1 /*
2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include "qemu/osdep.h"
19 #include "iclass.h"
20 #include "attribs.h"
21 #include "genptr.h"
22 #include "decode.h"
23 #include "insn.h"
24 #include "printinsn.h"
25 #include "mmvec/decode_ext_mmvec.h"
26
27 #define fZXTN(N, M, VAL) ((VAL) & ((1LL << (N)) - 1))
28
29 enum {
30 EXT_IDX_noext = 0,
31 EXT_IDX_noext_AFTER = 4,
32 EXT_IDX_mmvec = 4,
33 EXT_IDX_mmvec_AFTER = 8,
34 XX_LAST_EXT_IDX
35 };
36
37 /*
38 * Certain operand types represent a non-contiguous set of values.
39 * For example, the compound compare-and-jump instruction can only access
40 * registers R0-R7 and R16-23.
41 * This table represents the mapping from the encoding to the actual values.
42 */
43
44 #define DEF_REGMAP(NAME, ELEMENTS, ...) \
45 static const unsigned int DECODE_REGISTER_##NAME[ELEMENTS] = \
46 { __VA_ARGS__ };
47 /* Name Num Table */
48 DEF_REGMAP(R_16, 16, 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23)
49 DEF_REGMAP(R__8, 8, 0, 2, 4, 6, 16, 18, 20, 22)
50 DEF_REGMAP(R_8, 8, 0, 1, 2, 3, 4, 5, 6, 7)
51
52 #define DECODE_MAPPED_REG(OPNUM, NAME) \
53 insn->regno[OPNUM] = DECODE_REGISTER_##NAME[insn->regno[OPNUM]];
54
55 /* Helper functions for decode_*_generated.c.inc */
56 #define DECODE_MAPPED(NAME) \
57 static int decode_mapped_reg_##NAME(DisasContext *ctx, int x) \
58 { \
59 return DECODE_REGISTER_##NAME[x]; \
60 }
DECODE_MAPPED(R_16)61 DECODE_MAPPED(R_16)
62 DECODE_MAPPED(R_8)
63 DECODE_MAPPED(R__8)
64
65 /* Helper function for decodetree_trans_funcs_generated.c.inc */
66 static int shift_left(DisasContext *ctx, int x, int n, int immno)
67 {
68 int ret = x;
69 Insn *insn = ctx->insn;
70 if (!insn->extension_valid ||
71 insn->which_extended != immno) {
72 ret <<= n;
73 }
74 return ret;
75 }
76
77 /* Include the generated decoder for 32 bit insn */
78 #include "decode_normal_generated.c.inc"
79 #include "decode_hvx_generated.c.inc"
80
81 /* Include the generated decoder for 16 bit insn */
82 #include "decode_subinsn_a_generated.c.inc"
83 #include "decode_subinsn_l1_generated.c.inc"
84 #include "decode_subinsn_l2_generated.c.inc"
85 #include "decode_subinsn_s1_generated.c.inc"
86 #include "decode_subinsn_s2_generated.c.inc"
87
88 /* Include the generated helpers for the decoder */
89 #include "decodetree_trans_funcs_generated.c.inc"
90
decode_send_insn_to(Packet * packet,int start,int newloc)91 void decode_send_insn_to(Packet *packet, int start, int newloc)
92 {
93 Insn tmpinsn;
94 int direction;
95 int i;
96 if (start == newloc) {
97 return;
98 }
99 if (start < newloc) {
100 /* Move towards end */
101 direction = 1;
102 } else {
103 /* move towards beginning */
104 direction = -1;
105 }
106 for (i = start; i != newloc; i += direction) {
107 tmpinsn = packet->insn[i];
108 packet->insn[i] = packet->insn[i + direction];
109 packet->insn[i + direction] = tmpinsn;
110 }
111 }
112
113 /* Fill newvalue registers with the correct regno */
114 static void
decode_fill_newvalue_regno(Packet * packet)115 decode_fill_newvalue_regno(Packet *packet)
116 {
117 int i, use_regidx, offset, def_idx, dst_idx;
118
119 for (i = 1; i < packet->num_insns; i++) {
120 if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE) &&
121 !GET_ATTRIB(packet->insn[i].opcode, A_EXTENSION)) {
122
123 g_assert(packet->insn[i].new_read_idx != -1);
124 use_regidx = packet->insn[i].new_read_idx;
125
126 /*
127 * What's encoded at the N-field is the offset to who's producing
128 * the value. Shift off the LSB which indicates odd/even register,
129 * then walk backwards and skip over the constant extenders.
