define READ_PREG(NUM) (env->pred[NUM]) 31 32 #define WRITE_RREG(NUM, VAL) log_reg_write(env, NUM, VAL, slot) 33 #define WRITE_PREG(NUM, VAL) log_pred_write(env, NUM, VAL) 34 #endif 35 36 #define PCALIGN 4 37 #define PCALIGN_MASK (PCALIGN - 1) 38 39 #define GET_FIELD(FIELD, REGIN) \ 40 fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \ 41 reg_field_info[FIELD].offset) 42 43 #ifdef QEMU_GENERATE 44 #define GET_USR_FIELD(FIELD, DST) \ 45 tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \ 46 reg_field_info[FIELD].offset, \ 47 reg_field_info[FIELD].width) 48 49 #define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int) 50 #define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv) 51 #define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64) 52 53 #define SET_USR_FIELD_FUNC(X) \ 54 __builtin_choose_expr(TYPE_INT(X), \ 55 gen_set_usr_fieldi, \ 56 __builtin_choose_expr(TYPE_TCGV(X), \ 57 gen_set_usr_field, (void)0)) 58 #define SET_USR_FIELD(FIELD, VAL) \ 59 SET_USR_FIELD_FUNC(VAL)(FIELD, VAL) 60 #else 61 #define GET_USR_FIELD(FIELD) \ 62 fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \ 63 reg_field_info[FIELD].offset) 64 65 #define SET_USR_FIELD(FIELD, VAL) \ 66 fINSERT_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \ 67 reg_field_info[FIELD].offset, (VAL)) 68 #endif 69 70 #ifdef QEMU_GENERATE 71 /* 72 * Section 5.5 of the Hexagon V67 Programmer's Reference Manual 73 * 74 * Slot 1 store with slot 0 load 75 * A slot 1 store operation with a slot 0 load operation can appear in a packet. 76 * The packet attribute :mem_noshuf inhibits the instruction reordering that 77 * would otherwise be done by the assembler. For example: 78 * { 79 * memw(R5) = R2 // slot 1 store 80 * R3 = memh(R6) // slot 0 load 81 * }:mem_noshuf 82 * Unlike most packetized operations, these memory operations are not executed 83 * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1 84 * effectively executes first, followed by the load instruction in Slot 0. If 85 * the addresses of the two operations are overlapping, the load will receive 86 * the newly stored data. This feature is supported in processor versions 87 * V65 or greater. 88 * 89 * 90 * For qemu, we look for a load in slot 0 when there is a store in slot 1 91 * in the same packet. When we see this, we call a helper that merges the 92 * bytes from the store buffer with the value loaded from memory. 93 */ 94 #define CHECK_NOSHUF \ 95 do { \ 96 if (insn->slot == 0 && pkt->pkt_has_store_s1) { \ 97 process_store(ctx, pkt, 1); \ 98 } \ 99 } while (0) 100 101 #define MEM_LOAD1s(DST, VA) \ 102 do { \ 103 CHECK_NOSHUF; \ 104 tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \ 105 } while (0) 106 #define MEM_LOAD1u(DST, VA) \ 107 do { \ 108 CHECK_NOSHUF; \ 109 tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \ 110 } while (0) 111 #define MEM_LOAD2s(DST, VA) \ 112 do { \ 113 CHECK_NOSHUF; \ 114 tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \ 115 } while (0) 116 #define MEM_LOAD2u(DST, VA) \ 117 do { \ 118 CHECK_NOSHUF; \ 119 tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \ 120 } while (0) 121 #define MEM_LOAD4s(DST, VA) \ 122 do { \ 123 CHECK_NOSHUF; \ 124 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \ 125 } while (0) 126 #define MEM_LOAD4u(DST, VA) \ 127 do { \ 128 CHECK_NOSHUF; \ 129 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \ 130 } while (0) 131 #define MEM_LOAD8u(DST, VA) \ 132 do { \ 133 CHECK_NOSHUF; \ 134 tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \ 135 } while (0) 136 #else 137 #define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA)) 138 #define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA)) 139 #define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA)) 140 #define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA)) 141 #define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA)) 142 #define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA)) 143 #define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA)) 144 #define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA)) 145 146 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT) 