1 /* 2 * Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef HEXAGON_MACROS_H 19 #define HEXAGON_MACROS_H 20 21 #include "cpu.h" 22 #include "hex_regs.h" 23 #include "reg_fields.h" 24 25 #ifdef QEMU_GENERATE 26 #define READ_REG(dest, NUM) gen_read_reg(dest, NUM) 27 #else 28 #define READ_REG(NUM) (env->gpr[(NUM)]) 29 #define READ_PREG(NUM) (env->pred[NUM]) 30 31 #define WRITE_RREG(NUM, VAL) log_reg_write(env, NUM, VAL, slot) 32 #define WRITE_PREG(NUM, VAL) log_pred_write(env, NUM, VAL) 33 #endif 34 35 #define PCALIGN 4 36 #define PCALIGN_MASK (PCALIGN - 1) 37 38 #define GET_FIELD(FIELD, REGIN) \ 39 fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \ 40 reg_field_info[FIELD].offset) 41 42 #ifdef QEMU_GENERATE 43 #define GET_USR_FIELD(FIELD, DST) \ 44 tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \ 45 reg_field_info[FIELD].offset, \ 46 reg_field_info[FIELD].width) 47 48 #define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int) 49 #define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv) 50 #define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64) 51 52 #define SET_USR_FIELD_FUNC(X) \ 53 __builtin_choose_expr(TYPE_INT(X), \ 54 gen_set_usr_fieldi, \ 55 __builtin_choose_expr(TYPE_TCGV(X), \ 56 gen_set_usr_field, (void)0)) 57 #define SET_USR_FIELD(FIELD, VAL) \ 58 SET_USR_FIELD_FUNC(VAL)(FIELD, VAL) 59 #else 60 #define GET_USR_FIELD(FIELD) \ 61 fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \ 62 reg_field_info[FIELD].offset) 63 64 #define SET_USR_FIELD(FIELD, VAL) \ 65 fINSERT_BITS(env->new_value[HEX_REG_USR], reg_field_info[FIELD].width, \ 66 reg_field_info[FIELD].offset, (VAL)) 67 #endif 68 69 #ifdef QEMU_GENERATE 70 /* 71 * Section 5.5 of the Hexagon V67 Programmer's Reference Manual 72 * 73 * Slot 1 store with slot 0 load 74 * A slot 1 store operation with a slot 0 load operation can appear in a packet. 75 * The packet attribute :mem_noshuf inhibits the instruction reordering that 76 * would otherwise be done by the assembler. For example: 77 * { 78 * memw(R5) = R2 // slot 1 store 79 * R3 = memh(R6) // slot 0 load 80 * }:mem_noshuf 81 * Unlike most packetized operations, these memory operations are not executed 82 * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1 83 * effectively executes first, followed by the load instruction in Slot 0. If 84 * the addresses of the two operations are overlapping, the load will receive 85 * the newly stored data. This feature is supported in processor versions 86 * V65 or greater. 87 * 88 * 89 * For qemu, we look for a load in slot 0 when there is a store in slot 1 90 * in the same packet. When we see this, we call a helper that probes the 91 * load to make sure it doesn't fault. Then, we process the store ahead of 92 * the actual load. 93 94 */ 95 #define CHECK_NOSHUF(VA, SIZE) \ 96 do { \ 97 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \ 98 probe_noshuf_load(VA, SIZE, ctx->mem_idx); \ 99 process_store(ctx, 1); \ 100 } \ 101 } while (0) 102 103 #define CHECK_NOSHUF_PRED(GET_EA, SIZE, PRED) \ 104 do { \ 105 TCGLabel *label = gen_new_label(); \ 106 tcg_gen_brcondi_tl(TCG_COND_EQ, PRED, 0, label); \ 107 GET_EA; \ 108 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \ 109 probe_noshuf_load(EA, SIZE, ctx->mem_idx); \ 110 } \ 111 gen_set_label(label); \ 112 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \ 113 process_store(ctx, 1); \ 114 } \ 115 } while (0) 116 117 #define MEM_LOAD1s(DST, VA) \ 118 do { \ 119 CHECK_NOSHUF(VA, 1); \ 120 tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \ 121 } while (0) 122 #define MEM_LOAD1u(DST, VA) \ 123 do { \ 124 CHECK_NOSHUF(VA, 1); \ 125 tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \ 