1 /* 2 * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include "qemu/osdep.h" 19 #include "qemu/qemu-print.h" 20 #include "cpu.h" 21 #include "internal.h" 22 #include "exec/exec-all.h" 23 #include "qapi/error.h" 24 #include "hw/qdev-properties.h" 25 #include "fpu/softfloat-helpers.h" 26 27 static void hexagon_v67_cpu_init(Object *obj) 28 { 29 } 30 31 static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model) 32 { 33 ObjectClass *oc; 34 char *typename; 35 char **cpuname; 36 37 cpuname = g_strsplit(cpu_model, ",", 1); 38 typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]); 39 oc = object_class_by_name(typename); 40 g_strfreev(cpuname); 41 g_free(typename); 42 if (!oc || !object_class_dynamic_cast(oc, TYPE_HEXAGON_CPU) || 43 object_class_is_abstract(oc)) { 44 return NULL; 45 } 46 return oc; 47 } 48 49 static Property hexagon_lldb_compat_property = 50 DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false); 51 static Property hexagon_lldb_stack_adjust_property = 52 DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust, 53 0, qdev_prop_uint32, target_ulong); 54 55 const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = { 56 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 58 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 59 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", 60 "sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1", 61 "usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15", 62 "c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "c22", "c23", 63 "c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31", 64 }; 65 66 /* 67 * One of the main debugging techniques is to use "-d cpu" and compare against 68 * LLDB output when single stepping. However, the target and qemu put the 69 * stacks at different locations. This is used to compensate so the diff is 70 * cleaner. 71 */ 72 static target_ulong adjust_stack_ptrs(CPUHexagonState *env, target_ulong addr) 73 { 74 HexagonCPU *cpu = env_archcpu(env); 75 target_ulong stack_adjust = cpu->lldb_stack_adjust; 76 target_ulong stack_start = env->stack_start; 77 target_ulong stack_size = 0x10000; 78 79 if (stack_adjust == 0) { 80 return addr; 81 } 82 83 if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) { 84 return addr - stack_adjust; 85 } 86 return addr; 87 } 88 89 /* HEX_REG_P3_0 (aka C4) is an alias for the predicate registers */ 90 static target_ulong read_p3_0(CPUHexagonState *env) 91 { 92 int32_t control_reg = 0; 93 int i; 94 for (i = NUM_PREGS - 1; i >= 0; i--) { 95 control_reg <<= 8; 96 control_reg |= env->pred[i] & 0xff; 97 } 98 return control_reg; 99 } 100 101 static void print_reg(FILE *f, CPUHexagonState *env, int regnum) 102 { 103 target_ulong value; 104 105 if (regnum == HEX_REG_P3_0) { 106 value = read_p3_0(env); 107 } else { 108 value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum]) 109 : env->gpr[regnum]; 110 } 111 112 qemu_fprintf(f, " %s = 0x" TARGET_FMT_lx "\n", 113 hexagon_regnames[regnum], value); 114 } 115 116 static void hexagon_dump(CPUHexagonState *env, FILE *f) 117 { 118 HexagonCPU *cpu = env_archcpu(env); 119 120 if (cpu->lldb_compat) { 121 /* 122 * When comparing with LLDB, it doesn't step through single-cycle 123 * hardware loops the same way. So, we just skip them here 124 */ 125 if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) { 126 return; 127 } 128 env->last_pc_dumped = env->gpr[HEX_REG_PC]; 129 } 130 131 qemu_fprintf(f, "General Purpose Registers = {\n"); 132 for (int i = 0; i < 32; i++) { 133 print_reg(f, env, i); 134 } 135 print_reg(f, env, HEX_REG_SA0); 136 print_reg(f, env, HEX_REG_LC0); 137 print_reg(f, env, HEX_REG_SA1); 138 print_reg(f, env, HEX_REG_LC1); 139 print_reg(f, env, HEX_REG_M0); 140 print_reg(f, env, HEX_REG_M1); 141 print_reg(f, env, HEX_REG_USR); 142 print_reg(f, env, HEX_REG_P3_0); 143 print_reg(f, env, HEX_REG_GP); 144 print_reg(f, env, HEX_REG_UGP); 145 print_reg(f, env, HEX_REG_PC); 146 #ifdef CONFIG_USER_ONLY 147 /* 148 * Not modelled in user mode, print junk to minimize the diff's 149 * with LLDB output 150 */ 151 qemu_fprintf(f, " cause = 0x000000db\n"); 152 qemu_fprintf(f, " badva = 0x00000000\n"); 153 qemu_fprintf(f, " cs0 = 0x00000000\n"); 154 qemu_fprintf(f, " cs1 = 0x00000000\n"); 155 #else 156 print_reg(f, env, HEX_REG_CAUSE); 157 print_reg(f, env, HEX_REG_BADVA); 158 print_reg(f, env, HEX_REG_CS0); 159 print_reg(f, env, HEX_REG_CS1); 160 #endif 161 qemu_fprintf(f, "}\n"); 