1 /* 2 * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include "qemu/osdep.h" 19 #include "qemu/qemu-print.h" 20 #include "cpu.h" 21 #include "internal.h" 22 #include "exec/exec-all.h" 23 #include "qapi/error.h" 24 #include "hw/qdev-properties.h" 25 #include "fpu/softfloat-helpers.h" 26 27 static void hexagon_v67_cpu_init(Object *obj) 28 { 29 } 30 31 static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model) 32 { 33 ObjectClass *oc; 34 char *typename; 35 char **cpuname; 36 37 cpuname = g_strsplit(cpu_model, ",", 1); 38 typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]); 39 oc = object_class_by_name(typename); 40 g_strfreev(cpuname); 41 g_free(typename); 42 if (!oc || !object_class_dynamic_cast(oc, TYPE_HEXAGON_CPU) || 43 object_class_is_abstract(oc)) { 44 return NULL; 45 } 46 return oc; 47 } 48 49 static Property hexagon_lldb_compat_property = 50 DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false); 51 static Property hexagon_lldb_stack_adjust_property = 52 DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust, 53 0, qdev_prop_uint32, target_ulong); 54 55 const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = { 56 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 58 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 59 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", 60 "sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1", 61 "usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15", 62 "c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "hvx_cnt", "c23", 63 "c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31", 64 }; 65 66 /* 67 * One of the main debugging techniques is to use "-d cpu" and compare against 68 * LLDB output when single stepping. However, the target and qemu put the 69 * stacks at different locations. This is used to compensate so the diff is 70 * cleaner. 71 */ 72 static target_ulong adjust_stack_ptrs(CPUHexagonState *env, target_ulong addr) 73 { 74 HexagonCPU *cpu = env_archcpu(env); 75 target_ulong stack_adjust = cpu->lldb_stack_adjust; 76 target_ulong stack_start = env->stack_start; 77 target_ulong stack_size = 0x10000; 78 79 if (stack_adjust == 0) { 80 return addr; 81 } 82 83 if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) { 84 return addr - stack_adjust; 85 } 86 return addr; 87 } 88 89 /* HEX_REG_P3_0_ALIASED (aka C4) is an alias for the predicate registers */ 90 static target_ulong read_p3_0(CPUHexagonState *env) 91 { 92 int32_t control_reg = 0; 93 int i; 94 for (i = NUM_PREGS - 1; i >= 0; i--) { 95 control_reg <<= 8; 96 control_reg |= env->pred[i] & 0xff; 97 } 98 return control_reg; 99 } 100 101 static void print_reg(FILE *f, CPUHexagonState *env, int regnum) 102 { 103 target_ulong value; 104 105 if (regnum == HEX_REG_P3_0_ALIASED) { 106 value = read_p3_0(env); 107 } else { 108 value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum]) 109 : env->gpr[regnum]; 110 } 111 112 qemu_fprintf(f, " %s = 0x" TARGET_FMT_lx "\n", 113 hexagon_regnames[regnum], value); 114 } 115 116 static void print_vreg(FILE *f, CPUHexagonState *env, int regnum, 117 bool skip_if_zero) 118 { 119 if (skip_if_zero) { 120 bool nonzero_found = false; 121 for (int i = 0; i < MAX_VEC_SIZE_BYTES; i++) { 122 if (env->VRegs[regnum].ub[i] != 0) { 123 nonzero_found = true; 124 break; 125 } 126 } 127 if (!nonzero_found) { 128 return; 129 } 130 } 131 132 qemu_fprintf(f, " v%d = ( ", regnum); 133 qemu_fprintf(f, "0x%02x", env->VRegs[regnum].ub[MAX_VEC_SIZE_BYTES - 1]); 134 for (int i = MAX_VEC_SIZE_BYTES - 2; i >= 0; i--) { 