xref: /openbmc/qemu/target/hexagon/macros.h (revision 2e1cacfb)
1 /*
2  *  Copyright(c) 2019-2024 Qualcomm Innovation Center, Inc. All Rights Reserved.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef HEXAGON_MACROS_H
19 #define HEXAGON_MACROS_H
20 
21 #include "cpu.h"
22 #include "hex_regs.h"
23 #include "reg_fields.h"
24 
25 #define GET_FIELD(FIELD, REGIN) \
26     fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
27                    reg_field_info[FIELD].offset)
28 
29 #ifdef QEMU_GENERATE
30 #define GET_USR_FIELD(FIELD, DST) \
31     tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
32                        reg_field_info[FIELD].offset, \
33                        reg_field_info[FIELD].width)
34 
35 #define TYPE_INT(X)          __builtin_types_compatible_p(typeof(X), int)
36 #define TYPE_TCGV(X)         __builtin_types_compatible_p(typeof(X), TCGv)
37 #define TYPE_TCGV_I64(X)     __builtin_types_compatible_p(typeof(X), TCGv_i64)
38 #else
39 #define GET_USR_FIELD(FIELD) \
40     fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
41                    reg_field_info[FIELD].offset)
42 
43 #define SET_USR_FIELD(FIELD, VAL) \
44     do { \
45         if (pkt_need_commit) { \
46             fINSERT_BITS(env->new_value_usr, \
47                         reg_field_info[FIELD].width, \
48                         reg_field_info[FIELD].offset, (VAL)); \
49         } else { \
50             fINSERT_BITS(env->gpr[HEX_REG_USR], \
51                         reg_field_info[FIELD].width, \
52                         reg_field_info[FIELD].offset, (VAL)); \
53         } \
54     } while (0)
55 #endif
56 
57 #ifdef QEMU_GENERATE
58 /*
59  * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
60  *
61  * Slot 1 store with slot 0 load
62  * A slot 1 store operation with a slot 0 load operation can appear in a packet.
63  * The packet attribute :mem_noshuf inhibits the instruction reordering that
64  * would otherwise be done by the assembler. For example:
65  *     {
66  *         memw(R5) = R2 // slot 1 store
67  *         R3 = memh(R6) // slot 0 load
68  *     }:mem_noshuf
69  * Unlike most packetized operations, these memory operations are not executed
70  * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
71  * effectively executes first, followed by the load instruction in Slot 0. If
72  * the addresses of the two operations are overlapping, the load will receive
73  * the newly stored data. This feature is supported in processor versions
74  * V65 or greater.
75  *
76  *
77  * For qemu, we look for a load in slot 0 when there is  a store in slot 1
78  * in the same packet.  When we see this, we call a helper that probes the
79  * load to make sure it doesn't fault.  Then, we process the store ahead of
80  * the actual load.