126 } while (0) 127 #define MEM_LOAD2s(DST, VA) \ 128 do { \ 129 CHECK_NOSHUF(VA, 2); \ 130 tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \ 131 } while (0) 132 #define MEM_LOAD2u(DST, VA) \ 133 do { \ 134 CHECK_NOSHUF(VA, 2); \ 135 tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \ 136 } while (0) 137 #define MEM_LOAD4s(DST, VA) \ 138 do { \ 139 CHECK_NOSHUF(VA, 4); \ 140 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \ 141 } while (0) 142 #define MEM_LOAD4u(DST, VA) \ 143 do { \ 144 CHECK_NOSHUF(VA, 4); \ 145 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \ 146 } while (0) 147 #define MEM_LOAD8u(DST, VA) \ 148 do { \ 149 CHECK_NOSHUF(VA, 8); \ 150 tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \ 151 } while (0) 152 153 #define MEM_STORE1_FUNC(X) \ 154 __builtin_choose_expr(TYPE_INT(X), \ 155 gen_store1i, \ 156 __builtin_choose_expr(TYPE_TCGV(X), \ 157 gen_store1, (void)0)) 158 #define MEM_STORE1(VA, DATA, SLOT) \ 159 MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, SLOT) 160 161 #define MEM_STORE2_FUNC(X) \ 162 __builtin_choose_expr(TYPE_INT(X), \ 163 gen_store2i, \ 164 __builtin_choose_expr(TYPE_TCGV(X), \ 165 gen_store2, (void)0)) 166 #define MEM_STORE2(VA, DATA, SLOT) \ 167 MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, SLOT) 168 169 #define MEM_STORE4_FUNC(X) \ 170 __builtin_choose_expr(TYPE_INT(X), \ 171 gen_store4i, \ 172 __builtin_choose_expr(TYPE_TCGV(X), \ 173 gen_store4, (void)0)) 174 #define MEM_STORE4(VA, DATA, SLOT) \ 175 MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, SLOT) 176 177 #define MEM_STORE8_FUNC(X) \ 178 __builtin_choose_expr(TYPE_INT(X), \ 179 gen_store8i, \ 180 __builtin_choose_expr(TYPE_TCGV_I64(X), \ 181 gen_store8, (void)0)) 182 #define MEM_STORE8(VA, DATA, SLOT) \ 183 MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, SLOT) 184 #else 185 #define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA)) 186 #define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA)) 187 #define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA)) 188 #define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA)) 189 #define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA)) 190 #define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA)) 191 #define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA)) 192 #define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA)) 193 194 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT) 195 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT) 196 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT) 197 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT) 198 #endif 199 200 #ifdef QEMU_GENERATE 201 static inline void gen_cancel(uint32_t slot) 202 { 203 tcg_gen_ori_tl(hex_slot_cancelled, hex_slot_cancelled, 1 << slot); 204 } 205 206 #define CANCEL gen_cancel(slot); 207 #else 208 #define CANCEL cancel_slot(env, slot) 209 #endif 210 211 #define LOAD_CANCEL(EA) do { CANCEL; } while (0) 212 213 #ifdef QEMU_GENERATE 214 static inline void gen_pred_cancel(TCGv pred, uint32_t slot_num) 215 { 216 TCGv slot_mask = tcg_temp_new(); 217 TCGv tmp = tcg_temp_new(); 218 TCGv zero = tcg_constant_tl(0); 219 tcg_gen_ori_tl(slot_mask, hex_slot_cancelled, 1 << slot_num); 220 tcg_gen_andi_tl(tmp, pred, 1); 221 tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero, 222 slot_mask, hex_slot_cancelled); 223 } 224 #define PRED_LOAD_CANCEL(PRED, EA) \ 225 gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot) 226 #endif 227 228 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); } 229 230 #define fMAX(A, B) (((A) > (B)) ? (A) : (B)) 231 232 #define fMIN(A, B) (((A) < (B)) ? (A) : (B)) 