135 qemu_fprintf(f, ", 0x%02x", env->VRegs[regnum].ub[i]); 136 } 137 qemu_fprintf(f, " )\n"); 138 } 139 140 void hexagon_debug_vreg(CPUHexagonState *env, int regnum) 141 { 142 print_vreg(stdout, env, regnum, false); 143 } 144 145 static void print_qreg(FILE *f, CPUHexagonState *env, int regnum, 146 bool skip_if_zero) 147 { 148 if (skip_if_zero) { 149 bool nonzero_found = false; 150 for (int i = 0; i < MAX_VEC_SIZE_BYTES / 8; i++) { 151 if (env->QRegs[regnum].ub[i] != 0) { 152 nonzero_found = true; 153 break; 154 } 155 } 156 if (!nonzero_found) { 157 return; 158 } 159 } 160 161 qemu_fprintf(f, " q%d = ( ", regnum); 162 qemu_fprintf(f, "0x%02x", 163 env->QRegs[regnum].ub[MAX_VEC_SIZE_BYTES / 8 - 1]); 164 for (int i = MAX_VEC_SIZE_BYTES / 8 - 2; i >= 0; i--) { 165 qemu_fprintf(f, ", 0x%02x", env->QRegs[regnum].ub[i]); 166 } 167 qemu_fprintf(f, " )\n"); 168 } 169 170 void hexagon_debug_qreg(CPUHexagonState *env, int regnum) 171 { 172 print_qreg(stdout, env, regnum, false); 173 } 174 175 static void hexagon_dump(CPUHexagonState *env, FILE *f, int flags) 176 { 177 HexagonCPU *cpu = env_archcpu(env); 178 179 if (cpu->lldb_compat) { 180 /* 181 * When comparing with LLDB, it doesn't step through single-cycle 182 * hardware loops the same way. So, we just skip them here 183 */ 184 if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) { 185 return; 186 } 187 env->last_pc_dumped = env->gpr[HEX_REG_PC]; 188 } 189 190 qemu_fprintf(f, "General Purpose Registers = {\n"); 191 for (int i = 0; i < 32; i++) { 192 print_reg(f, env, i); 193 } 194 print_reg(f, env, HEX_REG_SA0); 195 print_reg(f, env, HEX_REG_LC0); 196 print_reg(f, env, HEX_REG_SA1); 197 print_reg(f, env, HEX_REG_LC1); 198 print_reg(f, env, HEX_REG_M0); 199 print_reg(f, env, HEX_REG_M1); 200 print_reg(f, env, HEX_REG_USR); 201 print_reg(f, env, HEX_REG_P3_0_ALIASED); 202 print_reg(f, env, HEX_REG_GP); 203 print_reg(f, env, HEX_REG_UGP); 204 print_reg(f, env, HEX_REG_PC); 205 #ifdef CONFIG_USER_ONLY 206 /* 207 * Not modelled in user mode, print junk to minimize the diff's 208 * with LLDB output 209 */ 210 qemu_fprintf(f, " cause = 0x000000db\n"); 211 qemu_fprintf(f, " badva = 0x00000000\n"); 212 qemu_fprintf(f, " cs0 = 0x00000000\n"); 213 qemu_fprintf(f, " cs1 = 0x00000000\n"); 214 #else 215 print_reg(f, env, HEX_REG_CAUSE); 216 print_reg(f, env, HEX_REG_BADVA); 217 print_reg(f, env, HEX_REG_CS0); 218 print_reg(f, env, HEX_REG_CS1); 219 #endif 220 qemu_fprintf(f, "}\n"); 221 222 if (flags & CPU_DUMP_FPU) { 223 qemu_fprintf(f, "Vector Registers = {\n"); 224 for (int i = 0; i < NUM_VREGS; i++) { 225 print_vreg(f, env, i, true); 226 } 227 for (int i = 0; i < NUM_QREGS; i++) { 228 print_qreg(f, env, i, true); 229 } 230 qemu_fprintf(f, "}\n"); 231 } 232 } 233 234 static void hexagon_dump_state(CPUState *cs, FILE *f, int flags) 235 { 236 HexagonCPU *cpu = HEXAGON_CPU(cs); 237 CPUHexagonState *env = &cpu->env; 238 239 hexagon_dump(env, f, flags); 240 } 241 242 void hexagon_debug(CPUHexagonState *env) 243 { 244 hexagon_dump(env, stdout, CPU_DUMP_FPU); 245 } 246 247 static void hexagon_cpu_set_pc(CPUState *cs, vaddr value) 248 { 249 HexagonCPU *cpu = HEXAGON_CPU(cs); 250 CPUHexagonState *env = &cpu->env; 251 env->gpr[HEX_REG_PC] = value; 252 } 253 254 static vaddr hexagon_cpu_get_pc(CPUState *cs) 255 { 256 HexagonCPU *cpu = HEXAGON_CPU(cs); 257 CPUHexagonState *env = &cpu->env; 258 return env->gpr[HEX_REG_PC]; 259 } 260 261 static void hexagon_cpu_synchronize_from_tb(CPUState *cs, 262 const TranslationBlock *tb) 263 { 264 HexagonCPU *cpu = HEXAGON_CPU(cs); 265 CPUHexagonState *env = &cpu->env; 266 env->gpr[HEX_REG_PC] = tb_pc(tb); 267 } 268 269 static bool hexagon_cpu_has_work(CPUState *cs) 270 { 271 return true; 272 } 273 274 static void hexagon_restore_state_to_opc(CPUState *cs, 275 const TranslationBlock *tb, 276 const uint64_t *data) 277 { 278 HexagonCPU *cpu = HEXAGON_CPU(cs); 279 CPUHexagonState *env = &cpu->env; 280 281 env->gpr[HEX_REG_PC] = data[0]; 282 } 283 284 static void hexagon_cpu_reset_hold(Object *obj) 285 { 286 CPUState *cs = CPU(obj); 287 HexagonCPU *cpu = HEXAGON_CPU(cs); 288 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu); 289 CPUHexagonState *env = &cpu->env; 290 291 if (mcc->parent_phases.hold) { 292 mcc->parent_phases.hold(obj); 293 } 294 295 set_default_nan_mode(1, &env->fp_status); 296 set_float_detect_tininess(float_tininess_before_rounding, &env->fp_status); 297 } 298 299 static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info) 300 { 301 info->print_insn = print_insn_hexagon; 302 } 303 304 static void hexagon_cpu_realize(DeviceState *dev, Error **errp) 305 { 306 CPUState *cs = CPU(dev); 307 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev); 308 Error *local_err = NULL; 309 310 cpu_exec_realizefn(cs, &local_err); 311 if (local_err != NULL) { 312 error_propagate(errp, local_err); 313 return; 314 } 315 316 qemu_init_vcpu(cs); 317 cpu_reset(cs); 318 319 mcc->parent_realize(dev, errp); 320 } 321 322 static void hexagon_cpu_init(Object *obj) 323 { 324 HexagonCPU *cpu = HEXAGON_CPU(obj); 325 326 cpu_set_cpustate_pointers(cpu); 327 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property); 328 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property); 329 } 330 331 #include "hw/core/tcg-cpu-ops.h" 332 333 static const struct TCGCPUOps hexagon_tcg_ops = { 334 .initialize = hexagon_translate_init, 335 .synchronize_from_tb = hexagon_cpu_synchronize_from_tb, 336 .restore_state_to_opc = hexagon_restore_state_to_opc, 337 }; 338 339 static void hexagon_cpu_class_init(ObjectClass *c, void *data) 340 { 341 HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c); 342 CPUClass *cc = CPU_CLASS(c); 343 DeviceClass *dc = DEVICE_CLASS(c); 344 ResettableClass *rc = RESETTABLE_CLASS(c); 345 346 device_class_set_parent_realize(dc, hexagon_cpu_realize, 347 &mcc->parent_realize); 348 349 resettable_class_set_parent_phases(rc, NULL, hexagon_cpu_reset_hold, NULL, 350 &mcc->parent_phases); 351 352 cc->class_by_name = hexagon_cpu_class_by_name; 353 cc->has_work = hexagon_cpu_has_work; 354 cc->dump_state = hexagon_dump_state; 355 cc->set_pc = hexagon_cpu_set_pc; 356 cc->get_pc = hexagon_cpu_get_pc; 357 cc->gdb_read_register = hexagon_gdb_read_register; 358 cc->gdb_write_register = hexagon_gdb_write_register; 359 cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS + NUM_VREGS + NUM_QREGS; 360 cc->gdb_stop_before_watchpoint = true; 361 cc->disas_set_info = hexagon_cpu_disas_set_info; 362 cc->tcg_ops = &hexagon_tcg_ops; 363 } 364 365 #define DEFINE_CPU(type_name, initfn) \ 366 { \ 367 .name = type_name, \ 368 .parent = TYPE_HEXAGON_CPU, \ 369 .instance_init = initfn \ 370 } 371 372 static const TypeInfo hexagon_cpu_type_infos[] = { 373 { 374 .name = TYPE_HEXAGON_CPU, 375 .parent = TYPE_CPU, 376 .instance_size = sizeof(HexagonCPU), 377 .instance_init = hexagon_cpu_init, 378 .abstract = true, 379 .class_size = sizeof(HexagonCPUClass), 380 .class_init = hexagon_cpu_class_init, 381 }, 382 DEFINE_CPU(TYPE_HEXAGON_CPU_V67, hexagon_v67_cpu_init), 383 }; 384 385 DEFINE_TYPES(hexagon_cpu_type_infos) 386