81 
82  */
83 #define CHECK_NOSHUF(VA, SIZE) \
84     do { \
85         if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
86             probe_noshuf_load(VA, SIZE, ctx->mem_idx); \
87             process_store(ctx, 1); \
88         } \
89     } while (0)
90 
91 #define CHECK_NOSHUF_PRED(GET_EA, SIZE, PRED) \
92     do { \
93         TCGLabel *noshuf_label = gen_new_label(); \
94         tcg_gen_brcondi_tl(TCG_COND_EQ, PRED, 0, noshuf_label); \
95         GET_EA; \
96         if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
97             probe_noshuf_load(EA, SIZE, ctx->mem_idx); \
98         } \
99         gen_set_label(noshuf_label); \
100         if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
101             process_store(ctx, 1); \
102         } \
103     } while (0)
104 
105 #define MEM_LOAD1s(DST, VA) \
106     do { \
107         CHECK_NOSHUF(VA, 1); \
108         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_SB); \
109     } while (0)
110 #define MEM_LOAD1u(DST, VA) \
111     do { \
112         CHECK_NOSHUF(VA, 1); \
113         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_UB); \
114     } while (0)
115 #define MEM_LOAD2s(DST, VA) \
116     do { \
117         CHECK_NOSHUF(VA, 2); \
118         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TESW); \
119     } while (0)
120 #define MEM_LOAD2u(DST, VA) \
121     do { \
122         CHECK_NOSHUF(VA, 2); \
123         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TEUW); \
124     } while (0)
125 #define MEM_LOAD4s(DST, VA) \
126     do { \
127         CHECK_NOSHUF(VA, 4); \
128         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TESL); \
129     } while (0)
130 #define MEM_LOAD4u(DST, VA) \
131     do { \
132         CHECK_NOSHUF(VA, 4); \
133         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TEUL); \
134     } while (0)
135 #define MEM_LOAD8u(DST, VA) \
136     do { \
137         CHECK_NOSHUF(VA, 8); \
138         tcg_gen_qemu_ld_i64(DST, VA, ctx->mem_idx, MO_TEUQ); \
139     } while (0)
140 
141 #define MEM_STORE1_FUNC(X) \
142     __builtin_choose_expr(TYPE_INT(X), \
143         gen_store1i, \
144         __builtin_choose_expr(TYPE_TCGV(X), \
145             gen_store1, (void)0))
146 #define MEM_STORE1(VA, DATA, SLOT) \
147     MEM_STORE1_FUNC(DATA)(tcg_env, VA, DATA, SLOT)
148 
149 #define MEM_STORE2_FUNC(X) \
150     __builtin_choose_expr(TYPE_INT(X), \
151         gen_store2i, \
152         __builtin_choose_expr(TYPE_TCGV(X), \
153             gen_store2, (void)0))
154 #define MEM_STORE2(VA, DATA, SLOT) \
155     MEM_STORE2_FUNC(DATA)(tcg_env, VA, DATA, SLOT)
156 
157 #define MEM_STORE4_FUNC(X) \
158     __builtin_choose_expr(TYPE_INT(X), \
159         gen_store4i, \
160         __builtin_choose_expr(TYPE_TCGV(X), \
161             gen_store4, (void)0))
162 #define MEM_STORE4(VA, DATA, SLOT) \
163     MEM_STORE4_FUNC(DATA)(tcg_env, VA, DATA, SLOT)
164 
165 #define MEM_STORE8_FUNC(X) \
166     __builtin_choose_expr(TYPE_INT(X), \
167         gen_store8i, \
168         __builtin_choose_expr(TYPE_TCGV_I64(X), \
169             gen_store8, (void)0))
170 #define MEM_STORE8(VA, DATA, SLOT) \
171     MEM_STORE8_FUNC(DATA)(tcg_env, VA, DATA, SLOT)
172 #else
173 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
174 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
175 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
176 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
177 #endif
178 
179 #ifdef QEMU_GENERATE
180 static inline void gen_cancel(uint32_t slot)
181 {
182     tcg_gen_ori_tl(hex_slot_cancelled, hex_slot_cancelled, 1 << slot);
183 }
184 
185 #define CANCEL gen_cancel(slot);
186 #else
187 #define CANCEL do { } while (0)
188 #endif
189 
190 #define LOAD_CANCEL(EA) do { CANCEL; } while (0)
191 
192 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
193 
194 #define fMAX(A, B) (((A) > (B)) ? (A) : (B))
195 
196 #define fMIN(A, B) (((A) < (B)) ? (A) : (B))
197 
198 #define fABS(A) (((A) < 0) ? (-(A)) : (A))
199 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
200     REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
201 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
202     ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
203 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
204     (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