233 234 #define fABS(A) (((A) < 0) ? (-(A)) : (A)) 235 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \ 236 REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG) 237 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \ 238 ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL) 239 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \ 240 (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8))) 241 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \ 242 (((HIBIT) - (LOWBIT) + 1) ? \ 243 extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \ 244 0LL) 245 #define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \ 246 do { \ 247 int width = ((HIBIT) - (LOWBIT) + 1); \ 248 INREG = (width >= 0 ? \ 249 deposit64((INREG), (LOWBIT), width, (INVAL)) : \ 250 INREG); \ 251 } while (0) 252 253 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00) 254 255 #ifdef QEMU_GENERATE 256 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1) 257 #else 258 #define fLSBOLD(VAL) ((VAL) & 1) 259 #endif 260 261 #ifdef QEMU_GENERATE 262 #define fLSBNEW(PVAL) tcg_gen_andi_tl(LSB, (PVAL), 1) 263 #define fLSBNEW0 tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1) 264 #define fLSBNEW1 tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1) 265 #else 266 #define fLSBNEW(PVAL) ((PVAL) & 1) 267 #define fLSBNEW0 (env->new_pred_value[0] & 1) 268 #define fLSBNEW1 (env->new_pred_value[1] & 1) 269 #endif 270 271 #ifdef QEMU_GENERATE 272 #define fLSBOLDNOT(VAL) \ 273 do { \ 274 tcg_gen_andi_tl(LSB, (VAL), 1); \ 275 tcg_gen_xori_tl(LSB, LSB, 1); \ 276 } while (0) 277 #define fLSBNEWNOT(PNUM) \ 278 do { \ 279 tcg_gen_andi_tl(LSB, (PNUM), 1); \ 280 tcg_gen_xori_tl(LSB, LSB, 1); \ 281 } while (0) 282 #else 283 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM)) 284 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL)) 285 #define fLSBNEW0NOT (!fLSBNEW0) 286 #define fLSBNEW1NOT (!fLSBNEW1) 287 #endif 288 289 #define fNEWREG(VAL) ((int32_t)(VAL)) 290 291 #define fNEWREG_ST(VAL) (VAL) 292 293 #define fVSATUVALN(N, VAL) \ 294 ({ \ 295 (((int64_t)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \ 296 }) 297 #define fSATUVALN(N, VAL) \ 298 ({ \ 299 fSET_OVERFLOW(); \ 300 ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \ 301 }) 302 #define fSATVALN(N, VAL) \ 303 ({ \ 304 fSET_OVERFLOW(); \ 305 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \ 306 }) 307 #define fVSATVALN(N, VAL) \ 308 ({ \ 309 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \ 310 }) 311 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL) 312 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL) 313 #define fSATN(N, VAL) \ 314 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL)) 315 #define fVSATN(N, VAL) \ 316 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL)) 317 #define fADDSAT64(DST, A, B) \ 318 do { \ 319 uint64_t __a = fCAST8u(A); \ 320 uint64_t __b = fCAST8u(B); \ 321 uint64_t __sum = __a + __b; \ 322 uint64_t __xor = __a ^ __b; \ 323 const uint64_t __mask = 0x8000000000000000ULL; \ 324 if (__xor & __mask) { \ 325 DST = __sum; \ 326 } \ 327 else if ((__a ^ __sum) & __mask) { \ 328 if (__sum & __mask) { \ 329 DST = 0x7FFFFFFFFFFFFFFFLL; \ 330 fSET_OVERFLOW(); \ 331 } else { \ 332 DST = 0x8000000000000000LL; \ 333 fSET_OVERFLOW(); \ 334 } \ 335 } else { \ 336 DST = __sum; \ 337 } \ 338 } while (0) 339 #define fVSATUN(N, VAL) \ 340 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL)) 341 #define fSATUN(N, VAL) \ 342 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL)) 343 #define fSATH(VAL) (fSATN(16, VAL)) 344 #define fSATUH(VAL) (fSATUN(16, VAL)) 345 #define fVSATH(VAL) (fVSATN(16, VAL)) 346 #define