xref: /openbmc/qemu/target/hexagon/macros.h (revision 1141159c)
1 /*
2  *  Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef HEXAGON_MACROS_H
19 #define HEXAGON_MACROS_H
20 
21 #include "cpu.h"
22 #include "hex_regs.h"
23 #include "reg_fields.h"
24 
25 #define PCALIGN 4
26 #define PCALIGN_MASK (PCALIGN - 1)
27 
28 #define GET_FIELD(FIELD, REGIN) \
29     fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
30                    reg_field_info[FIELD].offset)
31 
32 #ifdef QEMU_GENERATE
33 #define GET_USR_FIELD(FIELD, DST) \
34     tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
35                        reg_field_info[FIELD].offset, \
36                        reg_field_info[FIELD].width)
37 
38 #define TYPE_INT(X)          __builtin_types_compatible_p(typeof(X), int)
39 #define TYPE_TCGV(X)         __builtin_types_compatible_p(typeof(X), TCGv)
40 #define TYPE_TCGV_I64(X)     __builtin_types_compatible_p(typeof(X), TCGv_i64)
41 #else
42 #define GET_USR_FIELD(FIELD) \
43     fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
44                    reg_field_info[FIELD].offset)
45 
46 #define SET_USR_FIELD(FIELD, VAL) \
47     fINSERT_BITS(env->new_value[HEX_REG_USR], reg_field_info[FIELD].width, \
48                  reg_field_info[FIELD].offset, (VAL))
49 #endif
50 
51 #ifdef QEMU_GENERATE
52 /*
53  * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
54  *
55  * Slot 1 store with slot 0 load
56  * A slot 1 store operation with a slot 0 load operation can appear in a packet.
57  * The packet attribute :mem_noshuf inhibits the instruction reordering that
58  * would otherwise be done by the assembler. For example:
59  *     {
60  *         memw(R5) = R2 // slot 1 store
61  *         R3 = memh(R6) // slot 0 load
62  *     }:mem_noshuf
63  * Unlike most packetized operations, these memory operations are not executed
64  * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
65  * effectively executes first, followed by the load instruction in Slot 0. If
66  * the addresses of the two operations are overlapping, the load will receive
67  * the newly stored data. This feature is supported in processor versions
68  * V65 or greater.
69  *
70  *
71  * For qemu, we look for a load in slot 0 when there is  a store in slot 1
72  * in the same packet.  When we see this, we call a helper that probes the
73  * load to make sure it doesn't fault.  Then, we process the store ahead of
74  * the actual load.
75 
76  */
77 #define CHECK_NOSHUF(VA, SIZE) \
78     do { \
79         if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
80             probe_noshuf_load(VA, SIZE, ctx->mem_idx); \
81             process_store(ctx, 1); \
82         } \
83     } while (0)
84 
85 #define CHECK_NOSHUF_PRED(GET_EA, SIZE, PRED) \
86     do { \
87         TCGLabel *label = gen_new_label(); \
88         tcg_gen_brcondi_tl(TCG_COND_EQ, PRED, 0, label); \
89         GET_EA; \
90         if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
91             probe_noshuf_load(EA, SIZE, ctx->mem_idx); \
92         } \
93         gen_set_label(label); \
94         if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
95             process_store(ctx, 1); \
96         } \
97     } while (0)
98 
99 #define MEM_LOAD1s(DST, VA) \
100     do { \
101         CHECK_NOSHUF(VA, 1); \
102         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_SB); \
103     } while (0)
104 #define MEM_LOAD1u(DST, VA) \
105     do { \
106         CHECK_NOSHUF(VA, 1); \
107         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_UB); \
108     } while (0)
109 #define MEM_LOAD2s(DST, VA) \
110     do { \
111         CHECK_NOSHUF(VA, 2); \
112         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TESW); \
113     } while (0)
114 #define MEM_LOAD2u(DST, VA) \
115     do { \
116         CHECK_NOSHUF(VA, 2); \
117         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TEUW); \
118     } while (0)
119 #define MEM_LOAD4s(DST, VA) \
120     do { \
121         CHECK_NOSHUF(VA, 4); \
122         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TESL); \
123     } while (0)
124 #define MEM_LOAD4u(DST, VA) \
125     do { \
126         CHECK_NOSHUF(VA, 4); \
127         tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TEUL); \
