xref: /openbmc/qemu/target/hexagon/macros.h (revision 89aafcf2)
1 /*
2  *  Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef HEXAGON_MACROS_H
19 #define HEXAGON_MACROS_H
20 
21 #include "cpu.h"
22 #include "hex_regs.h"
23 #include "reg_fields.h"
24 
25 #define PCALIGN 4
26 #define PCALIGN_MASK (PCALIGN - 1)
27 
28 #define GET_FIELD(FIELD, REGIN) \
29     fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
30                    reg_field_info[FIELD].offset)
31 
32 #ifdef QEMU_GENERATE
33 #define GET_USR_FIELD(FIELD, DST) \
34     tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
35                        reg_field_info[FIELD].offset, \
36                        reg_field_info[FIELD].width)
37 
38 #define TYPE_INT(X)          __builtin_types_compatible_p(typeof(X), int)
39 #define TYPE_TCGV(X)         __builtin_types_compatible_p(typeof(X), TCGv)
40 #define TYPE_TCGV_I64(X)     __builtin_types_compatible_p(typeof(X), TCGv_i64)
41 #else
42 #define GET_USR_FIELD(FIELD) \
43     fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
44                    reg_field_info[FIELD].offset)
45 
46 #define SET_USR_FIELD(FIELD, VAL) \
47     do { \
48         if (pkt_need_commit) { \
49             fINSERT_BITS(env->new_value_usr, \
50                         reg_field_info[FIELD].width, \
51                         reg_field_info[FIELD].offset, (VAL)); \
52         } else { \
53             fINSERT_BITS(env->gpr[HEX_REG_USR], \
54                         reg_field_info[FIELD].width, \
55                         reg_field_info[FIELD].offset, (VAL)); \
56         } \
57     } while (0)
58 #endif
59 
60 #ifdef QEMU_GENERATE
61 /*
62  * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
63  *
64  * Slot 1 store with slot 0 load
65  * A slot 1 store operation with a slot 0 load operation can appear in a packet.
66  * The packet attribute :mem_noshuf inhibits the instruction reordering that
67  * would otherwise be done by the assembler. For example:
68  *     {
69  *         memw(R5) = R2 // slot 1 store
70  *         R3 = memh(R6) // slot 0 load
71  *     }:mem_noshuf
72  * Unlike most packetized operations, these memory operations are not executed
73  * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
74  * effectively executes first, followed by the load instruction in Slot 0. If
75  * the addresses of the two operations are overlapping, the load will receive
76  * the newly stored data. This feature is supported in processor versions
77  * V65 or greater.
78  *
79  *
80  * For qemu, we look for a load in slot 0 when there is  a store in slot 1
81  * in the same packet.  When we see this, we call a helper that probes the
82  * load to make sure it doesn't fault.  Then, we process the store ahead of
83  * the actual load.
