1 /* 2 * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include "qemu/osdep.h" 19 #include "qemu/int128.h" 20 #include "fpu/softfloat.h" 21 #include "macros.h" 22 #include "fma_emu.h" 23 24 #define DF_INF_EXP 0x7ff 25 #define DF_BIAS 1023 26 #define DF_MANTBITS 52 27 #define DF_NAN 0xffffffffffffffffULL 28 #define DF_INF 0x7ff0000000000000ULL 29 #define DF_MINUS_INF 0xfff0000000000000ULL 30 #define DF_MAXF 0x7fefffffffffffffULL 31 #define DF_MINUS_MAXF 0xffefffffffffffffULL 32 33 #define SF_INF_EXP 0xff 34 #define SF_BIAS 127 35 #define SF_MANTBITS 23 36 #define SF_INF 0x7f800000 37 #define SF_MINUS_INF 0xff800000 38 #define SF_MAXF 0x7f7fffff 39 #define SF_MINUS_MAXF 0xff7fffff 40 41 #define HF_INF_EXP 0x1f 42 #define HF_BIAS 15 43 44 #define WAY_BIG_EXP 4096 45 46 typedef union { 47 double f; 48 uint64_t i; 49 struct { 50 uint64_t mant:52; 51 uint64_t exp:11; 52 uint64_t sign:1; 53 }; 54 } Double; 55 56 typedef union { 57 float f; 58 uint32_t i; 59 struct { 60 uint32_t mant:23; 61 uint32_t exp:8; 62 uint32_t sign:1; 63 }; 64 } Float; 65 66 static uint64_t float64_getmant(float64 f64) 67 { 68 Double a = { .i = f64 }; 69 if (float64_is_normal(f64)) { 70 return a.mant | 1ULL << 52; 71 } 72 if (float64_is_zero(f64)) { 73 return 0; 74 } 75 if (float64_is_denormal(f64)) { 76 return a.mant; 77 } 78 return ~0ULL; 79 } 80 81 int32_t float64_getexp(float64 f64) 82 { 83 Double a = { .i = f64 }; 84 if (float64_is_normal(f64)) { 85 return a.exp; 86 } 87 if (float64_is_denormal(f64)) { 88 return a.exp + 1; 89 } 90 return -1; 91 } 92 93 static uint64_t float32_getmant(float32 f32) 94 { 95 Float a = { .i = f32 }; 96 if (float32_is_normal(f32)) { 97 return a.mant | 1ULL << 23; 98 } 99 if (float32_is_zero(f32)) { 100 return 0; 101 } 102 if (float32_is_denormal(f32)) { 103 return a.mant; 104 } 105 return ~0ULL; 106 } 107 108 int32_t float32_getexp(float32 f32) 109 { 110 Float a = { .i = f32 }; 111 if (float32_is_normal(f32)) { 112 return a.exp; 113 } 114 if (float32_is_denormal(f32)) { 115 return a.exp + 1; 116 } 117 return -1; 118 } 119 120 static uint32_t int128_getw0(Int128 x) 121 { 122 return int128_getlo(x); 123 } 124 125 static uint32_t int128_getw1(Int128 x) 126 { 127 return int128_getlo(x) >> 32; 128 } 129 130 static Int128 int128_mul_6464(uint64_t ai, uint64_t bi) 131 { 132 Int128 a, b; 133 uint64_t pp0, pp1a, pp1b, pp1s, pp2; 134 135 a = int128_make64(ai); 136 b = int128_make64(bi); 137 pp0 = (uint64_t)int128_getw0(a) * (uint64_t)int128_getw0(b); 138 pp1a = (uint64_t)int128_getw1(a) * (uint64_t)int128_getw0(b); 139 pp1b = (uint64_t)int128_getw1(b) * (uint64_t)int128_getw0(a); 140 pp2 = (uint64_t)int128_getw1(a) * (uint64_t)int128_getw1(b); 141 142 pp1s = pp1a + pp1b; 143 if ((pp1s < pp1a) || (pp1s < pp1b)) { 144 pp2 += (1ULL << 32); 145 } 146 uint64_t ret_low = pp0 + (pp1s << 32); 147 if ((ret_low < pp0) || (ret_low < (pp1s << 32))) { 148 pp2 += 1; 149 } 150 151 return int128_make128(ret_low, pp2 + (pp1s >> 32)); 152 } 153 154 static Int128 int128_sub_borrow(Int128 a, Int128 b, int borrow) 155 { 156 Int128 ret = int128_sub(a, b); 157 if (borrow != 0) { 158 ret = int128_sub(ret, int128_one()); 159 } 160 return ret; 161 } 162 163 typedef struct { 164 Int128 mant; 165 int32_t exp; 166 uint8_t sign; 167 uint8_t guard; 168 uint8_t round; 169 uint8_t sticky; 170 } Accum; 171 172 static void accum_init(Accum *p) 173 { 174 p->mant = int128_zero(); 175 p->exp = 0; 176 p->sign = 0; 177 p->guard = 0; 178 p->round = 0; 179 p->sticky = 0; 180 } 181 182 static Accum accum_norm_left(Accum a) 183 { 184 a.exp--; 185 a.mant = int128_lshift(a.mant, 1); 186 a.mant = int128_or(a.mant, int128_make64(a.guard)); 187 a.guard = a.round; 188 a.round = a.sticky; 189 return a; 190 } 191 192 /* This function is marked inline for performance reasons */ 193 static inline Accum accum_norm_right(Accum a, int amt) 194 { 195 if (amt > 130) { 196 a.sticky |= 197 a.round | a.guard | int128_nz(a.mant); 198 a.guard = a.round = 0; 199 a.mant = int128_zero(); 200 a.exp += amt; 201 return a; 202 203 } 204 while (amt >= 64) { 205 a.sticky |= a.round | a.guard | (int128_getlo(a.mant) != 0); 206 a.guard = (int128_getlo(a.mant) >> 63) & 1; 207 a.round = (int128_getlo(a.mant) >> 62) & 1; 208 a.mant = int128_make64(int128_gethi(a.mant)); 209 a.exp += 64; 210 amt -= 64; 211 } 212 while (amt > 0) { 213 a.exp++; 214 a.sticky |= a.round; 215 a.round = a.guard; 216 a.guard = int128_getlo(a.mant) & 1; 217 a.mant = int128_rshift(a.mant, 1); 218 amt--; 219 } 220 return a; 221 } 222 223 /* 224 * On the add/sub, we need to be able to shift out lots of bits, but need a 225 * sticky bit for what was shifted out, I think. 226 */ 227 static Accum accum_add(Accum a, Accum b); 228 229 static Accum accum_sub(Accum a, Accum b, int negate) 230 { 231 Accum ret; 232 accum_init(&ret); 233 int borrow; 234 235 if (a.sign != b.sign) { 236 b.sign = !b.sign; 237 return accum_add(a, b); 238 } 239 if (b.exp > a.exp) { 240 /* small - big == - (big - small) */ 241 return accum_sub(b, a, !negate); 242 } 243 if ((b.exp == a.exp) && (int128_gt(b.mant, a.mant))) { 244 /* small - big == - (big - small) */ 245 return accum_sub(b, a, !negate); 246 } 247 248 while (a.exp > b.exp) { 249 /* Try to normalize exponents: shrink a exponent and grow mantissa */ 250 if (int128_gethi(a.mant) & (1ULL << 62)) { 251 /* Can't grow a any more */ 252 break; 253 } else { 254 a = accum_norm_left(a); 255 } 256 } 257 258 while (a.exp > b.exp) { 259 /* Try to normalize exponents: grow b exponent and shrink mantissa */ 260 /* Keep around shifted out bits... we might need those later */ 261 b = accum_norm_right(b, a.exp - b.exp); 262 } 263 264 if ((int128_gt(b.mant, a.mant))) { 265 return accum_sub(b, a, !negate); 266 } 267 268 /* OK, now things should be normalized! */ 269 ret.sign = a.sign; 270 ret.exp = a.exp; 271 assert(!int128_gt(b.mant, a.mant)); 272 borrow = (b.round << 2) | (b.guard << 1) | b.sticky; 273 ret.mant = int128_sub_borrow(a.mant, b.mant, (borrow != 0)); 274 borrow = 0 - borrow; 275 ret.guard = (borrow >> 2) & 1; 276 ret.round = (borrow >> 1) & 1; 277 ret.sticky = (borrow >> 0) & 1; 278 if (negate) { 279 ret.sign = !ret.sign; 280 } 281 return ret; 282 } 283 284 static Accum accum_add(Accum a, Accum b) 285 { 