162 } 163 164 static void hexagon_dump_state(CPUState *cs, FILE *f, int flags) 165 { 166 HexagonCPU *cpu = HEXAGON_CPU(cs); 167 CPUHexagonState *env = &cpu->env; 168 169 hexagon_dump(env, f); 170 } 171 172 void hexagon_debug(CPUHexagonState *env) 173 { 174 hexagon_dump(env, stdout); 175 } 176 177 static void hexagon_cpu_set_pc(CPUState *cs, vaddr value) 178 { 179 HexagonCPU *cpu = HEXAGON_CPU(cs); 180 CPUHexagonState *env = &cpu->env; 181 env->gpr[HEX_REG_PC] = value; 182 } 183 184 static void hexagon_cpu_synchronize_from_tb(CPUState *cs, 185 const TranslationBlock *tb) 186 { 187 HexagonCPU *cpu = HEXAGON_CPU(cs); 188 CPUHexagonState *env = &cpu->env; 189 env->gpr[HEX_REG_PC] = tb->pc; 190 } 191 192 static bool hexagon_cpu_has_work(CPUState *cs) 193 { 194 return true; 195 } 196 197 void restore_state_to_opc(CPUHexagonState *env, TranslationBlock *tb, 198 target_ulong *data) 199 { 200 env->gpr[HEX_REG_PC] = data[0]; 201 } 202 203 static void hexagon_cpu_reset(DeviceState *dev) 204 { 205 CPUState *cs = CPU(dev); 206 HexagonCPU *cpu = HEXAGON_CPU(cs); 207 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu); 208 CPUHexagonState *env = &cpu->env; 209 210 mcc->parent_reset(dev); 211 212 set_default_nan_mode(1, &env->fp_status); 213 set_float_detect_tininess(float_tininess_before_rounding, &env->fp_status); 214 } 215 216 static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info) 217 { 218 info->print_insn = print_insn_hexagon; 219 } 220 221 static void hexagon_cpu_realize(DeviceState *dev, Error **errp) 222 { 223 CPUState *cs = CPU(dev); 224 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev); 225 Error *local_err = NULL; 226 227 cpu_exec_realizefn(cs, &local_err); 228 if (local_err != NULL) { 229 error_propagate(errp, local_err); 230 return; 231 } 232 233 qemu_init_vcpu(cs); 234 cpu_reset(cs); 235 236 mcc->parent_realize(dev, errp); 237 } 238 239 static void hexagon_cpu_init(Object *obj) 240 { 241 HexagonCPU *cpu = HEXAGON_CPU(obj); 242 243 cpu_set_cpustate_pointers(cpu); 244 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property); 245 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property); 246 } 247 248 static bool hexagon_tlb_fill(CPUState *cs, vaddr address, int size, 249 MMUAccessType access_type, int mmu_idx, 250 bool probe, uintptr_t retaddr) 251 { 252 #ifdef CONFIG_USER_ONLY 253 switch (access_type) { 254 case MMU_INST_FETCH: 255 cs->exception_index = HEX_EXCP_FETCH_NO_UPAGE; 256 break; 257 case MMU_DATA_LOAD: 258 cs->exception_index = HEX_EXCP_PRIV_NO_UREAD; 259 break; 260 case MMU_DATA_STORE: 261 cs->exception_index = HEX_EXCP_PRIV_NO_UWRITE; 262 break; 263 } 264 cpu_loop_exit_restore(cs, retaddr); 265 #else 266 #error System mode not implemented for Hexagon 267 #endif 268 } 269 270 #include "hw/core/tcg-cpu-ops.h" 271 272 static const struct TCGCPUOps hexagon_tcg_ops = { 273 .initialize = hexagon_translate_init, 274 .synchronize_from_tb = hexagon_cpu_synchronize_from_tb, 275 .tlb_fill = hexagon_tlb_fill, 276 }; 277 278 static void hexagon_cpu_class_init(ObjectClass *c, void *data) 279 { 280 HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c); 281 CPUClass *cc = CPU_CLASS(c); 282 DeviceClass *dc = DEVICE_CLASS(c); 283 284 device_class_set_parent_realize(dc, hexagon_cpu_realize, 285 &mcc->parent_realize); 286 287 device_class_set_parent_reset(dc, hexagon_cpu_reset, &mcc->parent_reset); 288 289 cc->class_by_name = hexagon_cpu_class_by_name; 290 cc->has_work = hexagon_cpu_has_work; 291 cc->dump_state = hexagon_dump_state; 292 cc->set_pc = hexagon_cpu_set_pc; 293 cc->gdb_read_register = hexagon_gdb_read_register; 294 cc->gdb_write_register = hexagon_gdb_write_register; 295 cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS; 296 cc->gdb_stop_before_watchpoint = true; 297 cc->disas_set_info = hexagon_cpu_disas_set_info; 298 cc->tcg_ops = &hexagon_tcg_ops; 299 } 300 301 #define DEFINE_CPU(type_name, initfn) \ 302 { \ 303 .name = type_name, \ 304 .parent = TYPE_HEXAGON_CPU, \ 305 .instance_init = initfn \ 306 } 307 308 static const TypeInfo hexagon_cpu_type_infos[] = { 309 { 310 .name = TYPE_HEXAGON_CPU, 311 .parent = TYPE_CPU, 312 .instance_size = sizeof(HexagonCPU), 313 .instance_init = hexagon_cpu_init, 314 .abstract = true, 315 .class_size = sizeof(HexagonCPUClass), 316 .class_init = hexagon_cpu_class_init, 317 }, 318 DEFINE_CPU(TYPE_HEXAGON_CPU_V67, hexagon_v67_cpu_init), 319 }; 320 321 DEFINE_TYPES(hexagon_cpu_type_infos) 322