147 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT) 148 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT) 149 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT) 150 #endif 151 152 #define CANCEL cancel_slot(env, slot) 153 154 #define LOAD_CANCEL(EA) do { CANCEL; } while (0) 155 156 #ifdef QEMU_GENERATE 157 static inline void gen_pred_cancel(TCGv pred, int slot_num) 158 { 159 TCGv slot_mask = tcg_const_tl(1 << slot_num); 160 TCGv tmp = tcg_temp_new(); 161 TCGv zero = tcg_const_tl(0); 162 TCGv one = tcg_const_tl(1); 163 tcg_gen_or_tl(slot_mask, hex_slot_cancelled, slot_mask); 164 tcg_gen_andi_tl(tmp, pred, 1); 165 tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero, 166 slot_mask, hex_slot_cancelled); 167 tcg_temp_free(slot_mask); 168 tcg_temp_free(tmp); 169 tcg_temp_free(zero); 170 tcg_temp_free(one); 171 } 172 #define PRED_LOAD_CANCEL(PRED, EA) \ 173 gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot) 174 #endif 175 176 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); } 177 178 #define fMAX(A, B) (((A) > (B)) ? (A) : (B)) 179 180 #define fMIN(A, B) (((A) < (B)) ? (A) : (B)) 181 182 #define fABS(A) (((A) < 0) ? (-(A)) : (A)) 183 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \ 184 REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG) 185 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \ 186 ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL) 187 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \ 188 (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8))) 189 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \ 190 (((HIBIT) - (LOWBIT) + 1) ? \ 191 extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \ 192 0LL) 193 194 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00) 195 196 #ifdef QEMU_GENERATE 197 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1) 198 #else 199 #define fLSBOLD(VAL) ((VAL) & 1) 200 #endif 201 202 #ifdef QEMU_GENERATE 203 #define fLSBNEW(PVAL) tcg_gen_mov_tl(LSB, (PVAL)) 204 #define fLSBNEW0 tcg_gen_mov_tl(LSB, hex_new_pred_value[0]) 205 #define fLSBNEW1 tcg_gen_mov_tl(LSB, hex_new_pred_value[1]) 206 #else 207 #define fLSBNEW(PVAL) (PVAL) 208 #define fLSBNEW0 new_pred_value(env, 0) 209 #define fLSBNEW1 new_pred_value(env, 1) 210 #endif 211 212 #ifdef QEMU_GENERATE 213 static inline void gen_logical_not(TCGv dest, TCGv src) 214 { 215 TCGv one = tcg_const_tl(1); 216 TCGv zero = tcg_const_tl(0); 217 218 tcg_gen_movcond_tl(TCG_COND_NE, dest, src, zero, zero, one); 219 220 tcg_temp_free(one); 221 tcg_temp_free(zero); 222 } 223 #define fLSBOLDNOT(VAL) \ 224 do { \ 225 tcg_gen_andi_tl(LSB, (VAL), 1); \ 226 tcg_gen_xori_tl(LSB, LSB, 1); \ 227 } while (0) 228 #define fLSBNEWNOT(PNUM) \ 229 gen_logical_not(LSB, (PNUM)) 230 #else 231 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM)) 232 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL)) 233 #define fLSBNEW0NOT (!fLSBNEW0) 234 #define fLSBNEW1NOT (!fLSBNEW1) 235 #endif 236 237 #define fNEWREG(VAL) ((int32_t)(VAL)) 238 239 #define fNEWREG_ST(VAL) (VAL) 240 241 #define fSATUVALN(N, VAL) \ 242 ({ \ 243 fSET_OVERFLOW(); \ 244 ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \ 245 }) 246 #define fSATVALN(N, VAL) \ 247 ({ \ 248 fSET_OVERFLOW(); \ 249 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \ 250 }) 251 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL) 252 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL) 253 #define fSATN(N, VAL) \ 254 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL)) 255 #define fADDSAT64(DST, A, B) \ 256 do { \ 257 uint64_t __a = fCAST8u(A); \ 258 uint64_t __b = fCAST8u(B); \ 259 uint64_t __sum = __a + __b; \ 260 uint64_t __xor = __a ^ __b; \ 261 const uint64_t __mask = 0x8000000000000000ULL; \ 262 if (__xor & __mask) { \ 263 DST = __sum; \ 264 } \ 265 else if ((__a ^ __sum) & __mask) { \ 266 if (__sum & __mask) { \ 267 DST = 0x7FFFFFFFFFFFFFFFLL; \ 268 fSET_OVERFLOW(); \ 269 } else { \ 270 DST = 0x8000000000000000LL; \ 271 fSET_OVERFLOW(); \ 272 } \ 273 } else { \ 274 DST = __sum; \ 275 } \ 276 } while (0) 277 #define fSATUN(N, VAL) \ 