205 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
206     (((HIBIT) - (LOWBIT) + 1) ? \
207         extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
208         0LL)
209 #define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
210     do { \
211         int width = ((HIBIT) - (LOWBIT) + 1); \
212         INREG = (width >= 0 ? \
213             deposit64((INREG), (LOWBIT), width, (INVAL)) : \
214             INREG); \
215     } while (0)
216 
217 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
218 
219 #ifdef QEMU_GENERATE
220 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
221 #else
222 #define fLSBOLD(VAL)  ((VAL) & 1)
223 #endif
224 
225 #ifdef QEMU_GENERATE
226 #define fLSBNEW(PVAL)   tcg_gen_andi_tl(LSB, (PVAL), 1)
227 #else
228 #define fLSBNEW(PVAL)   ((PVAL) & 1)
229 #endif
230 
231 #ifdef QEMU_GENERATE
232 #define fLSBOLDNOT(VAL) \
233     do { \
234         tcg_gen_andi_tl(LSB, (VAL), 1); \
235         tcg_gen_xori_tl(LSB, LSB, 1); \
236     } while (0)
237 #define fLSBNEWNOT(PNUM) \
238     do { \
239         tcg_gen_andi_tl(LSB, (PNUM), 1); \
240         tcg_gen_xori_tl(LSB, LSB, 1); \
241     } while (0)
242 #else
243 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
244 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
245 #define fLSBNEW0NOT (!fLSBNEW0)
246 #define fLSBNEW1NOT (!fLSBNEW1)
247 #endif
248 
249 #define fNEWREG(VAL) ((int32_t)(VAL))
250 
251 #define fNEWREG_ST(VAL) (VAL)
252 
253 #define fVSATUVALN(N, VAL) \
254     ({ \
255         (((int64_t)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \
256     })
257 #define fSATUVALN(N, VAL) \
258     ({ \
259         fSET_OVERFLOW(); \
260         ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
261     })
262 #define fSATVALN(N, VAL) \
263     ({ \
264         fSET_OVERFLOW(); \
265         ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
266     })
267 #define fVSATVALN(N, VAL) \
268     ({ \
269         ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
270     })
271 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
272 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
273 #define fSATN(N, VAL) \
274     ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
275 #define fVSATN(N, VAL) \
276     ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL))
277 #define fADDSAT64(DST, A, B) \
278     do { \
279         uint64_t __a = fCAST8u(A); \
280         uint64_t __b = fCAST8u(B); \
281         uint64_t __sum = __a + __b; \
282         uint64_t __xor = __a ^ __b; \
283         const uint64_t __mask = 0x8000000000000000ULL; \
284         if (__xor & __mask) { \
285             DST = __sum; \
286         } \
287         else if ((__a ^ __sum) & __mask) { \
288             if (__sum & __mask) { \
289                 DST = 0x7FFFFFFFFFFFFFFFLL; \
290                 fSET_OVERFLOW(); \
291             } else { \
292                 DST = 0x8000000000000000LL; \
293                 fSET_OVERFLOW(); \
294             } \
295         } else { \
296             DST = __sum; \
297         } \
298     } while (0)
299 #define fVSATUN(N, VAL) \
300     ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL))
301 #define fSATUN(N, VAL) \
302     ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
303 #define fSATH(VAL) (fSATN(16, VAL))
304 #define fSATUH(VAL) (fSATUN(16, VAL))
305 #define fVSATH(VAL) (fVSATN(16, VAL))
306 #define fVSATUH(VAL) (fVSATUN(16, VAL))
307 #define fSATUB(VAL) (fSATUN(8, VAL))
308 #define fSATB(VAL) (fSATN(8, VAL))
309 #define fVSATUB(VAL) (fVSATUN(8, VAL))
310 #define fVSATB(VAL) (fVSATN(8, VAL))
311 #define fIMMEXT(IMM) (IMM = IMM)
312 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
313 
314 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
315 
316 #ifdef QEMU_GENERATE
317 static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
318 {
319     /*
320      * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
321      *
322      *  The "I" value from a modifier register is divided into two pieces
323      *      LSB         bits 23:17
324      *      MSB         bits 31:28
325      * The value is signed
326      *
327      * At the end we shift the result according to the shift argument
328      */
329     TCGv msb = tcg_temp_new();
330     TCGv lsb = tcg_temp_new();
331 
332     tcg_gen_extract_tl(lsb, val, 17, 7);