130 */
131 offset = packet->insn[i].regno[use_regidx] >> 1;
132 def_idx = i - offset;
133 for (int j = 0; j < offset; j++) {
134 if (GET_ATTRIB(packet->insn[i - j - 1].opcode, A_IT_EXTENDER)) {
135 def_idx--;
136 }
137 }
138
139 /*
140 * Check for a badly encoded N-field which points to an instruction
141 * out-of-range
142 */
143 g_assert(!((def_idx < 0) || (def_idx > (packet->num_insns - 1))));
144
145 /* Now patch up the consumer with the register number */
146 g_assert(packet->insn[def_idx].dest_idx != -1);
147 dst_idx = packet->insn[def_idx].dest_idx;
148 packet->insn[i].regno[use_regidx] =
149 packet->insn[def_idx].regno[dst_idx];
150 /*
151 * We need to remember who produces this value to later
152 * check if it was dynamically cancelled
153 */
154 packet->insn[i].new_value_producer_slot =
155 packet->insn[def_idx].slot;
156 }
157 }
158 }
159
160 /* Split CJ into a compare and a jump */
decode_split_cmpjump(Packet * pkt)161 static void decode_split_cmpjump(Packet *pkt)
162 {
163 int last, i;
164 int numinsns = pkt->num_insns;
165
166 /*
167 * First, split all compare-jumps.
168 * The compare is sent to the end as a new instruction.
169 * Do it this way so we don't reorder dual jumps. Those need to stay in
170 * original order.
171 */
172 for (i = 0; i < numinsns; i++) {
173 /* It's a cmp-jump */
174 if (GET_ATTRIB(pkt->insn[i].opcode, A_NEWCMPJUMP)) {
175 last = pkt->num_insns;
176 pkt->insn[last] = pkt->insn[i]; /* copy the instruction */
177 pkt->insn[last].part1 = true; /* last insn does the CMP */
178 pkt->insn[i].part1 = false; /* existing insn does the JUMP */
179 pkt->num_insns++;
180 }
181 }
182
183 /* Now re-shuffle all the compares back to the beginning */
184 for (i = 0; i < pkt->num_insns; i++) {
185 if (pkt->insn[i].part1) {
186 decode_send_insn_to(pkt, i, 0);
187 }
188 }
189 }
190
decode_opcode_can_jump(int opcode)191 static bool decode_opcode_can_jump(int opcode)
192 {
193 if ((GET_ATTRIB(opcode, A_JUMP)) ||
194 (GET_ATTRIB(opcode, A_CALL)) ||
195 (opcode == J2_trap0) ||
196 (opcode == J2_pause)) {
197 /* Exception to A_JUMP attribute */
198 if (opcode == J4_hintjumpr) {
199 return false;
200 }
201 return true;
202 }
203
204 return false;
205 }
206
decode_opcode_ends_loop(int opcode)207 static bool decode_opcode_ends_loop(int opcode)
208 {
209 return GET_ATTRIB(opcode, A_HWLOOP0_END) ||
210 GET_ATTRIB(opcode, A_HWLOOP1_END);
211 }
212
213 /* Set the is_* fields in each instruction */
decode_set_insn_attr_fields(Packet * pkt)214 static void decode_set_insn_attr_fields(Packet *pkt)
215 {
216 int i;
217 int numinsns = pkt->num_insns;
218 uint16_t opcode;
219
220 pkt->pkt_has_cof = false;
221 pkt->pkt_has_multi_cof = false;
222 pkt->pkt_has_endloop = false;
223 pkt->pkt_has_dczeroa = false;
224
225 for (i = 0; i < numinsns; i++) {
226 opcode = pkt->insn[i].opcode;