278 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL)) 279 #define fSATH(VAL) (fSATN(16, VAL)) 280 #define fSATUH(VAL) (fSATUN(16, VAL)) 281 #define fSATUB(VAL) (fSATUN(8, VAL)) 282 #define fSATB(VAL) (fSATN(8, VAL)) 283 #define fIMMEXT(IMM) (IMM = IMM) 284 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM) 285 286 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK) 287 288 #define fREAD_LR() (READ_REG(HEX_REG_LR)) 289 290 #define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A) 291 #define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A) 292 #define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A) 293 294 #define fREAD_SP() (READ_REG(HEX_REG_SP)) 295 #define fREAD_LC0 (READ_REG(HEX_REG_LC0)) 296 #define fREAD_LC1 (READ_REG(HEX_REG_LC1)) 297 #define fREAD_SA0 (READ_REG(HEX_REG_SA0)) 298 #define fREAD_SA1 (READ_REG(HEX_REG_SA1)) 299 #define fREAD_FP() (READ_REG(HEX_REG_FP)) 300 #ifdef FIXME 301 /* Figure out how to get insn->extension_valid to helper */ 302 #define fREAD_GP() \ 303 (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP)) 304 #else 305 #define fREAD_GP() READ_REG(HEX_REG_GP) 306 #endif 307 #define fREAD_PC() (READ_REG(HEX_REG_PC)) 308 309 #define fREAD_NPC() (env->next_PC & (0xfffffffe)) 310 311 #define fREAD_P0() (READ_PREG(0)) 312 #define fREAD_P3() (READ_PREG(3)) 313 314 #define fCHECK_PCALIGN(A) 315 316 #define fWRITE_NPC(A) write_new_pc(env, A) 317 318 #define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC) 319 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR) 320 #define fHINTJR(TARGET) { /* Not modelled in qemu */} 321 #define fCALL(A) \ 322 do { \ 323 fWRITE_LR(fREAD_NPC()); \ 324 fBRANCH(A, COF_TYPE_CALL); \ 325 } while (0) 326 #define fCALLR(A) \ 327 do { \ 328 fWRITE_LR(fREAD_NPC()); \ 329 fBRANCH(A, COF_TYPE_CALLR); \ 330 } while (0) 331 #define fWRITE_LOOP_REGS0(START, COUNT) \ 332 do { \ 333 WRITE_RREG(HEX_REG_LC0, COUNT); \ 334 WRITE_RREG(HEX_REG_SA0, START); \ 335 } while (0) 336 #define fWRITE_LOOP_REGS1(START, COUNT) \ 337 do { \ 338 WRITE_RREG(HEX_REG_LC1, COUNT); \ 339 WRITE_RREG(HEX_REG_SA1, START);\ 340 } while (0) 341 #define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL) 342 #define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL) 343 344 #define fCARRY_FROM_ADD(A, B, C) carry_from_add64(A, B, C) 345 346 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1) 347 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL)) 348 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG)) 349 #define fWRITE_P0(VAL) WRITE_PREG(0, VAL) 350 #define fWRITE_P1(VAL) WRITE_PREG(1, VAL) 351 #define fWRITE_P2(VAL) WRITE_PREG(2, VAL) 352 #define fWRITE_P3(VAL) WRITE_PREG(3, VAL) 353 #define fPART1(WORK) if (part1) { WORK; return; } 354 #define fCAST4u(A) ((uint32_t)(A)) 355 #define fCAST4s(A) ((int32_t)(A)) 356 #define fCAST8u(A) ((uint64_t)(A)) 357 #define fCAST8s(A) ((int64_t)(A)) 358 #define fCAST4_4s(A) ((int32_t)(A)) 359 #define fCAST4_4u(A) ((uint32_t)(A)) 360 #define fCAST4_8s(A) ((int64_t)((int32_t)(A))) 361 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A))) 362 #define fCAST8_8s(A) ((int64_t)(A)) 363 #define fCAST8_8u(A) ((uint64_t)(A)) 364 #define fCAST2_8s(A) ((int64_t)((int16_t)(A))) 365 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A))) 366 #define fZE8_16(A) ((int16_t)((uint8_t)(A))) 367 #define fSE8_16(A) ((int16_t)((int8_t)(A))) 368 #define fSE16_32(A) ((int32_t)((int16_t)(A))) 369 #define fZE16_32(A) ((uint32_t)((uint16_t)(A))) 370 #define fSE32_64(A) ((int64_t)((int32_t)(A))) 371 #define fZE32_64(A) ((uint64_t)((uint32_t)(A))) 372 #define fSE8_32(A) ((int32_t)((int8_t)(A))) 373 #define fZE8_32(A) ((int32_t)((uint8_t)(A))) 374 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B)) 375 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B)) 376 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B)) 377 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B)) 378 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B)) 379 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B)) 380 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B)) 381 #define fMPY16US(A, B) fMPY16SU(B, A) 382 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B)) 383 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B)) 384 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B)) 385 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B)) 386 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B)) 387 #define fROUND(A) (A + 0x8000) 388 #define fCLIP(DST, SRC, U) \ 389 do { \ 390 int32_t maxv = (1 << U) - 1; \ 391 int32_t minv = -(1 << U); \ 392 DST = fMIN(maxv, fMAX(SRC, minv)); \ 393 } while (0) 394 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A))) 395 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1)))))) 396 #define fCRNDN(A, N) (conv_round(A, N)) 397 #define fADD128(A, B) (int128_add(A, B)) 398 #define fSUB128(A, B) (int128_sub(A, B)) 399 #define fSHIFTR128(A, B) (int128_rshift(A, B)) 400 #define fSHIFTL128(A, B) (int128_lshift(A, B)) 401 #define fAND128(A, B) (int128_and(A, B)) 402 #define fCAST8S_16S(A) (int128_exts64(A)) 403 #define fCAST16S_8S(A) (int128_getlo(A)) 404 405 #define fEA_RI(REG, IMM) \ 406 do { \ 407 EA = REG + IMM; \ 408 } while (0) 409 #define fEA_RRs(REG, REG2, SCALE) \ 410 do { \ 411 EA = REG + (REG2 << SCALE); \ 412 } while (0) 413 #define fEA_IRs(IMM, REG, SCALE) \ 414 do { \ 415 EA = IMM + (REG << SCALE); \ 416 } while (0) 417 418 #ifdef QEMU_GENERATE 419 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM) 420 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG) 421 #define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM) 422 #define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL) 423 #else 424 #define fEA_IMM(IMM) do { EA = (IMM); } while (0) 425 #define fEA_REG(REG) do { EA = (REG); } while (0) 426 #define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0) 427 #define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0) 428 #define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0) 429 #endif 430 #define fSCALE(N, A) (((int64_t)(A)) << N) 431 #define fSATW(A) fSATN(32, ((long long)A)) 432 #define fSAT(A) fSATN(32, (A)) 433 #define fSAT_ORIG_SHL(A, ORIG_REG) \ 434 ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \ 435 ? fSATVALN(32, ((int32_t)(ORIG_REG))) \ 436 : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \ 437 : fSAT(A))) 438 #define fPASS(A) A 439 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \ 440 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \ 441 : (fCAST##REGSTYPE(SRC) << (SHAMT))) 442 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \ 443 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s) 444 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \ 445 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u) 446 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \ 447 (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \ 448 : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC))) 449 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \ 450 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \ 451 : (fCAST##REGSTYPE(SRC) >> (SHAMT))) 452 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \ 453 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s) 454 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \ 455 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u) 456 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \ 457 (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \ 458 << ((-(SHAMT)) - 1)) << 1, (SRC)) \ 459 : (fCAST##REGSTYPE##s(SRC) >> (SHAMT))) 460 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT)) 461 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \ 462 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT))) 463 #define fROTL(SRC, SHAMT, REGSTYPE) \ 464 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \ 465 ((fCAST##REGSTYPE##u(SRC) >> \ 466 ((sizeof(SRC) * 8) - (SHAMT)))))) 467 #define fROTR(SRC, SHAMT, REGSTYPE) \ 468 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \ 469 ((fCAST##REGSTYPE##u(SRC) << \ 470 ((sizeof(SRC) * 8) - (SHAMT)))))) 471 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \ 472 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT))) 