xref: /openbmc/qemu/target/hexagon/arch.c (revision c2387413)
1 /*
2  *  Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include "qemu/osdep.h"
19 #include "fpu/softfloat.h"
20 #include "cpu.h"
21 #include "fma_emu.h"
22 #include "arch.h"
23 #include "macros.h"
24 
25 #define SF_BIAS        127
26 #define SF_MAXEXP      254
27 #define SF_MANTBITS    23
28 #define float32_nan    make_float32(0xffffffff)
29 
30 #define BITS_MASK_8 0x5555555555555555ULL
31 #define PAIR_MASK_8 0x3333333333333333ULL
32 #define NYBL_MASK_8 0x0f0f0f0f0f0f0f0fULL
33 #define BYTE_MASK_8 0x00ff00ff00ff00ffULL
34 #define HALF_MASK_8 0x0000ffff0000ffffULL
35 #define WORD_MASK_8 0x00000000ffffffffULL
36 
37 uint64_t interleave(uint32_t odd, uint32_t even)
38 {
39     /* Convert to long long */
40     uint64_t myodd = odd;
41     uint64_t myeven = even;
42     /* First, spread bits out */
43     myodd = (myodd | (myodd << 16)) & HALF_MASK_8;
44     myeven = (myeven | (myeven << 16)) & HALF_MASK_8;
45     myodd = (myodd | (myodd << 8)) & BYTE_MASK_8;
46     myeven = (myeven | (myeven << 8)) & BYTE_MASK_8;
47     myodd = (myodd | (myodd << 4)) & NYBL_MASK_8;
48     myeven = (myeven | (myeven << 4)) & NYBL_MASK_8;
49     myodd = (myodd | (myodd << 2)) & PAIR_MASK_8;
50     myeven = (myeven | (myeven << 2)) & PAIR_MASK_8;
51     myodd = (myodd | (myodd << 1)) & BITS_MASK_8;
52     myeven = (myeven | (myeven << 1)) & BITS_MASK_8;
53     /* Now OR together */
54     return myeven | (myodd << 1);
55 }
56 
57 uint64_t deinterleave(uint64_t src)
58 {
59     /* Get odd and even bits */
60     uint64_t myodd = ((src >> 1) & BITS_MASK_8);
61     uint64_t myeven = (src & BITS_MASK_8);
62 
63     /* Unspread bits */
64     myeven = (myeven | (myeven >> 1)) & PAIR_MASK_8;
65     myodd = (myodd | (myodd >> 1)) & PAIR_MASK_8;
66     myeven = (myeven | (myeven >> 2)) & NYBL_MASK_8;
67     myodd = (myodd | (myodd >> 2)) & NYBL_MASK_8;
68     myeven = (myeven | (myeven >> 4)) & BYTE_MASK_8;
69     myodd = (myodd | (myodd >> 4)) & BYTE_MASK_8;
70     myeven = (myeven | (myeven >> 8)) & HALF_MASK_8;
71     myodd = (myodd | (myodd >> 8)) & HALF_MASK_8;
72     myeven = (myeven | (myeven >> 16)) & WORD_MASK_8;
73     myodd = (myodd | (myodd >> 16)) & WORD_MASK_8;
74 
75     /* Return odd bits in upper half */
76     return myeven | (myodd << 32);
77 }
78 
79 uint32_t carry_from_add64(uint64_t a, uint64_t b, uint32_t c)
80 {
81     uint64_t tmpa, tmpb, tmpc;
82     tmpa = fGETUWORD(0, a);
83     tmpb = fGETUWORD(0, b);
84     tmpc = tmpa + tmpb + c;
85     tmpa = fGETUWORD(1, a);
86     tmpb = fGETUWORD(1, b);
87     tmpc = tmpa + tmpb + fGETUWORD(1, tmpc);
88     tmpc = fGETUWORD(1, tmpc);
89     return tmpc;
90 }
91 
92 int32_t conv_round(int32_t a, int n)
93 {
94     int64_t val;
95 
96     if (n == 0) {
97         val = a;
98     } else if ((a & ((1 << (n - 1)) - 1)) == 0) {    /* N-1..0 all zero? */
99         /* Add LSB from int part */
100         val = ((fSE32_64(a)) + (int64_t) (((uint32_t) ((1 << n) & a)) >> 1));
101     } else {
102         val = ((fSE32_64(a)) + (1 << (n - 1)));
103     }
104 
105     val = val >> n;
106     return (int32_t)val;
107 }
108 
109 /* Floating Point Stuff */
110 
111 static const int softfloat_roundingmodes[] = {
112     float_round_nearest_even,
113     float_round_to_zero,
114     float_round_down,
115     float_round_up,
116 };
117 
118 void arch_fpop_start(CPUHexagonState *env)
119 {
120     set_float_exception_flags(0, &env->fp_status);
121     set_float_rounding_mode(
122         softfloat_roundingmodes[fREAD_REG_FIELD(USR, USR_FPRND)],
123         &env->fp_status);
124 }
125 
126 #ifdef CONFIG_USER_ONLY
127 /*
128  * Hexagon Linux kernel only sets the relevant bits in USR (user status
129  * register).  The exception isn't raised to user mode, so we don't
130  * model it in qemu user mode.