227 if (pkt->insn[i].part1) {
228 continue; /* Skip compare of cmp-jumps */
229 }
230
231 if (GET_ATTRIB(opcode, A_DCZEROA)) {
232 pkt->pkt_has_dczeroa = true;
233 }
234
235 if (GET_ATTRIB(opcode, A_STORE)) {
236 if (GET_ATTRIB(opcode, A_SCALAR_STORE) &&
237 !GET_ATTRIB(opcode, A_MEMSIZE_0B)) {
238 if (pkt->insn[i].slot == 0) {
239 pkt->pkt_has_store_s0 = true;
240 } else {
241 pkt->pkt_has_store_s1 = true;
242 }
243 }
244 }
245
246 if (decode_opcode_can_jump(opcode)) {
247 if (pkt->pkt_has_cof) {
248 pkt->pkt_has_multi_cof = true;
249 }
250 pkt->pkt_has_cof = true;
251 }
252
253 pkt->insn[i].is_endloop = decode_opcode_ends_loop(opcode);
254
255 pkt->pkt_has_endloop |= pkt->insn[i].is_endloop;
256
257 if (pkt->pkt_has_endloop) {
258 if (pkt->pkt_has_cof) {
259 pkt->pkt_has_multi_cof = true;
260 }
261 pkt->pkt_has_cof = true;
262 }
263 }
264 }
265
266 /*
267 * Shuffle for execution
268 * Move stores to end (in same order as encoding)
269 * Move compares to beginning (for use by .new insns)
270 */
decode_shuffle_for_execution(Packet * packet)271 static void decode_shuffle_for_execution(Packet *packet)
272 {
273 bool changed = false;
274 int i;
275 bool flag; /* flag means we've seen a non-memory instruction */
276 int n_mems;
277 int last_insn = packet->num_insns - 1;
278
279 /*
280 * Skip end loops, somehow an end loop is getting in and messing
281 * up the order
282 */
283 if (decode_opcode_ends_loop(packet->insn[last_insn].opcode)) {
284 last_insn--;
285 }
286
287 do {
288 changed = false;
289 /*
290 * Stores go last, must not reorder.
291 * Cannot shuffle stores past loads, either.
292 * Iterate backwards. If we see a non-memory instruction,
293 * then a store, shuffle the store to the front. Don't shuffle
294 * stores wrt each other or a load.
295 */
296 for (flag = false, n_mems = 0, i = last_insn; i >= 0; i--) {
297 int opcode = packet->insn[i].opcode;
298
299 if (flag && GET_ATTRIB(opcode, A_STORE)) {
300 decode_send_insn_to(packet, i, last_insn - n_mems);
301 n_mems++;
302 changed = true;
303 } else if (GET_ATTRIB(opcode, A_STORE)) {
304 n_mems++;
305 } else if (GET_ATTRIB(opcode, A_LOAD)) {
306 /*
307 * Don't set flag, since we don't want to shuffle a
308 * store past a load
309 */
310 n_mems++;
311 } else if (GET_ATTRIB(opcode, A_DOTNEWVALUE)) {
312 /*
313 * Don't set flag, since we don't want to shuffle past
314 * a .new value
315 */
316 } else {
317 flag = true;
318 }
319 }
320
321 if (changed) {
322 continue;
323 }
324 /* Compares go first, may be reordered wrt each other */
325 for (flag = false, i = 0; i < last_insn + 1; i++) {
326 int opcode = packet->insn[i].opcode;
327
328 if (packet->insn[i].has_pred_dest &&
329 GET_ATTRIB(opcode, A_STORE) == 0) {
330 /* This should be a compare (not a store conditional) */
331 if (flag) {
332 decode_send_insn_to(packet, i, 0);