286 Accum ret; 287 accum_init(&ret); 288 if (a.sign != b.sign) { 289 b.sign = !b.sign; 290 return accum_sub(a, b, 0); 291 } 292 if (b.exp > a.exp) { 293 /* small + big == (big + small) */ 294 return accum_add(b, a); 295 } 296 if ((b.exp == a.exp) && int128_gt(b.mant, a.mant)) { 297 /* small + big == (big + small) */ 298 return accum_add(b, a); 299 } 300 301 while (a.exp > b.exp) { 302 /* Try to normalize exponents: shrink a exponent and grow mantissa */ 303 if (int128_gethi(a.mant) & (1ULL << 62)) { 304 /* Can't grow a any more */ 305 break; 306 } else { 307 a = accum_norm_left(a); 308 } 309 } 310 311 while (a.exp > b.exp) { 312 /* Try to normalize exponents: grow b exponent and shrink mantissa */ 313 /* Keep around shifted out bits... we might need those later */ 314 b = accum_norm_right(b, a.exp - b.exp); 315 } 316 317 /* OK, now things should be normalized! */ 318 if (int128_gt(b.mant, a.mant)) { 319 return accum_add(b, a); 320 }; 321 ret.sign = a.sign; 322 ret.exp = a.exp; 323 assert(!int128_gt(b.mant, a.mant)); 324 ret.mant = int128_add(a.mant, b.mant); 325 ret.guard = b.guard; 326 ret.round = b.round; 327 ret.sticky = b.sticky; 328 return ret; 329 } 330 331 /* Return an infinity with requested sign */ 332 static float64 infinite_float64(uint8_t sign) 333 { 334 if (sign) { 335 return make_float64(DF_MINUS_INF); 336 } else { 337 return make_float64(DF_INF); 338 } 339 } 340 341 /* Return a maximum finite value with requested sign */ 342 static float64 maxfinite_float64(uint8_t sign) 343 { 344 if (sign) { 345 return make_float64(DF_MINUS_MAXF); 346 } else { 347 return make_float64(DF_MAXF); 348 } 349 } 350 351 /* Return a zero value with requested sign */ 352 static float64 zero_float64(uint8_t sign) 353 { 354 if (sign) { 355 return make_float64(0x8000000000000000); 356 } else { 357 return float64_zero; 358 } 359 } 360 361 /* Return an infinity with the requested sign */ 362 float32 infinite_float32(uint8_t sign) 363 { 364 if (sign) { 365 return make_float32(SF_MINUS_INF); 366 } else { 367 return make_float32(SF_INF); 368 } 369 } 370 371 /* Return a maximum finite value with the requested sign */ 372 static float32 maxfinite_float32(uint8_t sign) 373 { 374 if (sign) { 375 return make_float32(SF_MINUS_MAXF); 376 } else { 377 return make_float32(SF_MAXF); 378 } 379 } 380 381 /* Return a zero value with requested sign */ 382 static float32 zero_float32(uint8_t sign) 383 { 384 if (sign) { 385 return make_float32(0x80000000); 386 } else { 387 return float32_zero; 388 } 389 } 390 391 #define GEN_XF_ROUND(SUFFIX, MANTBITS, INF_EXP, INTERNAL_TYPE) \ 392 static SUFFIX accum_round_##SUFFIX(Accum a, float_status * fp_status) \ 393 { \ 394 if ((int128_gethi(a.mant) == 0) && (int128_getlo(a.mant) == 0) \ 395 && ((a.guard | a.round | a.sticky) == 0)) { \ 396 /* result zero */ \ 397 switch (fp_status->float_rounding_mode) { \ 398 case float_round_down: \ 399 return zero_##SUFFIX(1); \ 400 default: \ 401 return zero_##SUFFIX(0); \ 402 } \ 403 } \ 404 /* Normalize right */ \ 405 /* We want MANTBITS bits of mantissa plus the leading one. */ \ 406 /* That means that we want