128     } while (0)
129 #define MEM_LOAD8u(DST, VA) \
130     do { \
131         CHECK_NOSHUF(VA, 8); \
132         tcg_gen_qemu_ld_i64(DST, VA, ctx->mem_idx, MO_TEUQ); \
133     } while (0)
134 
135 #define MEM_STORE1_FUNC(X) \
136     __builtin_choose_expr(TYPE_INT(X), \
137         gen_store1i, \
138         __builtin_choose_expr(TYPE_TCGV(X), \
139             gen_store1, (void)0))
140 #define MEM_STORE1(VA, DATA, SLOT) \
141     MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
142 
143 #define MEM_STORE2_FUNC(X) \
144     __builtin_choose_expr(TYPE_INT(X), \
145         gen_store2i, \
146         __builtin_choose_expr(TYPE_TCGV(X), \
147             gen_store2, (void)0))
148 #define MEM_STORE2(VA, DATA, SLOT) \
149     MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
150 
151 #define MEM_STORE4_FUNC(X) \
152     __builtin_choose_expr(TYPE_INT(X), \
153         gen_store4i, \
154         __builtin_choose_expr(TYPE_TCGV(X), \
155             gen_store4, (void)0))
156 #define MEM_STORE4(VA, DATA, SLOT) \
157     MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
158 
159 #define MEM_STORE8_FUNC(X) \
160     __builtin_choose_expr(TYPE_INT(X), \
161         gen_store8i, \
162         __builtin_choose_expr(TYPE_TCGV_I64(X), \
163             gen_store8, (void)0))
164 #define MEM_STORE8(VA, DATA, SLOT) \
165     MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
166 #else
167 #define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
168 #define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
169 #define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
170 #define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
171 #define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
172 #define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
173 #define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
174 #define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
175 
176 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
177 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
178 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
179 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
180 #endif
181 
182 #ifdef QEMU_GENERATE
183 static inline void gen_cancel(uint32_t slot)
184 {
185     tcg_gen_ori_tl(hex_slot_cancelled, hex_slot_cancelled, 1 << slot);
186 }
187 
188 #define CANCEL gen_cancel(slot);
189 #else
190 #define CANCEL do { } while (0)
191 #endif
192 
193 #define LOAD_CANCEL(EA) do { CANCEL; } while (0)
194 
195 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
196 
197 #define fMAX(A, B) (((A) > (B)) ? (A) : (B))
198 
199 #define fMIN(A, B) (((A) < (B)) ? (A) : (B))
200 
201 #define fABS(A) (((A) < 0) ? (-(A)) : (A))
202 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
203     REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
204 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
205     ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
206 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
207     (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
208 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
209     (((HIBIT) - (LOWBIT) + 1) ? \
210         extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
211         0LL)
212 #define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
213     do { \
214         int width = ((HIBIT) - (LOWBIT) + 1); \
215         INREG = (width >= 0 ? \
216             deposit64((INREG), (LOWBIT), width, (INVAL)) : \
217             INREG); \
218     } while (0)
219 
220 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
221 
222 #ifdef QEMU_GENERATE
223 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
224 #else
225 #define fLSBOLD(VAL)  ((VAL) & 1)
226 #endif
227 
228 #ifdef QEMU_GENERATE
229 #define fLSBNEW(PVAL)   tcg_gen_andi_tl(LSB, (PVAL), 1)
230 #define fLSBNEW0        tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
231 #define fLSBNEW1        tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
232 #else
233 #define fLSBNEW(PVAL)   ((PVAL) & 1)
234 #define fLSBNEW0        (env->new_pred_value[0] & 1)
235 #define fLSBNEW1        (env->new_pred_value[1] & 1)
236 #endif
237 
238 #ifdef QEMU_GENERATE
239 #define fLSBOLDNOT(VAL) \