333 changed = true;
334 continue;
335 }
336 } else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P3) &&
337 !decode_opcode_ends_loop(packet->insn[i].opcode)) {
338 /*
339 * spNloop instruction
340 * Don't reorder endloops; they are not valid for .new uses,
341 * and we want to match HW
342 */
343 if (flag) {
344 decode_send_insn_to(packet, i, 0);
345 changed = true;
346 continue;
347 }
348 } else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P0) &&
349 !GET_ATTRIB(opcode, A_NEWCMPJUMP)) {
350 if (flag) {
351 decode_send_insn_to(packet, i, 0);
352 changed = true;
353 continue;
354 }
355 } else {
356 flag = true;
357 }
358 }
359 if (changed) {
360 continue;
361 }
362 } while (changed);
363
364 /*
365 * If we have a .new register compare/branch, move that to the very
366 * very end, past stores
367 */
368 for (i = 0; i < last_insn; i++) {
369 if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE)) {
370 decode_send_insn_to(packet, i, last_insn);
371 break;
372 }
373 }
374 }
375
376 static void
apply_extender(Packet * pkt,int i,uint32_t extender)377 apply_extender(Packet *pkt, int i, uint32_t extender)
378 {
379 int immed_num;
380 uint32_t base_immed;
381
382 immed_num = pkt->insn[i].which_extended;
383 base_immed = pkt->insn[i].immed[immed_num];
384
385 pkt->insn[i].immed[immed_num] = extender | fZXTN(6, 32, base_immed);
386 }
387
decode_apply_extenders(Packet * packet)388 static void decode_apply_extenders(Packet *packet)
389 {
390 int i;
391 for (i = 0; i < packet->num_insns; i++) {
392 if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) {
393 packet->insn[i + 1].extension_valid = true;
394 apply_extender(packet, i + 1, packet->insn[i].immed[0]);
395 }
396 }
397 }
398
decode_remove_extenders(Packet * packet)399 static void decode_remove_extenders(Packet *packet)
400 {
401 int i, j;
402 for (i = 0; i < packet->num_insns; i++) {
403 if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) {
404 /* Remove this one by moving the remaining instructions down */
405 for (j = i;
406 (j < packet->num_insns - 1) && (j < INSTRUCTIONS_MAX - 1);
407 j++) {
408 packet->insn[j] = packet->insn[j + 1];
409 }
410 packet->num_insns--;
411 }
412 }
413 }
414
get_valid_slots(const Packet * pkt,unsigned int slot)415 static SlotMask get_valid_slots(const Packet *pkt, unsigned int slot)
416 {
417 if (GET_ATTRIB(pkt->insn[slot].opcode, A_EXTENSION)) {
418 return mmvec_ext_decode_find_iclass_slots(pkt->insn[slot].opcode);
419 } else {
420 return find_iclass_slots(pkt->insn[slot].opcode,
421 pkt->insn[slot].iclass);
422 }
423 }
424
425 /*
426 * Section 10.3 of the Hexagon V73 Programmer's Reference Manual
427 *
428 * A duplex is encoded as a 32-bit instruction with bits [15:14] set to 00.
429 * The sub-instructions that comprise a duplex are encoded as 13-bit fields
430 * in the duplex.