MANTBITS+1 bits, or 0x000000000000FF_FFFF */ \ 407 /* So we need to normalize right while the high word is non-zero and \ 408 * while the low word is nonzero when masked with 0xffe0_0000_0000_0000 */ \ 409 while ((int128_gethi(a.mant) != 0) || \ 410 ((int128_getlo(a.mant) >> (MANTBITS + 1)) != 0)) { \ 411 a = accum_norm_right(a, 1); \ 412 } \ 413 /* \ 414 * OK, now normalize left \ 415 * We want to normalize left until we have a leading one in bit 24 \ 416 * Theoretically, we only need to shift a maximum of one to the left if we \ 417 * shifted out lots of bits from B, or if we had no shift / 1 shift sticky \ 418 * shoudl be 0 \ 419 */ \ 420 while ((int128_getlo(a.mant) & (1ULL << MANTBITS)) == 0) { \ 421 a = accum_norm_left(a); \ 422 } \ 423 /* \ 424 * OK, now we might need to denormalize because of potential underflow. \ 425 * We need to do this before rounding, and rounding might make us normal \ 426 * again \ 427 */ \ 428 while (a.exp <= 0) { \ 429 a = accum_norm_right(a, 1 - a.exp); \ 430 /* \ 431 * Do we have underflow? \ 432 * That's when we get an inexact answer because we ran out of bits \ 433 * in a denormal. \ 434 */ \ 435 if (a.guard || a.round || a.sticky) { \ 436 float_raise(float_flag_underflow, fp_status); \ 437 } \ 438 } \ 439 /* OK, we're relatively canonical... now we need to round */ \ 440 if (a.guard || a.round || a.sticky) { \ 441 float_raise(float_flag_inexact, fp_status); \ 442 switch (fp_status->float_rounding_mode) { \ 443 case float_round_to_zero: \ 444 /* Chop and we're done */ \ 445 break; \ 446 case float_round_up: \ 447 if (a.sign == 0) { \ 448 a.mant = int128_add(a.mant, int128_one()); \ 449 } \ 450 break; \ 451 case float_round_down: \ 452 if (a.sign != 0) { \ 453 a.mant = int128_add(a.mant, int128_one()); \ 454 } \ 455 break; \ 456 default: \ 457 if (a.round || a.sticky) { \ 458 /* round up if guard is 1, down if guard is zero */ \ 459 a.mant = int128_add(a.mant, int128_make64(a.guard)); \ 460 } else if (a.guard) { \ 461 /* exactly .5, round up if odd */ \ 462 a.mant = int128_add(a.mant, int128_and(a.mant, int128_one())); \ 463 } \ 464 break; \ 465 } \ 466 } \ 467 /* \ 468 * OK, now we might have carried all the way up. \ 469 * So we might need to shr once \ 470 * at least we know that the lsb should be zero if we rounded and \ 471 * got a carry out... \ 472 */ \ 473 if ((int128_getlo(a.mant) >> (MANTBITS + 1)) != 0) { \ 474 a = accum_norm_right(a, 1); \ 475 } \ 476 /* Overflow? */ \ 477 if (a.exp >= INF_EXP) { \ 478 /* Yep, inf result */ \ 479 float_raise(float_flag_overflow, fp_status); \ 480 float_raise(float_flag_inexact, fp_status); \ 481 switch (fp_status->float_rounding_mode) { \ 482 case float_round_to_zero: \ 483 return maxfinite_##SUFFIX(a.sign); \ 484 case float_round_up: \ 485 if (a.sign == 0) { \ 486 return infinite_##SUFFIX(a.sign); \ 487 } else { \ 488 return maxfinite_##SUFFIX(a.sign); \ 489 } \ 490 case float_round_down: \ 491 if (a.sign != 0) { \ 492 return infinite_##SUFFIX(a.sign); \ 493 } else { \ 494 return maxfinite_##SUFFIX(a.sign); \ 495 } \ 496 default: \ 497 return infinite_##SUFFIX(a.sign); \ 498 } \ 499 } \ 500 /* Underflow? */ \ 501 if (int128_getlo(a.mant) & (1ULL << MANTBITS)) { \ 502 /* Leading one means: No, we're normal. So, we should be done... */ \ 503 INTERNAL_TYPE ret; \ 504 ret.i = 0; \ 505 ret.sign = a.sign; \ 506 ret.exp = a.exp; \ 507 ret.mant = int128_getlo(a.mant); \ 508 return ret.i; \ 509 } \ 510 assert(a.exp == 1); \ 511 INTERNAL_TYPE ret; \ 512 ret.i = 0; \ 513 ret.sign = a.sign; \ 514 ret.exp = 0; \ 515 ret.mant = int128_getlo(a.mant); \ 516 return ret.i; \ 517 } 518 519 GEN_XF_ROUND(float64, DF_MANTBITS, DF_INF_EXP, Double) 520 GEN_XF_ROUND(float32, SF_MANTBITS, SF_INF_EXP, Float) 521 522 static bool is_inf_prod(float64 a, float64 b) 523 { 524 return ((float64_is_infinity(a) && float64_is_infinity(b)) || 525 (float64_is_infinity(a) && is_finite(b) && (!float64_is_zero(b))) || 526 (float64_is_infinity(b) && is_finite(a) && (!float64_is_zero(a)))); 527 } 528 529 static float64 special_fma(float64 a, float64 b, float64 c, 530 float_status *fp_status) 531 { 532 float64 ret = make_float64(0); 533 534 /* 535 * If A multiplied by B is an exact infinity and C is also an infinity 536 * but with the opposite sign, FMA returns NaN and raises invalid. 537 */ 538 uint8_t a_sign = float64_is_neg(a); 539 uint8_t b_sign = float64_is_neg(b); 540 uint8_t c_sign = float64_is_neg(c); 541 if (is_inf_prod(a, b) && float64_is_infinity(c)) { 542 if ((a_sign ^ b_sign) != c_sign) { 543 ret = make_float64(DF_NAN); 544 float_raise(float_flag_invalid, fp_status); 545 return ret; 546 } 547 } 548 if ((float64_is_infinity(a) && float64_is_zero(b)) || 549 (float64_is_zero(a) && float64_is_infinity(b))) { 550 ret = make_float64(DF_NAN); 551 float_raise(float_flag_invalid, fp_status); 552 return ret; 553 } 554 /* 555 * If none of the above checks are true and C is a NaN, 556 * a NaN shall be returned 557 * If A or B are NaN, a NAN shall be returned. 558 */ 559 if (float64_is_any_nan(a) || 560 float64_is_any_nan(b) || 561 float64_is_any_nan(c)) { 562 if (float64_is_any_nan(a) && (fGETBIT(51, a) == 0)) { 563 float_raise(float_flag_invalid, fp_status); 564 } 565 if (float64_is_any_nan(b) && (fGETBIT(51, b) == 0)) { 566 float_raise(float_flag_invalid, fp_status); 567 } 568 if (float64_is_any_nan(c) && (fGETBIT(51, c) == 0)) { 569 float_raise(float_flag_invalid, fp_status); 570 } 571 ret = make_float64(DF_NAN); 572 return ret; 573 } 574 /* 575 * We have checked for adding opposite-signed infinities. 576 * Other infinities return infinity with the correct sign 577 */ 578 if (float64_is_infinity(c)) { 579 ret = infinite_float64(c_sign); 580 return ret; 581 } 582 if (float64_is_infinity(a) || float64_is_infinity(b)) { 583 ret = infinite_float64(a_sign ^ b_sign); 584 return ret; 585 } 586 g_assert_not_reached(); 587 } 588 589 static float32 special_fmaf(float32 a, float32 b, float32 c, 590 float_status *fp_status) 591 { 592 float64 aa, bb, cc; 593 aa = float32_to_float64(a, fp_status); 594 bb = float32_to_float64(b, fp_status); 595 cc = float32_to_float64(c, fp_status); 596 return float64_to_float32(special_fma(aa, bb, cc, fp_status), fp_status); 597 } 598 599 float32 internal_fmafx(float32 