fVSATUH(VAL) (fVSATUN(16, VAL)) 347 #define fSATUB(VAL) (fSATUN(8, VAL)) 348 #define fSATB(VAL) (fSATN(8, VAL)) 349 #define fVSATUB(VAL) (fVSATUN(8, VAL)) 350 #define fVSATB(VAL) (fVSATN(8, VAL)) 351 #define fIMMEXT(IMM) (IMM = IMM) 352 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM) 353 354 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK) 355 356 #ifdef QEMU_GENERATE 357 static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift) 358 { 359 /* 360 * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual 361 * 362 * The "I" value from a modifier register is divided into two pieces 363 * LSB bits 23:17 364 * MSB bits 31:28 365 * The value is signed 366 * 367 * At the end we shift the result according to the shift argument 368 */ 369 TCGv msb = tcg_temp_new(); 370 TCGv lsb = tcg_temp_new(); 371 372 tcg_gen_extract_tl(lsb, val, 17, 7); 373 tcg_gen_sari_tl(msb, val, 21); 374 tcg_gen_deposit_tl(result, msb, lsb, 0, 7); 375 376 tcg_gen_shli_tl(result, result, shift); 377 return result; 378 } 379 #define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT)) 380 #else 381 #define fREAD_IREG(VAL) \ 382 (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f))) 383 #endif 384 385 #define fREAD_LR() (READ_REG(HEX_REG_LR)) 386 387 #define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A) 388 #define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A) 389 #define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A) 390 391 #define fREAD_SP() (READ_REG(HEX_REG_SP)) 392 #define fREAD_LC0 (READ_REG(HEX_REG_LC0)) 393 #define fREAD_LC1 (READ_REG(HEX_REG_LC1)) 394 #define fREAD_SA0 (READ_REG(HEX_REG_SA0)) 395 #define fREAD_SA1 (READ_REG(HEX_REG_SA1)) 396 #define fREAD_FP() (READ_REG(HEX_REG_FP)) 397 #ifdef FIXME 398 /* Figure out how to get insn->extension_valid to helper */ 399 #define fREAD_GP() \ 400 (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP)) 401 #else 402 #define fREAD_GP() READ_REG(HEX_REG_GP) 403 #endif 404 #define fREAD_PC() (PC) 405 406 #define fREAD_NPC() (next_PC & (0xfffffffe)) 407 408 #define fREAD_P0() (READ_PREG(0)) 409 #define fREAD_P3() (READ_PREG(3)) 410 411 #define fCHECK_PCALIGN(A) 412 413 #define fWRITE_NPC(A) write_new_pc(env, pkt_has_multi_cof != 0, A) 414 415 #define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC) 416 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR) 417 #define fHINTJR(TARGET) { /* Not modelled in qemu */} 418 #define fCALL(A) \ 419 do { \ 420 fWRITE_LR(fREAD_NPC()); \ 421 fBRANCH(A, COF_TYPE_CALL); \ 422 } while (0) 423 #define fCALLR(A) \ 424 do { \ 425 fWRITE_LR(fREAD_NPC()); \ 426 fBRANCH(A, COF_TYPE_CALLR); \ 427 } while (0) 428 #define fWRITE_LOOP_REGS0(START, COUNT) \ 429 do { \ 430 WRITE_RREG(HEX_REG_LC0, COUNT); \ 431 WRITE_RREG(HEX_REG_SA0, START); \ 432 } while (0) 433 #define fWRITE_LOOP_REGS1(START, COUNT) \ 434 do { \ 435 WRITE_RREG(HEX_REG_LC1, COUNT); \ 436 WRITE_RREG(HEX_REG_SA1, START);\ 437 } while (0) 438 #define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL) 439 #define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL) 440 441 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1) 442 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL)) 443 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG)) 444 #define fWRITE_P0(VAL) WRITE_PREG(0, VAL) 445 #define fWRITE_P1(VAL) WRITE_PREG(1, VAL) 446 #define fWRITE_P2(VAL) WRITE_PREG(2, VAL) 447 #define fWRITE_P3(VAL) WRITE_PREG(3, VAL) 448 #define fPART1(WORK) if (part1) { WORK; return; } 449 #define fCAST4u(A) ((uint32_t)(A)) 450 #define fCAST4s(A) ((int32_t)(A)) 451 #define fCAST8u(A) ((uint64_t)(A)) 452 #define fCAST8s(A) ((int64_t)(A)) 453 #define fCAST2_2s(A) ((int16_t)(A)) 