333     tcg_gen_sari_tl(msb, val, 21);
334     tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
335 
336     tcg_gen_shli_tl(result, result, shift);
337     return result;
338 }
339 #endif
340 
341 #define fREAD_LR() (env->gpr[HEX_REG_LR])
342 
343 #define fREAD_SP() (SP)
344 #define fREAD_LC0 (env->gpr[HEX_REG_LC0])
345 #define fREAD_LC1 (env->gpr[HEX_REG_LC1])
346 #define fREAD_SA0 (env->gpr[HEX_REG_SA0])
347 #define fREAD_SA1 (env->gpr[HEX_REG_SA1])
348 #define fREAD_FP() (env->gpr[HEX_REG_FP])
349 #ifdef FIXME
350 /* Figure out how to get insn->extension_valid to helper */
351 #define fREAD_GP() \
352     (insn->extension_valid ? 0 : env->gpr[HEX_REG_GP])
353 #else
354 #define fREAD_GP() (env->gpr[HEX_REG_GP])
355 #endif
356 #define fREAD_PC() (PC)
357 
358 #define fREAD_P0() (P0)
359 
360 #define fCHECK_PCALIGN(A)
361 
362 #define fWRITE_NPC(A) write_new_pc(env, pkt_has_multi_cof != 0, A)
363 
364 #define fBRANCH(LOC, TYPE)          fWRITE_NPC(LOC)
365 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
366 #define fHINTJR(TARGET) { /* Not modelled in qemu */}
367 
368 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
369 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
370 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
371 #define fPART1(WORK) if (part1) { WORK; return; }
372 #define fCAST4u(A) ((uint32_t)(A))
373 #define fCAST4s(A) ((int32_t)(A))
374 #define fCAST8u(A) ((uint64_t)(A))
375 #define fCAST8s(A) ((int64_t)(A))
376 #define fCAST2_2s(A) ((int16_t)(A))
377 #define fCAST2_2u(A) ((uint16_t)(A))
378 #define fCAST4_4s(A) ((int32_t)(A))
379 #define fCAST4_4u(A) ((uint32_t)(A))
380 #define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
381 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
382 #define fCAST8_8s(A) ((int64_t)(A))
383 #define fCAST8_8u(A) ((uint64_t)(A))
384 #define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
385 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
386 #define fZE8_16(A) ((int16_t)((uint8_t)(A)))
387 #define fSE8_16(A) ((int16_t)((int8_t)(A)))
388 #define fSE16_32(A) ((int32_t)((int16_t)(A)))
389 #define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
390 #define fSE32_64(A) ((int64_t)((int32_t)(A)))
391 #define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
392 #define fSE8_32(A) ((int32_t)((int8_t)(A)))
393 #define fZE8_32(A) ((int32_t)((uint8_t)(A)))
394 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
395 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
396 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
397 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
398 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
399 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
400 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
401 #define fMPY16US(A, B) fMPY16SU(B, A)
402 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
403 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
404 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
405 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
406 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
407 #define fROUND(A) (A + 0x8000)
408 #define fCLIP(DST, SRC, U) \
409     do { \
410         int32_t maxv = (1 << U) - 1; \
411         int32_t minv = -(1 << U); \
412         DST = fMIN(maxv, fMAX(SRC, minv)); \
413     } while (0)
414 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
415 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
416 #define fCRNDN(A, N) (conv_round(A, N))
417 #define fADD128(A, B) (int128_add(A, B))
418 #define fSUB128(A, B) (int128_sub(A, B))
419 #define fSHIFTR128(A, B) (int128_rshift(A, B))
420 #define fSHIFTL128(A, B) (int128_lshift(A, B))
421 #define fAND128(A, B) (int128_and(A, B))
422 #define fCAST8S_16S(A) (int128_exts64(A))
423 #define fCAST16S_8S(A) (int128_getlo(A))
424 
425 #ifdef QEMU_GENERATE
426 #define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
427 #define fEA_RRs(REG, REG2, SCALE) \
428     do { \
429         TCGv tmp = tcg_temp_new(); \
430         tcg_gen_shli_tl(tmp, REG2, SCALE); \
431         tcg_gen_add_tl(EA, REG, tmp); \
432     } while (0)
433 #define fEA_IRs(IMM, REG, SCALE) \
434     do { \
435         tcg_gen_shli_tl(EA, REG, SCALE); \
436         tcg_gen_addi_tl(EA, EA, IMM); \
437     } while (0)
438 #else
439 #define fEA_RI(REG, IMM) \
440     do { \