431 *
432 * Per table 10-4, the 4-bit duplex iclass is encoded in bits 31:29, 13
433 */
get_duplex_iclass(uint32_t encoding)434 static uint32_t get_duplex_iclass(uint32_t encoding)
435 {
436 uint32_t iclass = extract32(encoding, 13, 1);
437 iclass = deposit32(iclass, 1, 3, extract32(encoding, 29, 3));
438 return iclass;
439 }
440
441 /*
442 * Per table 10-5, the duplex ICLASS field values that specify the group of
443 * each sub-instruction in a duplex
444 *
445 * This table points to the decode instruction for each entry in the table
446 */
447 typedef bool (*subinsn_decode_func)(DisasContext *ctx, uint16_t insn);
448 typedef struct {
449 subinsn_decode_func decode_slot0_subinsn;
450 subinsn_decode_func decode_slot1_subinsn;
451 } subinsn_decode_groups;
452
453 static const subinsn_decode_groups decode_groups[16] = {
454 [0x0] = { decode_subinsn_l1, decode_subinsn_l1 },
455 [0x1] = { decode_subinsn_l2, decode_subinsn_l1 },
456 [0x2] = { decode_subinsn_l2, decode_subinsn_l2 },
457 [0x3] = { decode_subinsn_a, decode_subinsn_a },
458 [0x4] = { decode_subinsn_l1, decode_subinsn_a },
459 [0x5] = { decode_subinsn_l2, decode_subinsn_a },
460 [0x6] = { decode_subinsn_s1, decode_subinsn_a },
461 [0x7] = { decode_subinsn_s2, decode_subinsn_a },
462 [0x8] = { decode_subinsn_s1, decode_subinsn_l1 },
463 [0x9] = { decode_subinsn_s1, decode_subinsn_l2 },
464 [0xa] = { decode_subinsn_s1, decode_subinsn_s1 },
465 [0xb] = { decode_subinsn_s2, decode_subinsn_s1 },
466 [0xc] = { decode_subinsn_s2, decode_subinsn_l1 },
467 [0xd] = { decode_subinsn_s2, decode_subinsn_l2 },
468 [0xe] = { decode_subinsn_s2, decode_subinsn_s2 },
469 [0xf] = { NULL, NULL }, /* Reserved */
470 };
471
get_slot0_subinsn(uint32_t encoding)472 static uint16_t get_slot0_subinsn(uint32_t encoding)
473 {
474 return extract32(encoding, 0, 13);
475 }
476
get_slot1_subinsn(uint32_t encoding)477 static uint16_t get_slot1_subinsn(uint32_t encoding)
478 {
479 return extract32(encoding, 16, 13);
480 }
481
482 static unsigned int
decode_insns(DisasContext * ctx,Insn * insn,uint32_t encoding)483 decode_insns(DisasContext *ctx, Insn *insn, uint32_t encoding)
484 {
485 if (parse_bits(encoding) != 0) {
486 if (decode_normal(ctx, encoding) ||
487 decode_hvx(ctx, encoding)) {
488 insn->generate = opcode_genptr[insn->opcode];
489 insn->iclass = iclass_bits(encoding);
490 return 1;
491 }
492 g_assert_not_reached();
493 } else {
494 uint32_t iclass = get_duplex_iclass(encoding);
495 unsigned int slot0_subinsn = get_slot0_subinsn(encoding);
496 unsigned int slot1_subinsn = get_slot1_subinsn(encoding);
497 subinsn_decode_func decode_slot0_subinsn =
498 decode_groups[iclass].decode_slot0_subinsn;
499 subinsn_decode_func decode_slot1_subinsn =
500 decode_groups[iclass].decode_slot1_subinsn;
501
502 /* The slot1 subinsn needs to be in the packet first */
503 if (decode_slot1_subinsn(ctx, slot1_subinsn)) {
504 insn->generate = opcode_genptr[insn->opcode];
505 insn->iclass = iclass_bits(encoding);
506 ctx->insn = ++insn;
507 if (decode_slot0_subinsn(ctx, slot0_subinsn)) {
508 insn->generate = opcode_genptr[insn->opcode];
509 insn->iclass = iclass_bits(encoding);
510 return 2;
511 }
512 }
513 g_assert_not_reached();
514 }
515 }
516
decode_add_endloop_insn(Insn * insn,int loopnum)517 static void decode_add_endloop_insn(Insn *insn, int loopnum)
518 {
519 if (loopnum == 10) {
520 insn->opcode = J2_endloop01;
521 insn->generate = opcode_genptr[J2_endloop01];