454 #define fCAST2_2u(A) ((uint16_t)(A)) 455 #define fCAST4_4s(A) ((int32_t)(A)) 456 #define fCAST4_4u(A) ((uint32_t)(A)) 457 #define fCAST4_8s(A) ((int64_t)((int32_t)(A))) 458 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A))) 459 #define fCAST8_8s(A) ((int64_t)(A)) 460 #define fCAST8_8u(A) ((uint64_t)(A)) 461 #define fCAST2_8s(A) ((int64_t)((int16_t)(A))) 462 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A))) 463 #define fZE8_16(A) ((int16_t)((uint8_t)(A))) 464 #define fSE8_16(A) ((int16_t)((int8_t)(A))) 465 #define fSE16_32(A) ((int32_t)((int16_t)(A))) 466 #define fZE16_32(A) ((uint32_t)((uint16_t)(A))) 467 #define fSE32_64(A) ((int64_t)((int32_t)(A))) 468 #define fZE32_64(A) ((uint64_t)((uint32_t)(A))) 469 #define fSE8_32(A) ((int32_t)((int8_t)(A))) 470 #define fZE8_32(A) ((int32_t)((uint8_t)(A))) 471 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B)) 472 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B)) 473 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B)) 474 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B)) 475 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B)) 476 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B)) 477 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B)) 478 #define fMPY16US(A, B) fMPY16SU(B, A) 479 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B)) 480 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B)) 481 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B)) 482 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B)) 483 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B)) 484 #define fROUND(A) (A + 0x8000) 485 #define fCLIP(DST, SRC, U) \ 486 do { \ 487 int32_t maxv = (1 << U) - 1; \ 488 int32_t minv = -(1 << U); \ 489 DST = fMIN(maxv, fMAX(SRC, minv)); \ 490 } while (0) 491 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A))) 492 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1)))))) 493 #define fCRNDN(A, N) (conv_round(A, N)) 494 #define fADD128(A, B) (int128_add(A, B)) 495 #define fSUB128(A, B) (int128_sub(A, B)) 496 #define fSHIFTR128(A, B) (int128_rshift(A, B)) 497 #define fSHIFTL128(A, B) (int128_lshift(A, B)) 498 #define fAND128(A, B) (int128_and(A, B)) 499 #define fCAST8S_16S(A) (int128_exts64(A)) 500 #define fCAST16S_8S(A) (int128_getlo(A)) 501 502 #ifdef QEMU_GENERATE 503 #define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM) 504 #define fEA_RRs(REG, REG2, SCALE) \ 505 do { \ 506 TCGv tmp = tcg_temp_new(); \ 507 tcg_gen_shli_tl(tmp, REG2, SCALE); \ 508 tcg_gen_add_tl(EA, REG, tmp); \ 509 } while (0) 510 #define fEA_IRs(IMM, REG, SCALE) \ 511 do { \ 512 tcg_gen_shli_tl(EA, REG, SCALE); \ 513 tcg_gen_addi_tl(EA, EA, IMM); \ 514 } while (0) 515 #else 516 #define fEA_RI(REG, IMM) \ 517 do { \ 518 EA = REG + IMM; \ 519 } while (0) 520 #define fEA_RRs(REG, REG2, SCALE) \ 521 do { \ 522 EA = REG + (REG2 << SCALE); \ 523 } while (0) 524 #define fEA_IRs(IMM, REG, SCALE) \ 525 do { \ 526 EA = IMM + (REG << SCALE); \ 527 } while (0) 528 #endif 529 530 #ifdef QEMU_GENERATE 531 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM) 532 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG) 533 #define fEA_BREVR(REG) gen_helper_fbrev(EA, REG) 534 #define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM) 535 #define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL) 536 #define fPM_CIRI(REG, IMM, MVAL) \ 537 do { \ 538 TCGv tcgv_siV = tcg_constant_tl(siV); \ 539 gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \ 540 hex_gpr[HEX_REG_CS0 + MuN]); \ 541 } while (0) 542 #else 543 #define fEA_IMM(IMM) do { EA = (IMM); } while (0) 544 #define fEA_REG(REG) do { EA = (REG); } while (0) 545 #define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0) 546 #define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0) 547 #define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0) 548 #endif 549 #define fSCALE(N, A) (((int64_t)(A)) << N) 550 #define fVSATW(A) fVSATN(32, ((long long)A)) 551 #define fSATW(A) fSATN(32, ((long long)A)) 552 #define fVSAT(A) fVSATN(32, (A)) 553 #define fSAT(A) fSATN(32, (A)) 554 #define fSAT_ORIG_SHL(A, ORIG_REG) \ 555 ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \ 556 ? fSATVALN(32, ((int32_t)(ORIG_REG))) \ 557 : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \ 558 : fSAT(A))) 559 #define fPASS(A) A 560 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \ 561 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \ 562 : (fCAST##REGSTYPE(SRC) << (SHAMT))) 563 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \ 564 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s) 565 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \ 566 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u) 567 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \ 568 (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \ 569 : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC))) 570 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \ 571 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \ 572 : (fCAST##REGSTYPE(SRC) >> (SHAMT))) 573 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \ 574 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s) 575 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \ 576 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u) 577 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \ 578 (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \ 579 << ((-(SHAMT)) - 1)) << 1, (SRC)) \ 580 : (fCAST##REGSTYPE##s(SRC) >> (SHAMT))) 581 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT)) 582 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \ 583 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT))) 584 #define fROTL(SRC, SHAMT, REGSTYPE) \ 585 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \ 586 ((fCAST##REGSTYPE##u(SRC) >> \ 587 ((sizeof(SRC) * 8) - (SHAMT)))))) 588 #define fROTR(SRC, SHAMT, REGSTYPE) \ 589 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \ 590 ((fCAST##REGSTYPE##u(SRC) << \ 591 ((sizeof(SRC) * 8) - (SHAMT)))))) 592 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \ 593 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT))) 594 595 #ifdef QEMU_GENERATE 596 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA) 597 #else 598 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \ 599 DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA) 600 #endif 601 602 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE) 603 604 #define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY) 605 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32)) 606 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL) 607 608 #ifdef CONFIG_USER_ONLY 609 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */ 610 #else 611 /* System mode not implemented yet */ 612 #define fFRAMECHECK(ADDR, EA) g_assert_not_reached(); 613 #endif 614 615 #ifdef QEMU_GENERATE 616 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \ 617 gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx); 618 #endif 619 620 #ifdef QEMU_GENERATE 621 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot) 622 #else 623 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot) 624 #endif 625 626 #ifdef QEMU_GENERATE 627 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \ 628 gen_store_conditional##SIZE(ctx, PRED, EA, SRC); 629 #endif 