1 /* 2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include "qemu/osdep.h" 19 #include "qemu/qemu-print.h" 20 #include "cpu.h" 21 #include "internal.h" 22 #include "exec/exec-all.h" 23 #include "qapi/error.h" 24 #include "hw/qdev-properties.h" 25 #include "fpu/softfloat-helpers.h" 26 #include "tcg/tcg.h" 27 #include "exec/gdbstub.h" 28 29 static void hexagon_v67_cpu_init(Object *obj) { } 30 static void hexagon_v68_cpu_init(Object *obj) { } 31 static void hexagon_v69_cpu_init(Object *obj) { } 32 static void hexagon_v71_cpu_init(Object *obj) { } 33 static void hexagon_v73_cpu_init(Object *obj) { } 34 35 static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model) 36 { 37 ObjectClass *oc; 38 char *typename; 39 char **cpuname; 40 41 cpuname = g_strsplit(cpu_model, ",", 1); 42 typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]); 43 oc = object_class_by_name(typename); 44 g_strfreev(cpuname); 45 g_free(typename); 46 47 return oc; 48 } 49 50 static Property hexagon_lldb_compat_property = 51 DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false); 52 static Property hexagon_lldb_stack_adjust_property = 53 DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust, 54 0, qdev_prop_uint32, target_ulong); 55 static Property hexagon_short_circuit_property = 56 DEFINE_PROP_BOOL("short-circuit", HexagonCPU, short_circuit, true); 57 58 const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = { 59 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 60 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 61 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 62 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", 63 "sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1", 64 "usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15", 65 "c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "hvx_cnt", "c23", 66 "c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31", 67 }; 68 69 /* 70 * One of the main debugging techniques is to use "-d cpu" and compare against 71 * LLDB output when single stepping. However, the target and qemu put the 72 * stacks at different locations. This is used to compensate so the diff is 73 * cleaner. 74 */ 75 static target_ulong adjust_stack_ptrs(CPUHexagonState *env, target_ulong addr) 76 { 77 HexagonCPU *cpu = env_archcpu(env); 78 target_ulong stack_adjust = cpu->lldb_stack_adjust; 79 target_ulong stack_start = env->stack_start; 80 target_ulong stack_size = 0x10000; 81 82 if (stack_adjust == 0) { 83 return addr; 84 } 85 86 if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) { 87 return addr - stack_adjust; 88 } 89 return addr; 90 } 91 92 /* HEX_REG_P3_0_ALIASED (aka C4) is an alias for the predicate registers */ 93 static target_ulong read_p3_0(CPUHexagonState *env) 94 { 95 int32_t control_reg = 0; 96 int i; 97 for (i = NUM_PREGS - 1; i >= 0; i--) { 98 control_reg <<= 8; 99 control_reg |= env->pred[i] & 0xff; 100 } 101 return control_reg; 102 } 103 104 static void print_reg(FILE *f, CPUHexagonState *env, int regnum) 105 { 106 target_ulong value; 107 108 if (regnum == HEX_REG_P3_0_ALIASED) { 109 value = read_p3_0(env); 110 } else { 111 value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum]) 112 : env->gpr[regnum]; 113 } 114 115 qemu_fprintf(f, " %s = 0x" TARGET_FMT_lx "\n", 116 hexagon_regnames[regnum], value); 117 } 118 119 static void print_vreg(FILE *f, CPUHexagonState *env, int regnum, 120 bool skip_if_zero) 121 { 122 if (skip_if_zero) { 123 bool nonzero_found = false; 124 for (int i = 0; i < MAX_VEC_SIZE_BYTES; i++) { 125 if (env->VRegs[regnum].ub[i] != 0) { 126 nonzero_found = true; 127 break; 128 } 129 } 130 if (!nonzero_found) { 131 return; 132 } 133 } 134 135 qemu_fprintf(f, " v%d = ( ", regnum); 136 qemu_fprintf(f, "0x%02x", env->VRegs[regnum].ub[MAX_VEC_SIZE_BYTES - 1]); 137 for (int i = MAX_VEC_SIZE_BYTES - 2; i >= 0; i--) { 138 qemu_fprintf(f, ", 0x%02x", env->VRegs[regnum].ub[i]); 139 } 140 qemu_fprintf(f, " )\n"); 141 } 142 143 void hexagon_debug_vreg(CPUHexagonState *env, int regnum) 144 { 145 print_vreg(stdout, env, regnum, false); 146 } 147 148 static void print_qreg(FILE *f, CPUHexagonState *env, int regnum, 149 bool skip_if_zero) 150 { 151 if (skip_if_zero) { 152 bool nonzero_found = false; 153 for (int i = 0; i < MAX_VEC_SIZE_BYTES / 8; i++) { 154 if (env->QRegs[regnum].ub[i] != 0) { 155 nonzero_found = true; 156 break; 157 } 158 } 159 if (!nonzero_found) { 160 return; 161 } 162 } 163 164 qemu_fprintf(f, " q%d = ( ", regnum); 165 qemu_fprintf(f, "0x%02x", 166 env->QRegs[regnum].ub[MAX_VEC_SIZE_BYTES / 8 - 1]); 167 for (int i = MAX_VEC_SIZE_BYTES / 8 - 2; i >= 0; i--) { 168 qemu_fprintf(f, ", 0x%02x", env->QRegs[regnum].ub[i]); 169 } 170 qemu_fprintf(f, " )\n"); 171 } 172 173 void hexagon_debug_qreg(CPUHexagonState *env, int regnum) 174 { 175 print_qreg(stdout, env, regnum, false); 176 } 177 178 static void hexagon_dump(CPUHexagonState *env, FILE *f, int flags) 179 { 180 HexagonCPU *cpu = env_archcpu(env); 181 182 if (cpu->lldb_compat) { 183 /* 184 * When comparing with LLDB, it doesn't step through single-cycle 185 * hardware loops the same way. So, we just skip them here 186 */ 187 if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) { 188 return; 189 } 190 env->last_pc_dumped = env->gpr[HEX_REG_PC]; 191 } 192 193 qemu_fprintf(f, "General Purpose Registers = {\n"); 194 for (int i = 0; i < 32; i++) { 195 print_reg(f, env, i); 196 } 197 print_reg(f, env, HEX_REG_SA0); 198 print_reg(f, env, HEX_REG_LC0); 199 print_reg(f, env, HEX_REG_SA1); 200 print_reg(f, env, HEX_REG_LC1); 201 print_reg(f, env, HEX_REG_M0); 202 print_reg(f, env, HEX_REG_M1); 203 print_reg(f, env, HEX_REG_USR); 204 print_reg(f, env, HEX_REG_P3_0_ALIASED); 205 print_reg(f, env, HEX_REG_GP); 206 print_reg(f, env, HEX_REG_UGP); 207 print_reg(f, env, HEX_REG_PC); 208 #ifdef CONFIG_USER_ONLY 209 /* 210 * Not modelled in user mode, print junk to minimize the diff's 211 * with LLDB output 212 */ 213 qemu_fprintf(f, " cause = 0x000000db\n"); 214 qemu_fprintf(f, " badva = 0x00000000\n"); 215 qemu_fprintf(f, " cs0 = 0x00000000\n"); 216 qemu_fprintf(f, " cs1 = 0x00000000\n"); 217 #else 218 print_reg(f, env, HEX_REG_CAUSE); 219 print_reg(f, env, HEX_REG_BADVA); 220 print_reg(f, env, HEX_REG_CS0); 221 print_reg(f, env, HEX_REG_CS1); 222 #endif 223 qemu_fprintf(f, "}\n"); 224 225 if (flags & CPU_DUMP_FPU) { 226 qemu_fprintf(f, "Vector Registers = {\n"); 227 for (int i = 0; i < NUM_VREGS; i++) { 228 print_vreg(f, env, i, true); 229 } 230 for (int i = 0; i < NUM_QREGS; i++) { 231 print_qreg(f, env, i, true); 232 } 233 qemu_fprintf(f, "}\n"); 234 } 235 } 236 237 static void hexagon_dump_state(CPUState *cs, FILE *f, int flags) 238 { 239 HexagonCPU *cpu = HEXAGON_CPU(cs); 240 CPUHexagonState *env = &cpu->env; 241 242 hexagon_dump(env, f, flags); 243 } 244 245 void hexagon_debug(CPUHexagonState *env) 246 { 247 hexagon_dump(env, stdout, CPU_DUMP_FPU); 248 } 249 250 static void hexagon_cpu_set_pc(CPUState *cs, vaddr value) 251 { 252 HexagonCPU *cpu = HEXAGON_CPU(cs); 253 CPUHexagonState *env = &cpu->env; 254 env->gpr[HEX_REG_PC] = value; 255 } 256 257 static vaddr hexagon_cpu_get_pc(CPUState *cs) 258 { 259 HexagonCPU *cpu = HEXAGON_CPU(cs); 260 CPUHexagonState *env = &cpu->env; 261 return env->gpr[HEX_REG_PC]; 262 } 263 264 static void hexagon_cpu_synchronize_from_tb(CPUState *cs, 265 const TranslationBlock *tb) 266 { 267 HexagonCPU *cpu = HEXAGON_CPU(cs); 268 CPUHexagonState *env = &cpu->env; 269 tcg_debug_assert(!