131  */
132 #define RAISE_FP_EXCEPTION   do {} while (0)
133 #endif
134 
135 #define SOFTFLOAT_TEST_FLAG(FLAG, MYF, MYE) \
136     do { \
137         if (flags & FLAG) { \
138             if (GET_USR_FIELD(USR_##MYF) == 0) { \
139                 SET_USR_FIELD(USR_##MYF, 1); \
140                 if (GET_USR_FIELD(USR_##MYE)) { \
141                     RAISE_FP_EXCEPTION; \
142                 } \
143             } \
144         } \
145     } while (0)
146 
147 void arch_fpop_end(CPUHexagonState *env)
148 {
149     int flags = get_float_exception_flags(&env->fp_status);
150     if (flags != 0) {
151         SOFTFLOAT_TEST_FLAG(float_flag_inexact, FPINPF, FPINPE);
152         SOFTFLOAT_TEST_FLAG(float_flag_divbyzero, FPDBZF, FPDBZE);
153         SOFTFLOAT_TEST_FLAG(float_flag_invalid, FPINVF, FPINVE);
154         SOFTFLOAT_TEST_FLAG(float_flag_overflow, FPOVFF, FPOVFE);
155         SOFTFLOAT_TEST_FLAG(float_flag_underflow, FPUNFF, FPUNFE);
156     }
157 }
158 
159 static float32 float32_mul_pow2(float32 a, uint32_t p, float_status *fp_status)
160 {
161     float32 b = make_float32((SF_BIAS + p) << SF_MANTBITS);
162     return float32_mul(a, b, fp_status);
163 }
164 
165 int arch_sf_recip_common(float32 *Rs, float32 *Rt, float32 *Rd, int *adjust,
166                          float_status *fp_status)
167 {
168     int n_exp;
169     int d_exp;
170     int ret = 0;
171     float32 RsV, RtV, RdV;
172     int PeV = 0;
173     RsV = *Rs;
174     RtV = *Rt;
175     if (float32_is_any_nan(RsV) && float32_is_any_nan(RtV)) {
176         if (extract32(RsV & RtV, 22, 1) == 0) {
177             float_raise(float_flag_invalid, fp_status);
178         }
179         RdV = RsV = RtV = float32_nan;
180     } else if (float32_is_any_nan(RsV)) {
181         if (extract32(RsV, 22, 1) == 0) {
182             float_raise(float_flag_invalid, fp_status);
183         }
184         RdV = RsV = RtV = float32_nan;
185     } else if (float32_is_any_nan(RtV)) {
186         /* or put NaN in num/den fixup? */
187         if (extract32(RtV, 22, 1) == 0) {
188             float_raise(float_flag_invalid, fp_status);
189         }
190         RdV = RsV = RtV = float32_nan;
191     } else if (float32_is_infinity(RsV) && float32_is_infinity(RtV)) {
192         /* or put Inf in num fixup? */
193         RdV = RsV = RtV = float32_nan;
194         float_raise(float_flag_invalid, fp_status);
195     } else if (float32_is_zero(RsV) && float32_is_zero(RtV)) {
196         /* or put zero in num fixup? */
197         RdV = RsV = RtV = float32_nan;
198         float_raise(float_flag_invalid, fp_status);
199     } else if (float32_is_zero(RtV)) {
200         /* or put Inf in num fixup? */
201         uint8_t RsV_sign = float32_is_neg(RsV);
202         uint8_t RtV_sign = float32_is_neg(RtV);
203         RsV = infinite_float32(RsV_sign ^ RtV_sign);
204         RtV = float32_one;
205         RdV = float32_one;
206         if (float32_is_infinity(RsV)) {
207             float_raise(float_flag_divbyzero, fp_status);
208         }
209     } else if (float32_is_infinity(RtV)) {
210         RsV = make_float32(0x80000000 & (RsV ^ RtV));
211         RtV = float32_one;
212         RdV = float32_one;