240     do { \
241         tcg_gen_andi_tl(LSB, (VAL), 1); \
242         tcg_gen_xori_tl(LSB, LSB, 1); \
243     } while (0)
244 #define fLSBNEWNOT(PNUM) \
245     do { \
246         tcg_gen_andi_tl(LSB, (PNUM), 1); \
247         tcg_gen_xori_tl(LSB, LSB, 1); \
248     } while (0)
249 #else
250 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
251 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
252 #define fLSBNEW0NOT (!fLSBNEW0)
253 #define fLSBNEW1NOT (!fLSBNEW1)
254 #endif
255 
256 #define fNEWREG(VAL) ((int32_t)(VAL))
257 
258 #define fNEWREG_ST(VAL) (VAL)
259 
260 #define fVSATUVALN(N, VAL) \
261     ({ \
262         (((int64_t)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \
263     })
264 #define fSATUVALN(N, VAL) \
265     ({ \
266         fSET_OVERFLOW(); \
267         ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
268     })
269 #define fSATVALN(N, VAL) \
270     ({ \
271         fSET_OVERFLOW(); \
272         ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
273     })
274 #define fVSATVALN(N, VAL) \
275     ({ \
276         ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
277     })
278 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
279 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
280 #define fSATN(N, VAL) \
281     ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
282 #define fVSATN(N, VAL) \
283     ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL))
284 #define fADDSAT64(DST, A, B) \
285     do { \
286         uint64_t __a = fCAST8u(A); \
287         uint64_t __b = fCAST8u(B); \
288         uint64_t __sum = __a + __b; \
289         uint64_t __xor = __a ^ __b; \
290         const uint64_t __mask = 0x8000000000000000ULL; \
291         if (__xor & __mask) { \
292             DST = __sum; \
293         } \
294         else if ((__a ^ __sum) & __mask) { \
295             if (__sum & __mask) { \
296                 DST = 0x7FFFFFFFFFFFFFFFLL; \
297                 fSET_OVERFLOW(); \
298             } else { \
299                 DST = 0x8000000000000000LL; \
300                 fSET_OVERFLOW(); \
301             } \
302         } else { \
303             DST = __sum; \
304         } \
305     } while (0)
306 #define fVSATUN(N, VAL) \
307     ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL))
308 #define fSATUN(N, VAL) \
309     ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
310 #define fSATH(VAL) (fSATN(16, VAL))
311 #define fSATUH(VAL) (fSATUN(16, VAL))
312 #define fVSATH(VAL) (fVSATN(16, VAL))
313 #define fVSATUH(VAL) (fVSATUN(16, VAL))
314 #define fSATUB(VAL) (fSATUN(8, VAL))
315 #define fSATB(VAL) (fSATN(8, VAL))
316 #define fVSATUB(VAL) (fVSATUN(8, VAL))
317 #define fVSATB(VAL) (fVSATN(8, VAL))
318 #define fIMMEXT(IMM) (IMM = IMM)
319 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
320 
321 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
322 
323 #ifdef QEMU_GENERATE
324 static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
325 {
326     /*
327      * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
328      *
329      *  The "I" value from a modifier register is divided into two pieces
330      *      LSB         bits 23:17
331      *      MSB         bits 31:28
332      * The value is signed
333      *
334      * At the end we shift the result according to the shift argument
335      */
336     TCGv msb = tcg_temp_new();
337     TCGv lsb = tcg_temp_new();
338 
339     tcg_gen_extract_tl(lsb, val, 17, 7);
340     tcg_gen_sari_tl(msb, val, 21);
341     tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
342 
343     tcg_gen_shli_tl(result, result, shift);
344     return result;
345 }
346 #endif
347 
348 #define fREAD_LR() (env->gpr[HEX_REG_LR])
349 
350 #define fWRITE_LR(A) log_reg_write(env, HEX_REG_LR, A)
351 #define fWRITE_FP(A) log_reg_write(env, HEX_REG_FP, A)
352 #define fWRITE_SP(A) log_reg_write(env, HEX_REG_SP, A)
353 
354 #define fREAD_SP() (env->gpr[HEX_REG_SP])
355 #define fREAD_LC0 (env->gpr[HEX_REG_LC0])
356 #define fREAD_LC1 (env->gpr[HEX_REG_LC1])
357 #define fREAD_SA0 (env->gpr[HEX_REG_SA0])
358 #define fREAD_SA1 (env->gpr[HEX_REG_SA1])
359 #define fREAD_FP() (env->gpr[HEX_REG_FP])
360 #ifdef FIXME
361 /* Figure out how to get insn->extension_valid to helper */