441         EA = REG + IMM; \
442     } while (0)
443 #define fEA_RRs(REG, REG2, SCALE) \
444     do { \
445         EA = REG + (REG2 << SCALE); \
446     } while (0)
447 #define fEA_IRs(IMM, REG, SCALE) \
448     do { \
449         EA = IMM + (REG << SCALE); \
450     } while (0)
451 #endif
452 
453 #ifdef QEMU_GENERATE
454 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
455 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
456 #define fEA_BREVR(REG)      gen_helper_fbrev(EA, REG)
457 #define fPM_I(REG, IMM)     tcg_gen_addi_tl(REG, REG, IMM)
458 #define fPM_M(REG, MVAL)    tcg_gen_add_tl(REG, REG, MVAL)
459 #define fPM_CIRI(REG, IMM, MVAL) \
460     do { \
461         TCGv tcgv_siV = tcg_constant_tl(siV); \
462         gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, CS); \
463     } while (0)
464 #else
465 #define fEA_IMM(IMM)        do { EA = (IMM); } while (0)
466 #define fEA_REG(REG)        do { EA = (REG); } while (0)
467 #define fEA_GPI(IMM)        do { EA = (fREAD_GP() + (IMM)); } while (0)
468 #define fPM_I(REG, IMM)     do { REG = REG + (IMM); } while (0)
469 #define fPM_M(REG, MVAL)    do { REG = REG + (MVAL); } while (0)
470 #endif
471 #define fSCALE(N, A) (((int64_t)(A)) << N)
472 #define fVSATW(A) fVSATN(32, ((long long)A))
473 #define fSATW(A) fSATN(32, ((long long)A))
474 #define fVSAT(A) fVSATN(32, (A))
475 #define fSAT(A) fSATN(32, (A))
476 #define fSAT_ORIG_SHL(A, ORIG_REG) \
477     ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
478         ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
479         : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
480                                             : fSAT(A)))
481 #define fPASS(A) A
482 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
483     (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
484                    : (fCAST##REGSTYPE(SRC) << (SHAMT)))
485 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
486     fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
487 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
488     fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
489 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
490     (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
491                    : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
492 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
493     (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
494                    : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
495 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
496     fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
497 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
498     fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
499 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
500     (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
501                         << ((-(SHAMT)) - 1)) << 1, (SRC)) \
502                    : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
503 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
504 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
505     (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
506 #define fROTL(SRC, SHAMT, REGSTYPE) \
507     (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
508                               ((fCAST##REGSTYPE##u(SRC) >> \
509                                  ((sizeof(SRC) * 8) - (SHAMT))))))
510 #define fROTR(SRC, SHAMT, REGSTYPE) \
511     (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
512                               ((fCAST##REGSTYPE##u(SRC) << \
513                                  ((sizeof(SRC) * 8) - (SHAMT))))))
514 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \
515     (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
516 
517 #ifdef QEMU_GENERATE
518 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
519 #else
520 #define MEM_LOAD1 cpu_ldub_data_ra
521 #define MEM_LOAD2 cpu_lduw_data_ra
522 #define MEM_LOAD4 cpu_ldl_data_ra
523 #define MEM_LOAD8 cpu_ldq_data_ra
524 
525 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \
526     do { \
527         check_noshuf(env, pkt_has_store_s1, slot, EA, SIZE, GETPC()); \
528         DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE(env, EA, GETPC()); \
529     } while (0)
530 #endif
531 
532 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