522 } else if (loopnum == 1) {
523 insn->opcode = J2_endloop1;
524 insn->generate = opcode_genptr[J2_endloop1];
525 } else if (loopnum == 0) {
526 insn->opcode = J2_endloop0;
527 insn->generate = opcode_genptr[J2_endloop0];
528 } else {
529 g_assert_not_reached();
530 }
531 }
532
decode_parsebits_is_loopend(uint32_t encoding32)533 static bool decode_parsebits_is_loopend(uint32_t encoding32)
534 {
535 uint32_t bits = parse_bits(encoding32);
536 return bits == 0x2;
537 }
538
has_valid_slot_assignment(Packet * pkt)539 static bool has_valid_slot_assignment(Packet *pkt)
540 {
541 int used_slots = 0;
542 for (int i = 0; i < pkt->num_insns; i++) {
543 int slot_mask;
544 Insn *insn = &pkt->insn[i];
545 if (decode_opcode_ends_loop(insn->opcode)) {
546 /* We overload slot 0 for endloop. */
547 continue;
548 }
549 slot_mask = 1 << insn->slot;
550 if (used_slots & slot_mask) {
551 return false;
552 }
553 used_slots |= slot_mask;
554 }
555 return true;
556 }
557
558 static bool
decode_set_slot_number(Packet * pkt)559 decode_set_slot_number(Packet *pkt)
560 {
561 int slot;
562 int i;
563 bool hit_mem_insn = false;
564 bool hit_duplex = false;
565 bool slot0_found = false;
566 bool slot1_found = false;
567 int slot1_iidx = 0;
568
569 /*
570 * The slots are encoded in reverse order
571 * For each instruction, count down until you find a suitable slot
572 */
573 for (i = 0, slot = 3; i < pkt->num_insns; i++) {
574 SlotMask valid_slots = get_valid_slots(pkt, i);
575
576 while (!(valid_slots & (1 << slot))) {
577 slot--;
578 }
579 pkt->insn[i].slot = slot;
580 if (slot) {
581 /* I've assigned the slot, now decrement it for the next insn */
582 slot--;
583 }
584 }
585
586 /* Fix the exceptions - mem insns to slot 0,1 */
587 for (i = pkt->num_insns - 1; i >= 0; i--) {
588 /* First memory instruction always goes to slot 0 */
589 if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) ||
590 GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) &&
591 !hit_mem_insn) {
592 hit_mem_insn = true;
593 pkt->insn[i].slot = 0;
594 continue;
595 }
596
597 /* Next memory instruction always goes to slot 1 */
598 if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) ||
599 GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) &&
600 hit_mem_insn) {
601 pkt->insn[i].slot = 1;
602 }
603 }
604
605 /* Fix the exceptions - duplex always slot 0,1 */
606 for (i = pkt->num_insns - 1; i >= 0; i--) {
607 /* First subinsn always goes to slot 0 */
608 if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && !hit_duplex) {
609 hit_duplex = true;
610 pkt->insn[i].slot = 0;
611 continue;
612 }
613
614 /* Next subinsn always goes to slot 1 */
615 if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && hit_duplex) {
616 pkt->insn[i].slot = 1;
617 }
618 }
619
620 /* Fix the exceptions - slot 1 is never empty, always aligns to slot 0 */
621 for (i = pkt->num_insns - 1; i >= 0; i--) {
622 /* Is slot0 used? */
623 if (pkt->insn[i].slot == 0) {
624 bool is_endloop = (pkt->insn[i].opcode == J2_endloop01);
625 is_endloop |= (pkt->insn[i].opcode == J2_endloop0);
626 is_endloop |= (pkt->insn[i].opcode == J2_endloop1);
627
628 /*
629 * Make sure it's not endloop since, we're overloading
630 * slot0 for endloop
631 */
632 if (!is_endloop) {
633 slot0_found = true;
634 }
635 }
636 /* Is slot1 used? */
637 if (pkt->insn[i].slot == 1) {
638 slot1_found = true;
639 slot1_iidx = i;
640 }
641 }
642 /* Is slot0 empty and slot1 used? */
643 if ((!slot0_found) && slot1_found) {