84 
85  */
86 #define CHECK_NOSHUF(VA, SIZE) \
87     do { \
88         if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
89             probe_noshuf_load(VA, SIZE, ctx->mem_idx); \
90             process_store(ctx, 1); \
91         } \
92     } while (0)
93 
94 #define CHECK_NOSHUF_PRED(GET_EA, SIZE, PRED) \
95     do { \
96         TCGLabel *label = gen_new_label(); \
97         tcg_gen_brcondi_tl(TCG_COND_EQ, PRED, 0, label); \
98         GET_EA; \
99         if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
100             probe_noshuf_load(EA, SIZE, ctx->mem_idx); \
101         } \
102         gen_set_label(label); \
103         if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
104             process_store(ctx, 1); \
105         } \
106     } while (0)
107 
108 #define MEM_LOAD1s(DST, VA) \
109     do { \
110         CHECK_NOSHUF(VA, 1); \
111         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_SB); \
112     } while (0)
113 #define MEM_LOAD1u(DST, VA) \
114     do { \
115         CHECK_NOSHUF(VA, 1); \
116         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_UB); \
117     } while (0)
118 #define MEM_LOAD2s(DST, VA) \
119     do { \
120         CHECK_NOSHUF(VA, 2); \
121         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TESW); \
122     } while (0)
123 #define MEM_LOAD2u(DST, VA) \
124     do { \
125         CHECK_NOSHUF(VA, 2); \
126         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TEUW); \
127     } while (0)
128 #define MEM_LOAD4s(DST, VA) \
129     do { \
130         CHECK_NOSHUF(VA, 4); \
131         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TESL); \
132     } while (0)
133 #define MEM_LOAD4u(DST, VA) \
134     do { \
135         CHECK_NOSHUF(VA, 4); \
136         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TEUL); \
137     } while (0)
138 #define MEM_LOAD8u(DST, VA) \
139     do { \
140         CHECK_NOSHUF(VA, 8); \
141         tcg_gen_qemu_ld_i64(DST, VA, ctx->mem_idx, MO_TEUQ); \
142     } while (0)
143 
144 #define MEM_STORE1_FUNC(X) \
145     __builtin_choose_expr(TYPE_INT(X), \
146         gen_store1i, \
147         __builtin_choose_expr(TYPE_TCGV(X), \
148             gen_store1, (void)0))
149 #define MEM_STORE1(VA, DATA, SLOT) \
150     MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
151 
152 #define MEM_STORE2_FUNC(X) \
153     __builtin_choose_expr(TYPE_INT(X), \
154         gen_store2i, \
155         __builtin_choose_expr(TYPE_TCGV(X), \
156             gen_store2, (void)0))
157 #define MEM_STORE2(VA, DATA, SLOT) \
158     MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
159 
160 #define MEM_STORE4_FUNC(X) \
161     __builtin_choose_expr(TYPE_INT(X), \
162         gen_store4i, \
163         __builtin_choose_expr(TYPE_TCGV(X), \
164             gen_store4, (void)0))
165 #define MEM_STORE4(VA, DATA, SLOT) \
166     MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
167 
168 #define MEM_STORE8_FUNC(X) \
169     __builtin_choose_expr(TYPE_INT(X), \
170         gen_store8i, \
171         __builtin_choose_expr(TYPE_TCGV_I64(X), \
172             gen_store8, (void)0))
173 #define MEM_STORE8(VA, DATA, SLOT) \
174     MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
175 #else
176 #define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, pkt_has_store_s1, slot, VA))
177 #define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, pkt_has_store_s1, slot, VA))
178 #define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, pkt_has_store_s1, slot, VA))
179 #define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, pkt_has_store_s1, slot, VA))
180 #define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, pkt_has_store_s1, slot, VA))
181 #define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, pkt_has_store_s1, slot, VA))
182 #define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, pkt_has_store_s1, slot, VA))
183 #define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, pkt_has_store_s1, slot, VA))
184 
185 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
186 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
187 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
188 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
189 #endif
190 
191 #ifdef QEMU_GENERATE
192 static inline void gen_cancel(uint32_t slot)
193 {
194     tcg_gen_ori_tl(hex_slot_cancelled, hex_slot_cancelled, 1 << slot);
195 }
196 
197 #define CANCEL gen_cancel(slot);
198 #else