362 #define fREAD_GP() \
363     (insn->extension_valid ? 0 : env->gpr[HEX_REG_GP])
364 #else
365 #define fREAD_GP() (env->gpr[HEX_REG_GP])
366 #endif
367 #define fREAD_PC() (PC)
368 
369 #define fREAD_P0() (env->pred[0])
370 
371 #define fCHECK_PCALIGN(A)
372 
373 #define fWRITE_NPC(A) write_new_pc(env, pkt_has_multi_cof != 0, A)
374 
375 #define fBRANCH(LOC, TYPE)          fWRITE_NPC(LOC)
376 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
377 #define fHINTJR(TARGET) { /* Not modelled in qemu */}
378 #define fWRITE_LOOP_REGS0(START, COUNT) \
379     do { \
380         log_reg_write(env, HEX_REG_LC0, COUNT);  \
381         log_reg_write(env, HEX_REG_SA0, START); \
382     } while (0)
383 #define fWRITE_LOOP_REGS1(START, COUNT) \
384     do { \
385         log_reg_write(env, HEX_REG_LC1, COUNT);  \
386         log_reg_write(env, HEX_REG_SA1, START);\
387     } while (0)
388 
389 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
390 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
391 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
392 #define fWRITE_P0(VAL) log_pred_write(env, 0, VAL)
393 #define fWRITE_P1(VAL) log_pred_write(env, 1, VAL)
394 #define fWRITE_P2(VAL) log_pred_write(env, 2, VAL)
395 #define fWRITE_P3(VAL) log_pred_write(env, 3, VAL)
396 #define fPART1(WORK) if (part1) { WORK; return; }
397 #define fCAST4u(A) ((uint32_t)(A))
398 #define fCAST4s(A) ((int32_t)(A))
399 #define fCAST8u(A) ((uint64_t)(A))
400 #define fCAST8s(A) ((int64_t)(A))
401 #define fCAST2_2s(A) ((int16_t)(A))
402 #define fCAST2_2u(A) ((uint16_t)(A))
403 #define fCAST4_4s(A) ((int32_t)(A))
404 #define fCAST4_4u(A) ((uint32_t)(A))
405 #define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
406 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
407 #define fCAST8_8s(A) ((int64_t)(A))
408 #define fCAST8_8u(A) ((uint64_t)(A))
409 #define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
410 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
411 #define fZE8_16(A) ((int16_t)((uint8_t)(A)))
412 #define fSE8_16(A) ((int16_t)((int8_t)(A)))
413 #define fSE16_32(A) ((int32_t)((int16_t)(A)))
414 #define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
415 #define fSE32_64(A) ((int64_t)((int32_t)(A)))
416 #define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
417 #define fSE8_32(A) ((int32_t)((int8_t)(A)))
418 #define fZE8_32(A) ((int32_t)((uint8_t)(A)))
419 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
420 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
421 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
422 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
423 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
424 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
425 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
426 #define fMPY16US(A, B) fMPY16SU(B, A)
427 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
428 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
429 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
430 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
431 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
432 #define fROUND(A) (A + 0x8000)
433 #define fCLIP(DST, SRC, U) \
434     do { \
435         int32_t maxv = (1 << U) - 1; \
436         int32_t minv = -(1 << U); \
437         DST = fMIN(maxv, fMAX(SRC, minv)); \
438     } while (0)
439 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
440 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
441 #define fCRNDN(A, N) (conv_round(A, N))
442 #define fADD128(A, B) (int128_add(A, B))
443 #define fSUB128(A, B) (int128_sub(A, B))
444 #define fSHIFTR128(A, B) (int128_rshift(A, B))
445 #define fSHIFTL128(A, B) (int128_lshift(A, B))
446 #define fAND128(A, B) (int128_and(A, B))
447 #define fCAST8S_16S(A) (int128_exts64(A))
448 #define fCAST16S_8S(A) (int128_getlo(A))
449 
450 #ifdef QEMU_GENERATE
451 #define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
452 #define fEA_RRs(REG, REG2, SCALE) \
453     do { \
454         TCGv tmp = tcg_temp_new(); \
455         tcg_gen_shli_tl(tmp, REG2, SCALE); \
456         tcg_gen_add_tl(EA, REG, tmp); \
457     } while (0)
458 #define fEA_IRs(IMM, REG, SCALE) \
459     do { \
460         tcg_gen_shli_tl(EA, REG, SCALE); \