473 474 #ifdef QEMU_GENERATE 475 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA) 476 #else 477 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \ 478 DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA) 479 #endif 480 481 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE) 482 483 #define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY) 484 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32)) 485 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL) 486 487 #ifdef CONFIG_USER_ONLY 488 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */ 489 #else 490 /* System mode not implemented yet */ 491 #define fFRAMECHECK(ADDR, EA) g_assert_not_reached(); 492 #endif 493 494 #ifdef QEMU_GENERATE 495 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \ 496 gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx); 497 #endif 498 499 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot) 500 501 #ifdef QEMU_GENERATE 502 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \ 503 gen_store_conditional##SIZE(env, ctx, PdN, PRED, EA, SRC); 504 #endif 505 506 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff)) 507 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff)) 508 509 #define fSETBYTE(N, DST, VAL) \ 510 do { \ 511 DST = (DST & ~(0x0ffLL << ((N) * 8))) | \ 512 (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \ 513 } while (0) 514 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff)) 515 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff)) 516 #define fSETHALF(N, DST, VAL) \ 517 do { \ 518 DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \ 519 (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \ 520 } while (0) 521 #define fSETHALFw fSETHALF 522 #define fSETHALFd fSETHALF 523 524 #define fGETWORD(N, SRC) \ 525 ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL))) 526 #define fGETUWORD(N, SRC) \ 527 ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL))) 528 529 #define fSETWORD(N, DST, VAL) \ 530 do { \ 531 DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \ 532 (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \ 533 } while (0) 534 535 #define fSETBIT(N, DST, VAL) \ 536 do { \ 537 DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \ 538 } while (0) 539 540 #define fGETBIT(N, SRC) (((SRC) >> N) & 1) 541 #define fSETBITS(HI, LO, DST, VAL) \ 542 do { \ 543 int j; \ 544 for (j = LO; j <= HI; j++) { \ 545 fSETBIT(j, DST, VAL); \ 546 } \ 547 } while (0) 548 #define fCOUNTONES_4(VAL) ctpop32(VAL) 549 #define fCOUNTONES_8(VAL) ctpop64(VAL) 550 #define fBREV_8(VAL) revbit64(VAL) 551 #define fBREV_4(VAL) revbit32(VAL) 552 #define fCL1_8(VAL) clo64(VAL) 553 #define fCL1_4(VAL) clo32(VAL) 554 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN) 555 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED) 556 #define fHIDE(A) A 557 #define fCONSTLL(A) A##LL 558 #define fECHO(A) (A) 559 560 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0) 561 #define fPAUSE(IMM) 562 563 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \ 564 ((VAL) << reg_field_info[FIELD].offset) 565 #define fGET_REG_FIELD_MASK(FIELD) \ 566 (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset) 567 #define fREAD_REG_FIELD(REG, FIELD) \ 568 fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \ 569 reg_field_info[FIELD].width, \ 570 reg_field_info[FIELD].offset) 571 #define fGET_FIELD(VAL, FIELD) 572 #define fSET_FIELD(VAL, FIELD, NEWVAL) 573 #define fBARRIER() 574 #define fSYNCH() 575 #define fISYNC() 576 #define fDCFETCH(REG) \ 577 do { (void)REG; } while (0) /* Nothing to do in qemu */ 578 #define fICINVA(REG) \ 579 do { (void)REG; } while (0) /* Nothing to do in qemu */ 580 #define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS) 581 #define fDCCLEANA(REG) \ 582 do { (void)REG; } while (0) /* Nothing to do in qemu */ 583 #define fDCCLEANINVA(REG) \ 584 do { (void)REG; } while (0) /* Nothing to do in qemu */ 585 586 #define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0) 587 588 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \ 589 STRBITNUM) /* Nothing */ 590 591 592 #endif 593