199 #define CANCEL do { } while (0)
200 #endif
201 
202 #define LOAD_CANCEL(EA) do { CANCEL; } while (0)
203 
204 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
205 
206 #define fMAX(A, B) (((A) > (B)) ? (A) : (B))
207 
208 #define fMIN(A, B) (((A) < (B)) ? (A) : (B))
209 
210 #define fABS(A) (((A) < 0) ? (-(A)) : (A))
211 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
212     REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
213 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
214     ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
215 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
216     (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
217 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
218     (((HIBIT) - (LOWBIT) + 1) ? \
219         extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
220         0LL)
221 #define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
222     do { \
223         int width = ((HIBIT) - (LOWBIT) + 1); \
224         INREG = (width >= 0 ? \
225             deposit64((INREG), (LOWBIT), width, (INVAL)) : \
226             INREG); \
227     } while (0)
228 
229 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
230 
231 #ifdef QEMU_GENERATE
232 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
233 #else
234 #define fLSBOLD(VAL)  ((VAL) & 1)
235 #endif
236 
237 #ifdef QEMU_GENERATE
238 #define fLSBNEW(PVAL)   tcg_gen_andi_tl(LSB, (PVAL), 1)
239 #else
240 #define fLSBNEW(PVAL)   ((PVAL) & 1)
241 #endif
242 
243 #ifdef QEMU_GENERATE
244 #define fLSBOLDNOT(VAL) \
245     do { \
246         tcg_gen_andi_tl(LSB, (VAL), 1); \
247         tcg_gen_xori_tl(LSB, LSB, 1); \
248     } while (0)
249 #define fLSBNEWNOT(PNUM) \
250     do { \
251         tcg_gen_andi_tl(LSB, (PNUM), 1); \
252         tcg_gen_xori_tl(LSB, LSB, 1); \
253     } while (0)
254 #else
255 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
256 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
257 #define fLSBNEW0NOT (!fLSBNEW0)
258 #define fLSBNEW1NOT (!fLSBNEW1)
259 #endif
260 
261 #define fNEWREG(VAL) ((int32_t)(VAL))
262 
263 #define fNEWREG_ST(VAL) (VAL)
264 
265 #define fVSATUVALN(N, VAL) \
266     ({ \
267         (((int64_t)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \
268     })
269 #define fSATUVALN(N, VAL) \
270     ({ \
271         fSET_OVERFLOW(); \
272         ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
273     })
274 #define fSATVALN(N, VAL) \
275     ({ \
276         fSET_OVERFLOW(); \
277         ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
278     })
279 #define fVSATVALN(N, VAL) \
280     ({ \
281         ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
282     })
283 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
284 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
285 #define fSATN(N, VAL) \
286     ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
287 #define fVSATN(N, VAL) \
288     ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL))
289 #define fADDSAT64(DST, A, B) \
290     do { \
291         uint64_t __a = fCAST8u(A); \
292         uint64_t __b = fCAST8u(B); \
293         uint64_t __sum = __a + __b; \
294         uint64_t __xor = __a ^ __b; \
295         const uint64_t __mask = 0x8000000000000000ULL; \
296         if (__xor & __mask) { \
297             DST = __sum; \
298         } \
299         else if ((__a ^ __sum) & __mask) { \
300             if (__sum & __mask) { \
301                 DST = 0x7FFFFFFFFFFFFFFFLL; \
302                 fSET_OVERFLOW(); \
303             } else { \
304                 DST = 0x8000000000000000LL; \
305                 fSET_OVERFLOW(); \
306             } \
307         } else { \
308             DST = __sum; \
309         } \
310     } while (0)
311 #define fVSATUN(N, VAL) \
312     ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL))
313 #define fSATUN(N, VAL) \
314     ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
315 #define fSATH(VAL) (fSATN(16, VAL))
316 #define fSATUH(VAL) (fSATUN(16, VAL))
317 #define fVSATH(VAL) (fVSATN(16, VAL))
318 #define fVSATUH(VAL) (fVSATUN(16, VAL))
319 #define fSATUB(VAL) (fSATUN(8, VAL))
320 #define fSATB(VAL) (fSATN(8, VAL))
321 #define fVSATUB(VAL) (fVSATUN(8, VAL))
322 #define fVSATB(VAL) (fVSATN(8, VAL))
323 #define fIMMEXT(IMM) (IMM = IMM)
324 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
325 
326 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
327 
328 #ifdef QEMU_GENERATE