533 
534 #define fGET_FRAMEKEY() (env->gpr[HEX_REG_FRAMEKEY])
535 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
536 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
537 
538 #ifdef CONFIG_USER_ONLY
539 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
540 #else
541 /* System mode not implemented yet */
542 #define fFRAMECHECK(ADDR, EA)  g_assert_not_reached();
543 #endif
544 
545 #ifdef QEMU_GENERATE
546 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
547     gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
548 #endif
549 
550 #ifdef QEMU_GENERATE
551 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
552 #else
553 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
554 #endif
555 
556 #ifdef QEMU_GENERATE
557 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
558     gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
559 #endif
560 
561 #ifdef QEMU_GENERATE
562 #define GETBYTE_FUNC(X) \
563     __builtin_choose_expr(TYPE_TCGV(X), \
564         gen_get_byte, \
565         __builtin_choose_expr(TYPE_TCGV_I64(X), \
566             gen_get_byte_i64, (void)0))
567 #define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
568 #define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
569 #else
570 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
571 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
572 #endif
573 
574 #define fSETBYTE(N, DST, VAL) \
575     do { \
576         DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
577         (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
578     } while (0)
579 
580 #ifdef QEMU_GENERATE
581 #define fGETHALF(N, SRC)  gen_get_half(HALF, N, SRC, true)
582 #define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
583 #else
584 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
585 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
586 #endif
587 #define fSETHALF(N, DST, VAL) \
588     do { \
589         DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
590         (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
591     } while (0)
592 #define fSETHALFw fSETHALF
593 #define fSETHALFd fSETHALF
594 
595 #define fGETWORD(N, SRC) \
596     ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
597 #define fGETUWORD(N, SRC) \
598     ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
599 
600 #define fSETWORD(N, DST, VAL) \
601     do { \
602         DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
603               (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
604     } while (0)
605 
606 #define fSETBIT(N, DST, VAL) \
607     do { \
608         DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
609     } while (0)
610 
611 #define fGETBIT(N, SRC) (((SRC) >> N) & 1)
612 #define fSETBITS(HI, LO, DST, VAL) \
613     do { \
614         int j; \
615         for (j = LO; j <= HI; j++) { \
616             fSETBIT(j, DST, VAL); \
617         } \
618     } while (0)
619 #define fCOUNTONES_2(VAL) ctpop16(VAL)
620 #define fCOUNTONES_4(VAL) ctpop32(VAL)
621 #define fCOUNTONES_8(VAL) ctpop64(VAL)
622 #define fBREV_8(VAL) revbit64(VAL)
623 #define fBREV_4(VAL) revbit32(VAL)
624 #define fCL1_8(VAL) clo64(VAL)
625 #define fCL1_4(VAL) clo32(VAL)
626 #define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16)
627 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
628 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
629 #define fHIDE(A) A
630 #define fCONSTLL(A) A##LL
631 #define fECHO(A) (A)
632 
633 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
634 #define fPAUSE(IMM)
635 
636 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
637     ((VAL) << reg_field_info[FIELD].offset)
638 #define fGET_REG_FIELD_MASK(FIELD) \
639     (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
640 #define fREAD_REG_FIELD(REG, FIELD) \
641     fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
642                    reg_field_info[FIELD].width, \
643                    reg_field_info[FIELD].offset)
644 
645 #ifdef QEMU_GENERATE
646 #define fDCZEROA(REG) \
647     do { \
648         ctx->dczero_addr = tcg_temp_new(); \
649         tcg_gen_mov_tl(ctx->dczero_addr, (REG)); \
650     } while (0)
651 #endif
652 
653 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
654                                 STRBITNUM) /* Nothing */
655 
656 
657 #endif
658