213     } else if (float32_is_zero(RsV)) {
214         /* Does this just work itself out? */
215         /* No, 0/Inf causes problems. */
216         RsV = make_float32(0x80000000 & (RsV ^ RtV));
217         RtV = float32_one;
218         RdV = float32_one;
219     } else if (float32_is_infinity(RsV)) {
220         uint8_t RsV_sign = float32_is_neg(RsV);
221         uint8_t RtV_sign = float32_is_neg(RtV);
222         RsV = infinite_float32(RsV_sign ^ RtV_sign);
223         RtV = float32_one;
224         RdV = float32_one;
225     } else {
226         PeV = 0x00;
227         /* Basic checks passed */
228         n_exp = float32_getexp(RsV);
229         d_exp = float32_getexp(RtV);
230         if ((n_exp - d_exp + SF_BIAS) <= SF_MANTBITS) {
231             /* Near quotient underflow / inexact Q */
232             PeV = 0x80;
233             RtV = float32_mul_pow2(RtV, -64, fp_status);
234             RsV = float32_mul_pow2(RsV, 64, fp_status);
235         } else if ((n_exp - d_exp + SF_BIAS) > (SF_MAXEXP - 24)) {
236             /* Near quotient overflow */
237             PeV = 0x40;
238             RtV = float32_mul_pow2(RtV, 32, fp_status);
239             RsV = float32_mul_pow2(RsV, -32, fp_status);
240         } else if (n_exp <= SF_MANTBITS + 2) {
241             RtV = float32_mul_pow2(RtV, 64, fp_status);
242             RsV = float32_mul_pow2(RsV, 64, fp_status);
243         } else if (d_exp <= 1) {
244             RtV = float32_mul_pow2(RtV, 32, fp_status);
245             RsV = float32_mul_pow2(RsV, 32, fp_status);
246         } else if (d_exp > 252) {
247             RtV = float32_mul_pow2(RtV, -32, fp_status);
248             RsV = float32_mul_pow2(RsV, -32, fp_status);
249         }
250         RdV = 0;
251         ret = 1;
252     }
253     *Rs = RsV;
254     *Rt = RtV;
255     *Rd = RdV;
256     *adjust = PeV;
257     return ret;
258 }
259 
260 int arch_sf_invsqrt_common(float32 *Rs, float32 *Rd, int *adjust,
261                            float_status *fp_status)
262 {
263     float32 RsV, RdV;
264     int PeV = 0;
265     int r_exp;
266     int ret = 0;
267     RsV = *Rs;
268     if (float32_is_infinity(RsV)) {
269         if (extract32(RsV, 22, 1) == 0) {
270             float_raise(float_flag_invalid, fp_status);
271         }
272         RdV = RsV = float32_nan;
273     } else if (float32_lt(RsV, float32_zero, fp_status)) {
274         /* Negative nonzero values are NaN */
275         float_raise(float_flag_invalid, fp_status);
276         RsV = float32_nan;
277         RdV = float32_nan;
278     } else if (float32_is_infinity(RsV)) {
279         /* or put Inf in num fixup? */
280         RsV = infinite_float32(1);
281         RdV = infinite_float32(1);
282     } else if (float32_is_zero(RsV)) {
283         /* or put zero in num fixup? */
284         RdV = float32_one;
285     } else {
286         PeV = 0x00;
287         /* Basic checks passed */
288         r_exp = float32_getexp(RsV);
289         if (r_exp <= 24) {
290             RsV = float32_mul_pow2(RsV, 64, fp_status);
291             PeV = 0xe0;
292         }
293         RdV = 0;
294         ret = 1;
295     }
296     *Rs = RsV;
297     *Rd = RdV;
298     *adjust = PeV;
299     return ret;
300 }
301