329 static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
330 {
331     /*
332      * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
333      *
334      *  The "I" value from a modifier register is divided into two pieces
335      *      LSB         bits 23:17
336      *      MSB         bits 31:28
337      * The value is signed
338      *
339      * At the end we shift the result according to the shift argument
340      */
341     TCGv msb = tcg_temp_new();
342     TCGv lsb = tcg_temp_new();
343 
344     tcg_gen_extract_tl(lsb, val, 17, 7);
345     tcg_gen_sari_tl(msb, val, 21);
346     tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
347 
348     tcg_gen_shli_tl(result, result, shift);
349     return result;
350 }
351 #endif
352 
353 #define fREAD_LR() (env->gpr[HEX_REG_LR])
354 
355 #define fREAD_SP() (env->gpr[HEX_REG_SP])
356 #define fREAD_LC0 (env->gpr[HEX_REG_LC0])
357 #define fREAD_LC1 (env->gpr[HEX_REG_LC1])
358 #define fREAD_SA0 (env->gpr[HEX_REG_SA0])
359 #define fREAD_SA1 (env->gpr[HEX_REG_SA1])
360 #define fREAD_FP() (env->gpr[HEX_REG_FP])
361 #ifdef FIXME
362 /* Figure out how to get insn->extension_valid to helper */
363 #define fREAD_GP() \
364     (insn->extension_valid ? 0 : env->gpr[HEX_REG_GP])
365 #else
366 #define fREAD_GP() (env->gpr[HEX_REG_GP])
367 #endif
368 #define fREAD_PC() (PC)
369 
370 #define fREAD_P0() (env->pred[0])
371 
372 #define fCHECK_PCALIGN(A)
373 
374 #define fWRITE_NPC(A) write_new_pc(env, pkt_has_multi_cof != 0, A)
375 
376 #define fBRANCH(LOC, TYPE)          fWRITE_NPC(LOC)
377 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
378 #define fHINTJR(TARGET) { /* Not modelled in qemu */}
379 
380 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
381 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
382 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
383 #define fPART1(WORK) if (part1) { WORK; return; }
384 #define fCAST4u(A) ((uint32_t)(A))
385 #define fCAST4s(A) ((int32_t)(A))
386 #define fCAST8u(A) ((uint64_t)(A))
387 #define fCAST8s(A) ((int64_t)(A))
388 #define fCAST2_2s(A) ((int16_t)(A))
389 #define fCAST2_2u(A) ((uint16_t)(A))
390 #define fCAST4_4s(A) ((int32_t)(A))
391 #define fCAST4_4u(A) ((uint32_t)(A))
392 #define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
393 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
394 #define fCAST8_8s(A) ((int64_t)(A))
395 #define fCAST8_8u(A) ((uint64_t)(A))
396 #define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
397 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
398 #define fZE8_16(A) ((int16_t)((uint8_t)(A)))
399 #define fSE8_16(A) ((int16_t)((int8_t)(A)))
400 #define fSE16_32(A) ((int32_t)((int16_t)(A)))
401 #define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
402 #define fSE32_64(A) ((int64_t)((int32_t)(A)))
403 #define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
404 #define fSE8_32(A) ((int32_t)((int8_t)(A)))
405 #define fZE8_32(A) ((int32_t)((uint8_t)(A)))
406 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
407 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
408 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
409 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
410 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
411 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
412 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
413 #define fMPY16US(A, B) fMPY16SU(B, A)
414 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
415 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
416 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
417 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
418 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
419 #define fROUND(A) (A + 0x8000)
420 #define fCLIP(DST, SRC, U) \
421     do { \
422         int32_t maxv = (1 << U) - 1; \
423         int32_t minv = -(1 << U); \
424         DST = fMIN(maxv, fMAX(SRC, minv)); \
425     } while (0)
426 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
427 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
428 #define fCRNDN(A, N) (conv_round(A, N))
429 #define fADD128(A, B) (int128_add(A, B))
430 #define fSUB128(A, B) (int128_sub(A, B))
431 #define fSHIFTR128(A, B) (int128_rshift(A, B))
432 #define fSHIFTL128(A, B) (int128_lshift(A, B))
433 #define fAND128(A, B) (int128_and(A, B))
434 #define fCAST8S_16S(A) (int128_exts64(A))
435 #define fCAST16S_8S(A) (int128_getlo(A))
436 
437 #ifdef QEMU_GENERATE
438 #define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