(cs->tcg_cflags & CF_PCREL)); 270 env->gpr[HEX_REG_PC] = tb->pc; 271 } 272 273 static bool hexagon_cpu_has_work(CPUState *cs) 274 { 275 return true; 276 } 277 278 static void hexagon_restore_state_to_opc(CPUState *cs, 279 const TranslationBlock *tb, 280 const uint64_t *data) 281 { 282 HexagonCPU *cpu = HEXAGON_CPU(cs); 283 CPUHexagonState *env = &cpu->env; 284 285 env->gpr[HEX_REG_PC] = data[0]; 286 } 287 288 static void hexagon_cpu_reset_hold(Object *obj) 289 { 290 CPUState *cs = CPU(obj); 291 HexagonCPU *cpu = HEXAGON_CPU(cs); 292 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu); 293 CPUHexagonState *env = &cpu->env; 294 295 if (mcc->parent_phases.hold) { 296 mcc->parent_phases.hold(obj); 297 } 298 299 set_default_nan_mode(1, &env->fp_status); 300 set_float_detect_tininess(float_tininess_before_rounding, &env->fp_status); 301 } 302 303 static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info) 304 { 305 info->print_insn = print_insn_hexagon; 306 } 307 308 static void hexagon_cpu_realize(DeviceState *dev, Error **errp) 309 { 310 CPUState *cs = CPU(dev); 311 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev); 312 Error *local_err = NULL; 313 314 cpu_exec_realizefn(cs, &local_err); 315 if (local_err != NULL) { 316 error_propagate(errp, local_err); 317 return; 318 } 319 320 gdb_register_coprocessor(cs, hexagon_hvx_gdb_read_register, 321 hexagon_hvx_gdb_write_register, 322 gdb_find_static_feature("hexagon-hvx.xml"), 0); 323 324 qemu_init_vcpu(cs); 325 cpu_reset(cs); 326 327 mcc->parent_realize(dev, errp); 328 } 329 330 static void hexagon_cpu_init(Object *obj) 331 { 332 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property); 333 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property); 334 qdev_property_add_static(DEVICE(obj), &hexagon_short_circuit_property); 335 } 336 337 #include "hw/core/tcg-cpu-ops.h" 338 339 static const TCGCPUOps hexagon_tcg_ops = { 340 .initialize = hexagon_translate_init, 341 .synchronize_from_tb = hexagon_cpu_synchronize_from_tb, 342 .restore_state_to_opc = hexagon_restore_state_to_opc, 343 }; 344 345 static void hexagon_cpu_class_init(ObjectClass *c, void *data) 346 { 347 HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c); 348 CPUClass *cc = CPU_CLASS(c); 349 DeviceClass *dc = DEVICE_CLASS(c); 350 ResettableClass *rc = RESETTABLE_CLASS(c); 351 352 device_class_set_parent_realize(dc, hexagon_cpu_realize, 353 &mcc->parent_realize); 354 355 resettable_class_set_parent_phases(rc, NULL, hexagon_cpu_reset_hold, NULL, 356 &mcc->parent_phases); 357 358 cc->class_by_name = hexagon_cpu_class_by_name; 359 cc->has_work = hexagon_cpu_has_work; 360 cc->dump_state = hexagon_dump_state; 361 cc->set_pc = hexagon_cpu_set_pc; 362 cc->get_pc = hexagon_cpu_get_pc; 363 cc->gdb_read_register = hexagon_gdb_read_register; 364 cc->gdb_write_register = hexagon_gdb_write_register; 365 cc->gdb_stop_before_watchpoint = true; 366 cc->gdb_core_xml_file = "hexagon-core.xml"; 367 cc->disas_set_info = hexagon_cpu_disas_set_info; 368 cc->tcg_ops = &hexagon_tcg_ops; 369 } 370 371 #define DEFINE_CPU(type_name, initfn) \ 372 { \ 373 .name = type_name, \ 374 .parent = TYPE_HEXAGON_CPU, \ 375 .instance_init = initfn \ 376 } 377 378 static const TypeInfo hexagon_cpu_type_infos[] = { 379 { 380 .name = TYPE_HEXAGON_CPU, 381 .parent = TYPE_CPU, 382 .instance_size = sizeof(HexagonCPU), 383 .instance_align = __alignof(HexagonCPU), 384 .instance_init = hexagon_cpu_init, 385 .abstract = true, 386 .class_size = sizeof(HexagonCPUClass), 387 .class_init = hexagon_cpu_class_init, 388 }, 389 DEFINE_CPU(TYPE_HEXAGON_CPU_V67, hexagon_v67_cpu_init), 390 DEFINE_CPU(TYPE_HEXAGON_CPU_V68, hexagon_v68_cpu_init), 391 DEFINE_CPU(TYPE_HEXAGON_CPU_V69, hexagon_v69_cpu_init), 392 DEFINE_CPU(TYPE_HEXAGON_CPU_V71, hexagon_v71_cpu_init), 393 DEFINE_CPU(TYPE_HEXAGON_CPU_V73, hexagon_v73_cpu_init), 394 }; 395 396 DEFINE_TYPES(hexagon_cpu_type_infos) 397