461         tcg_gen_addi_tl(EA, EA, IMM); \
462     } while (0)
463 #else
464 #define fEA_RI(REG, IMM) \
465     do { \
466         EA = REG + IMM; \
467     } while (0)
468 #define fEA_RRs(REG, REG2, SCALE) \
469     do { \
470         EA = REG + (REG2 << SCALE); \
471     } while (0)
472 #define fEA_IRs(IMM, REG, SCALE) \
473     do { \
474         EA = IMM + (REG << SCALE); \
475     } while (0)
476 #endif
477 
478 #ifdef QEMU_GENERATE
479 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
480 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
481 #define fEA_BREVR(REG)      gen_helper_fbrev(EA, REG)
482 #define fPM_I(REG, IMM)     tcg_gen_addi_tl(REG, REG, IMM)
483 #define fPM_M(REG, MVAL)    tcg_gen_add_tl(REG, REG, MVAL)
484 #define fPM_CIRI(REG, IMM, MVAL) \
485     do { \
486         TCGv tcgv_siV = tcg_constant_tl(siV); \
487         gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
488                             hex_gpr[HEX_REG_CS0 + MuN]); \
489     } while (0)
490 #else
491 #define fEA_IMM(IMM)        do { EA = (IMM); } while (0)
492 #define fEA_REG(REG)        do { EA = (REG); } while (0)
493 #define fEA_GPI(IMM)        do { EA = (fREAD_GP() + (IMM)); } while (0)
494 #define fPM_I(REG, IMM)     do { REG = REG + (IMM); } while (0)
495 #define fPM_M(REG, MVAL)    do { REG = REG + (MVAL); } while (0)
496 #endif
497 #define fSCALE(N, A) (((int64_t)(A)) << N)
498 #define fVSATW(A) fVSATN(32, ((long long)A))
499 #define fSATW(A) fSATN(32, ((long long)A))
500 #define fVSAT(A) fVSATN(32, (A))
501 #define fSAT(A) fSATN(32, (A))
502 #define fSAT_ORIG_SHL(A, ORIG_REG) \
503     ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
504         ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
505         : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
506                                             : fSAT(A)))
507 #define fPASS(A) A
508 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
509     (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
510                    : (fCAST##REGSTYPE(SRC) << (SHAMT)))
511 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
512     fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
513 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
514     fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
515 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
516     (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
517                    : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
518 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
519     (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
520                    : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
521 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
522     fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
523 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
524     fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
525 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
526     (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
527                         << ((-(SHAMT)) - 1)) << 1, (SRC)) \
528                    : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
529 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
530 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
531     (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
532 #define fROTL(SRC, SHAMT, REGSTYPE) \
533     (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
534                               ((fCAST##REGSTYPE##u(SRC) >> \
535                                  ((sizeof(SRC) * 8) - (SHAMT))))))
536 #define fROTR(SRC, SHAMT, REGSTYPE) \
537     (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
538                               ((fCAST##REGSTYPE##u(SRC) << \
539                                  ((sizeof(SRC) * 8) - (SHAMT))))))
540 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \
541     (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
542 
543 #ifdef QEMU_GENERATE
544 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
545 #else
546 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \
547     DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
548 #endif
549 
550 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