439 #define fEA_RRs(REG, REG2, SCALE) \
440     do { \
441         TCGv tmp = tcg_temp_new(); \
442         tcg_gen_shli_tl(tmp, REG2, SCALE); \
443         tcg_gen_add_tl(EA, REG, tmp); \
444     } while (0)
445 #define fEA_IRs(IMM, REG, SCALE) \
446     do { \
447         tcg_gen_shli_tl(EA, REG, SCALE); \
448         tcg_gen_addi_tl(EA, EA, IMM); \
449     } while (0)
450 #else
451 #define fEA_RI(REG, IMM) \
452     do { \
453         EA = REG + IMM; \
454     } while (0)
455 #define fEA_RRs(REG, REG2, SCALE) \
456     do { \
457         EA = REG + (REG2 << SCALE); \
458     } while (0)
459 #define fEA_IRs(IMM, REG, SCALE) \
460     do { \
461         EA = IMM + (REG << SCALE); \
462     } while (0)
463 #endif
464 
465 #ifdef QEMU_GENERATE
466 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
467 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
468 #define fEA_BREVR(REG)      gen_helper_fbrev(EA, REG)
469 #define fPM_I(REG, IMM)     tcg_gen_addi_tl(REG, REG, IMM)
470 #define fPM_M(REG, MVAL)    tcg_gen_add_tl(REG, REG, MVAL)
471 #define fPM_CIRI(REG, IMM, MVAL) \
472     do { \
473         TCGv tcgv_siV = tcg_constant_tl(siV); \
474         gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
475                             hex_gpr[HEX_REG_CS0 + MuN]); \
476     } while (0)
477 #else
478 #define fEA_IMM(IMM)        do { EA = (IMM); } while (0)
479 #define fEA_REG(REG)        do { EA = (REG); } while (0)
480 #define fEA_GPI(IMM)        do { EA = (fREAD_GP() + (IMM)); } while (0)
481 #define fPM_I(REG, IMM)     do { REG = REG + (IMM); } while (0)
482 #define fPM_M(REG, MVAL)    do { REG = REG + (MVAL); } while (0)
483 #endif
484 #define fSCALE(N, A) (((int64_t)(A)) << N)
485 #define fVSATW(A) fVSATN(32, ((long long)A))
486 #define fSATW(A) fSATN(32, ((long long)A))
487 #define fVSAT(A) fVSATN(32, (A))
488 #define fSAT(A) fSATN(32, (A))
489 #define fSAT_ORIG_SHL(A, ORIG_REG) \
490     ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
491         ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
492         : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
493                                             : fSAT(A)))
494 #define fPASS(A) A
495 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
496     (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
497                    : (fCAST##REGSTYPE(SRC) << (SHAMT)))
498 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
499     fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
500 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
501     fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
502 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
503     (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
504                    : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
505 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
506     (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
507                    : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
508 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
509     fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
510 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
511     fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
512 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
513     (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
514                         << ((-(SHAMT)) - 1)) << 1, (SRC)) \
515                    : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
516 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
517 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
518     (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
519 #define fROTL(SRC, SHAMT, REGSTYPE) \
520     (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
521                               ((fCAST##REGSTYPE##u(SRC) >> \
522                                  ((sizeof(SRC) * 8) - (SHAMT))))))
523 #define fROTR(SRC, SHAMT, REGSTYPE) \
524     (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
525                               ((fCAST##REGSTYPE##u(SRC) << \
526                                  ((sizeof(SRC) * 8) - (SHAMT))))))
527 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \
528     (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
529 
530 #ifdef QEMU_GENERATE
531 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
532 #else
533 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \
534     DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
535 #endif
536 
537 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
538 
539 #define fGET_FRAMEKEY() (env->gpr[HEX_REG_FRAMEKEY])
540 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
541 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
542 
543 #ifdef CONFIG_USER_ONLY
544 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
545 #else
546 /* System mode not implemented yet */
547 #define fFRAMECHECK(ADDR, EA)  g_assert_not_reached();
548 #endif
549 
550 #ifdef QEMU_GENERATE
551 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
552     gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
553 #endif
554 
555 #ifdef QEMU_GENERATE
556 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
557 #else
558 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
559 #endif
560 
561 #ifdef QEMU_GENERATE
562 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
563     gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
564 #endif
565 
566 #ifdef QEMU_GENERATE
567 #define GETBYTE_FUNC(X) \
568     __builtin_choose_expr(TYPE_TCGV(X), \
569         gen_get_byte, \
570         __builtin_choose_expr(TYPE_TCGV_I64(X), \
571             gen_get_byte_i64, (void)0))
572 #define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
573 #define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
574 #else
575 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
576 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
577 #endif
578 
579 #define fSETBYTE(N, DST, VAL) \
580     do { \
581         DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
582         (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
583     } while (0)
584 
585 #ifdef QEMU_GENERATE
586 #define fGETHALF(N, SRC)  gen_get_half(HALF, N, SRC, true)
587 #define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
588 #else
589 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
590 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
591 #endif
592 #define fSETHALF(N, DST, VAL) \
593     do { \
594         DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
595         (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
596     } while (0)
597 #define fSETHALFw fSETHALF
598 #define fSETHALFd fSETHALF
599 
600 #define fGETWORD(N, SRC) \
601     ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
602 #define fGETUWORD(N, SRC) \
603     ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
604 
605 #define fSETWORD(N, DST, VAL) \
606     do { \
607         DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
608               (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
609     } while (0)
610 
611 #define fSETBIT(N, DST, VAL) \
612     do { \
613         DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
614     } while (0)
615 
616 #define fGETBIT(N, SRC) (((SRC) >> N) & 1)
617 #define fSETBITS(HI, LO, DST, VAL) \
618     do { \
619         int j; \
620         for (j = LO; j <= HI; j++) { \
621             fSETBIT(j, DST, VAL); \
622         } \
623     } while (0)
624 #define fCOUNTONES_2(VAL) ctpop16(VAL)
625 #define fCOUNTONES_4(VAL) ctpop32(VAL)
626 #define fCOUNTONES_8(VAL) ctpop64(VAL)
627 #define fBREV_8(VAL) revbit64(VAL)
628 #define fBREV_4(VAL) revbit32(VAL)
629 #define fCL1_8(VAL) clo64(VAL)
630 #define fCL1_4(VAL) clo32(VAL)
631 #define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16)
632 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
633 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
634 #define fHIDE(A) A
635 #define fCONSTLL(A) A##LL
636 #define fECHO(A) (A)
637 
638 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
639 #define fPAUSE(IMM)
640 
641 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
642     ((VAL) << reg_field_info[FIELD].offset)
643 #define fGET_REG_FIELD_MASK(FIELD) \
644     (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
645 #define fREAD_REG_FIELD(REG, FIELD) \
646     fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
647                    reg_field_info[FIELD].width, \
648                    reg_field_info[FIELD].offset)
649 
650 #ifdef QEMU_GENERATE
651 #define fDCZEROA(REG) \
652     do { \
653         ctx->dczero_addr = tcg_temp_new(); \
654         tcg_gen_mov_tl(ctx->dczero_addr, (REG)); \
655     } while (0)
656 #endif
657 
658 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
659                                 STRBITNUM) /* Nothing */
660 
661 
662 #endif
663