a, float32 b, float32 c, int scale, 600 float_status *fp_status) 601 { 602 Accum prod; 603 Accum acc; 604 Accum result; 605 accum_init(&prod); 606 accum_init(&acc); 607 accum_init(&result); 608 609 uint8_t a_sign = float32_is_neg(a); 610 uint8_t b_sign = float32_is_neg(b); 611 uint8_t c_sign = float32_is_neg(c); 612 if (float32_is_infinity(a) || 613 float32_is_infinity(b) || 614 float32_is_infinity(c)) { 615 return special_fmaf(a, b, c, fp_status); 616 } 617 if (float32_is_any_nan(a) || 618 float32_is_any_nan(b) || 619 float32_is_any_nan(c)) { 620 return special_fmaf(a, b, c, fp_status); 621 } 622 if ((scale == 0) && (float32_is_zero(a) || float32_is_zero(b))) { 623 float32 tmp = float32_mul(a, b, fp_status); 624 tmp = float32_add(tmp, c, fp_status); 625 return tmp; 626 } 627 628 /* (a * 2**b) * (c * 2**d) == a*c * 2**(b+d) */ 629 prod.mant = int128_mul_6464(float32_getmant(a), float32_getmant(b)); 630 631 /* 632 * Note: extracting the mantissa into an int is multiplying by 633 * 2**23, so adjust here 634 */ 635 prod.exp = float32_getexp(a) + float32_getexp(b) - SF_BIAS - 23; 636 prod.sign = a_sign ^ b_sign; 637 if (float32_is_zero(a) || float32_is_zero(b)) { 638 prod.exp = -2 * WAY_BIG_EXP; 639 } 640 if ((scale > 0) && float32_is_denormal(c)) { 641 acc.mant = int128_mul_6464(0, 0); 642 acc.exp = -WAY_BIG_EXP; 643 acc.sign = c_sign; 644 acc.sticky = 1; 645 result = accum_add(prod, acc); 646 } else if (!float32_is_zero(c)) { 647 acc.mant = int128_mul_6464(float32_getmant(c), 1); 648 acc.exp = float32_getexp(c); 649 acc.sign = c_sign; 650 result = accum_add(prod, acc); 651 } else { 652 result = prod; 653 } 654 result.exp += scale; 655 return accum_round_float32(result, fp_status); 656 } 657 658 float32 internal_mpyf(float32 a, float32 b, float_status *fp_status) 659 { 660 if (float32_is_zero(a) || float32_is_zero(b)) { 661 return float32_mul(a, b, fp_status); 662 } 663 return internal_fmafx(a, b, float32_zero, 0, fp_status); 664 } 665 666 float64 internal_mpyhh(float64 a, float64 b, 667 unsigned long long int accumulated, 668 float_status *fp_status) 669 { 670 Accum x; 671 unsigned long long int prod; 672 unsigned int sticky; 673 uint8_t a_sign, b_sign; 674 675 sticky = accumulated & 1; 676 accumulated >>= 1; 677 accum_init(&x); 678 if (float64_is_zero(a) || 679 float64_is_any_nan(a) || 680 float64_is_infinity(a)) { 681 return float64_mul(a, b, fp_status); 682 } 683 if (float64_is_zero(b) || 684 float64_is_any_nan(b) || 685 float64_is_infinity(b)) { 686 return float64_mul(a, b, fp_status); 687 } 688 x.mant = int128_mul_6464(accumulated, 1); 689 x.sticky = sticky; 690 prod = fGETUWORD(1, float64_getmant(a)) * fGETUWORD(1, float64_getmant(b)); 691 x.mant = int128_add(x.mant, int128_mul_6464(prod, 0x100000000ULL)); 692 x.exp = float64_getexp(a) + float64_getexp(b) - DF_BIAS - 20; 693 if (!float64_is_normal(a) || !float64_is_normal(b)) { 694 /* crush to inexact zero */ 695 x.sticky = 1; 696 x.exp = -4096; 697 } 698 a_sign = float64_is_neg(a); 699 b_sign = float64_is_neg(b); 700 x.sign = a_sign ^ b_sign; 701 return accum_round_float64(x, fp_status); 702 } 703