644 /* Then push it to slot0 */
645 pkt->insn[slot1_iidx].slot = 0;
646 }
647
648 return has_valid_slot_assignment(pkt);
649 }
650
651 /*
652 * decode_packet
653 * Decodes packet with given words
654 * Returns 0 on insufficient words,
655 * or number of words used on success
656 */
657
decode_packet(DisasContext * ctx,int max_words,const uint32_t * words,Packet * pkt,bool disas_only)658 int decode_packet(DisasContext *ctx, int max_words, const uint32_t *words,
659 Packet *pkt, bool disas_only)
660 {
661 int num_insns = 0;
662 int words_read = 0;
663 bool end_of_packet = false;
664 int new_insns = 0;
665 int i;
666 uint32_t encoding32;
667
668 /* Initialize */
669 memset(pkt, 0, sizeof(*pkt));
670 /* Try to build packet */
671 while (!end_of_packet && (words_read < max_words)) {
672 Insn *insn = &pkt->insn[num_insns];
673 ctx->insn = insn;
674 encoding32 = words[words_read];
675 end_of_packet = is_packet_end(encoding32);
676 new_insns = decode_insns(ctx, insn, encoding32);
677 g_assert(new_insns > 0);
678 /*
679 * If we saw an extender, mark next word extended so immediate
680 * decode works
681 */
682 if (pkt->insn[num_insns].opcode == A4_ext) {
683 pkt->insn[num_insns + 1].extension_valid = true;
684 }
685 num_insns += new_insns;
686 words_read++;
687 }
688
689 pkt->num_insns = num_insns;
690 if (!end_of_packet) {
691 /* Ran out of words! */
692 return 0;
693 }
694 pkt->encod_pkt_size_in_bytes = words_read * 4;
695 pkt->pkt_has_hvx = false;
696 for (i = 0; i < num_insns; i++) {
697 pkt->pkt_has_hvx |=
698 GET_ATTRIB(pkt->insn[i].opcode, A_CVI);
699 }
700
701 /*
702 * Check for :endloop in the parse bits
703 * Section 10.6 of the Programmer's Reference describes the encoding
704 * The end of hardware loop 0 can be encoded with 2 words
705 * The end of hardware loop 1 needs 3 words
706 */
707 if ((words_read == 2) && (decode_parsebits_is_loopend(words[0]))) {
708 decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0);
709 }
710 if (words_read >= 3) {
711 bool has_loop0, has_loop1;
712 has_loop0 = decode_parsebits_is_loopend(words[0]);
713 has_loop1 = decode_parsebits_is_loopend(words[1]);
714 if (has_loop0 && has_loop1) {
715 decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 10);
716 } else if (has_loop1) {
717 decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 1);
718 } else if (has_loop0) {
719 decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0);
720 }
721 }
722
723 decode_apply_extenders(pkt);
724 if (!disas_only) {
725 decode_remove_extenders(pkt);
726 if (!decode_set_slot_number(pkt)) {
727 /* Invalid packet */
728 return 0;
729 }
730 }
731 decode_fill_newvalue_regno(pkt);
732
733 if (pkt->pkt_has_hvx) {
734 mmvec_ext_decode_checks(pkt, disas_only);
735 }
736
737 if (!disas_only) {
738 decode_shuffle_for_execution(pkt);
739 decode_split_cmpjump(pkt);
740 decode_set_insn_attr_fields(pkt);
741 }
742
743 return words_read;
744 }
745
746 /* Used for "-d in_asm" logging */
disassemble_hexagon(uint32_t * words,int nwords,bfd_vma pc,GString * buf)747 int disassemble_hexagon(uint32_t *words, int nwords, bfd_vma pc,
748 GString *buf)
749 {
750 DisasContext ctx;
751 Packet pkt;
752
753 memset(&ctx, 0, sizeof(DisasContext));
754 ctx.pkt = &pkt;
755
756 if (decode_packet(&ctx, nwords, words, &pkt, true) > 0) {
757 snprint_a_pkt_disas(buf, &pkt, words, pc);
758 return pkt.encod_pkt_size_in_bytes;
759 } else {
760 g_string_assign(buf, "<invalid>");
761 return 0;
762 }
763 }
764