630 631 #ifdef QEMU_GENERATE 632 #define GETBYTE_FUNC(X) \ 633 __builtin_choose_expr(TYPE_TCGV(X), \ 634 gen_get_byte, \ 635 __builtin_choose_expr(TYPE_TCGV_I64(X), \ 636 gen_get_byte_i64, (void)0)) 637 #define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true) 638 #define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false) 639 #else 640 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff)) 641 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff)) 642 #endif 643 644 #define fSETBYTE(N, DST, VAL) \ 645 do { \ 646 DST = (DST & ~(0x0ffLL << ((N) * 8))) | \ 647 (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \ 648 } while (0) 649 650 #ifdef QEMU_GENERATE 651 #define fGETHALF(N, SRC) gen_get_half(HALF, N, SRC, true) 652 #define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false) 653 #else 654 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff)) 655 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff)) 656 #endif 657 #define fSETHALF(N, DST, VAL) \ 658 do { \ 659 DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \ 660 (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \ 661 } while (0) 662 #define fSETHALFw fSETHALF 663 #define fSETHALFd fSETHALF 664 665 #define fGETWORD(N, SRC) \ 666 ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL))) 667 #define fGETUWORD(N, SRC) \ 668 ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL))) 669 670 #define fSETWORD(N, DST, VAL) \ 671 do { \ 672 DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \ 673 (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \ 674 } while (0) 675 676 #define fSETBIT(N, DST, VAL) \ 677 do { \ 678 DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \ 679 } while (0) 680 681 #define fGETBIT(N, SRC) (((SRC) >> N) & 1) 682 #define fSETBITS(HI, LO, DST, VAL) \ 683 do { \ 684 int j; \ 685 for (j = LO; j <= HI; j++) { \ 686 fSETBIT(j, DST, VAL); \ 687 } \ 688 } while (0) 689 #define fCOUNTONES_2(VAL) ctpop16(VAL) 690 #define fCOUNTONES_4(VAL) ctpop32(VAL) 691 #define fCOUNTONES_8(VAL) ctpop64(VAL) 692 #define fBREV_8(VAL) revbit64(VAL) 693 #define fBREV_4(VAL) revbit32(VAL) 694 #define fCL1_8(VAL) clo64(VAL) 695 #define fCL1_4(VAL) clo32(VAL) 696 #define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16) 697 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN) 698 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED) 699 #define fHIDE(A) A 700 #define fCONSTLL(A) A##LL 701 #define fECHO(A) (A) 702 703 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0) 704 #define fPAUSE(IMM) 705 706 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \ 707 ((VAL) << reg_field_info[FIELD].offset) 708 #define fGET_REG_FIELD_MASK(FIELD) \ 709 (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset) 710 #define fREAD_REG_FIELD(REG, FIELD) \ 711 fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \ 712 reg_field_info[FIELD].width, \ 713 reg_field_info[FIELD].offset) 714 #define fGET_FIELD(VAL, FIELD) 715 #define fSET_FIELD(VAL, FIELD, NEWVAL) 716 #define fBARRIER() 717 #define fSYNCH() 718 #define fISYNC() 719 #define fDCFETCH(REG) \ 720 do { (void)REG; } while (0) /* Nothing to do in qemu */ 721 #define fICINVA(REG) \ 722 do { (void)REG; } while (0) /* Nothing to do in qemu */ 723 #define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS) 724 #define fDCCLEANA(REG) \ 725 do { (void)REG; } while (0) /* Nothing to do in qemu */ 726 #define fDCCLEANINVA(REG) \ 727 do { (void)REG; } while (0) /* Nothing to do in qemu */ 728 729 #define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0) 730 731 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \ 732 STRBITNUM) /* Nothing */ 733 734 735 #endif 736