551 
552 #define fGET_FRAMEKEY() (env->gpr[HEX_REG_FRAMEKEY])
553 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
554 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
555 
556 #ifdef CONFIG_USER_ONLY
557 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
558 #else
559 /* System mode not implemented yet */
560 #define fFRAMECHECK(ADDR, EA)  g_assert_not_reached();
561 #endif
562 
563 #ifdef QEMU_GENERATE
564 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
565     gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
566 #endif
567 
568 #ifdef QEMU_GENERATE
569 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
570 #else
571 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
572 #endif
573 
574 #ifdef QEMU_GENERATE
575 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
576     gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
577 #endif
578 
579 #ifdef QEMU_GENERATE
580 #define GETBYTE_FUNC(X) \
581     __builtin_choose_expr(TYPE_TCGV(X), \
582         gen_get_byte, \
583         __builtin_choose_expr(TYPE_TCGV_I64(X), \
584             gen_get_byte_i64, (void)0))
585 #define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
586 #define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
587 #else
588 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
589 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
590 #endif
591 
592 #define fSETBYTE(N, DST, VAL) \
593     do { \
594         DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
595         (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
596     } while (0)
597 
598 #ifdef QEMU_GENERATE
599 #define fGETHALF(N, SRC)  gen_get_half(HALF, N, SRC, true)
600 #define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
601 #else
602 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
603 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
604 #endif
605 #define fSETHALF(N, DST, VAL) \
606     do { \
607         DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
608         (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
609     } while (0)
610 #define fSETHALFw fSETHALF
611 #define fSETHALFd fSETHALF
612 
613 #define fGETWORD(N, SRC) \
614     ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
615 #define fGETUWORD(N, SRC) \
616     ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
617 
618 #define fSETWORD(N, DST, VAL) \
619     do { \
620         DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
621               (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
622     } while (0)
623 
624 #define fSETBIT(N, DST, VAL) \
625     do { \
626         DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
627     } while (0)
628 
629 #define fGETBIT(N, SRC) (((SRC) >> N) & 1)
630 #define fSETBITS(HI, LO, DST, VAL) \
631     do { \
632         int j; \
633         for (j = LO; j <= HI; j++) { \
634             fSETBIT(j, DST, VAL); \
635         } \
636     } while (0)
637 #define fCOUNTONES_2(VAL) ctpop16(VAL)
638 #define fCOUNTONES_4(VAL) ctpop32(VAL)
639 #define fCOUNTONES_8(VAL) ctpop64(VAL)
640 #define fBREV_8(VAL) revbit64(VAL)
641 #define fBREV_4(VAL) revbit32(VAL)
642 #define fCL1_8(VAL) clo64(VAL)
643 #define fCL1_4(VAL) clo32(VAL)
644 #define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16)
645 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
646 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
647 #define fHIDE(A) A
648 #define fCONSTLL(A) A##LL
649 #define fECHO(A) (A)
650 
651 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
652 #define fPAUSE(IMM)
653 
654 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
655     ((VAL) << reg_field_info[FIELD].offset)
656 #define fGET_REG_FIELD_MASK(FIELD) \
657     (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
658 #define fREAD_REG_FIELD(REG, FIELD) \
659     fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
660                    reg_field_info[FIELD].width, \
661                    reg_field_info[FIELD].offset)
662 
663 #ifdef QEMU_GENERATE
664 #define fDCZEROA(REG) tcg_gen_mov_tl(hex_dczero_addr, (REG))
665 #endif
666 
667 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
668                                 STRBITNUM) /* Nothing */
669 
670 
671 #endif
672