1 /* 2 * QEMU AVR CPU 3 * 4 * Copyright (c) 2019-2020 Michael Rolnik 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see 18 * <http://www.gnu.org/licenses/lgpl-2.1.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/qemu-print.h" 23 #include "tcg/tcg.h" 24 #include "cpu.h" 25 #include "exec/exec-all.h" 26 #include "tcg/tcg-op.h" 27 #include "exec/cpu_ldst.h" 28 #include "exec/helper-proto.h" 29 #include "exec/helper-gen.h" 30 #include "exec/log.h" 31 #include "exec/translator.h" 32 #include "exec/gen-icount.h" 33 34 /* 35 * Define if you want a BREAK instruction translated to a breakpoint 36 * Active debugging connection is assumed 37 * This is for 38 * https://github.com/seharris/qemu-avr-tests/tree/master/instruction-tests 39 * tests 40 */ 41 #undef BREAKPOINT_ON_BREAK 42 43 static TCGv cpu_pc; 44 45 static TCGv cpu_Cf; 46 static TCGv cpu_Zf; 47 static TCGv cpu_Nf; 48 static TCGv cpu_Vf; 49 static TCGv cpu_Sf; 50 static TCGv cpu_Hf; 51 static TCGv cpu_Tf; 52 static TCGv cpu_If; 53 54 static TCGv cpu_rampD; 55 static TCGv cpu_rampX; 56 static TCGv cpu_rampY; 57 static TCGv cpu_rampZ; 58 59 static TCGv cpu_r[NUMBER_OF_CPU_REGISTERS]; 60 static TCGv cpu_eind; 61 static TCGv cpu_sp; 62 63 static TCGv cpu_skip; 64 65 static const char reg_names[NUMBER_OF_CPU_REGISTERS][8] = { 66 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 67 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 68 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 69 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", 70 }; 71 #define REG(x) (cpu_r[x]) 72 73 #define DISAS_EXIT DISAS_TARGET_0 /* We want return to the cpu main loop. */ 74 #define DISAS_LOOKUP DISAS_TARGET_1 /* We have a variable condition exit. */ 75 #define DISAS_CHAIN DISAS_TARGET_2 /* We have a single condition exit. */ 76 77 typedef struct DisasContext DisasContext; 78 79 /* This is the state at translation time. */ 80 struct DisasContext { 81 DisasContextBase base; 82 83 CPUAVRState *env; 84 CPUState *cs; 85 86 target_long npc; 87 uint32_t opcode; 88 89 /* Routine used to access memory */ 90 int memidx; 91 92 /* 93 * some AVR instructions can make the following instruction to be skipped 94 * Let's name those instructions 95 * A - instruction that can skip the next one 96 * B - instruction that can be skipped. this depends on execution of A 97 * there are two scenarios 98 * 1. A and B belong to the same translation block 99 * 2. A is the last instruction in the translation block and B is the last 100 * 101 * following variables are used to simplify the skipping logic, they are 102 * used in the following manner (sketch) 103 * 104 * TCGLabel *skip_label = NULL; 105 * if (ctx->skip_cond != TCG_COND_NEVER) { 106 * skip_label = gen_new_label(); 107 * tcg_gen_brcond_tl(skip_cond, skip_var0, skip_var1, skip_label); 108 * } 109 * 110 * if (free_skip_var0) { 111 * tcg_temp_free(skip_var0); 112 * free_skip_var0 = false; 113 * } 114 * 115 * translate(ctx); 116 * 117 * if (skip_label) { 118 * gen_set_label(skip_label); 119 * } 120 */ 121 TCGv skip_var0; 122 TCGv skip_var1; 123 TCGCond skip_cond; 124 bool free_skip_var0; 125 }; 126 127 void avr_cpu_tcg_init(void) 128 { 129 int i; 130 131 #define AVR_REG_OFFS(x) offsetof(CPUAVRState, x) 132 cpu_pc = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(pc_w), "pc"); 133 cpu_Cf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregC), "Cf"); 134 cpu_Zf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregZ), "Zf"); 135 cpu_Nf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregN), "Nf"); 136 cpu_Vf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregV), "Vf"); 137 cpu_Sf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregS), "Sf"); 138 cpu_Hf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregH), "Hf"); 139 cpu_Tf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregT), "Tf"); 140 cpu_If = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregI), "If"); 141 cpu_rampD = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampD), "rampD"); 142 cpu_rampX = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampX), "rampX"); 143 cpu_rampY = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampY), "rampY"); 144 cpu_rampZ = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampZ), "rampZ"); 145 cpu_eind = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(eind), "eind"); 146 cpu_sp = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sp), "sp"); 147 cpu_skip = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(skip), "skip"); 148 149 for (i = 0; i < NUMBER_OF_CPU_REGISTERS; i++) { 150 cpu_r[i] = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(r[i]), 151 reg_names[i]); 152 } 153 #undef AVR_REG_OFFS 154 } 155 156 static int to_regs_16_31_by_one(DisasContext *ctx, int indx) 157 { 158 return 16 + (indx % 16); 159 } 160 161 static int to_regs_16_23_by_one(DisasContext *ctx, int indx) 162 { 163 return 16 + (indx % 8); 164 } 165 166 static int to_regs_24_30_by_two(DisasContext *ctx, int indx) 167 { 168 return 24 + (indx % 4) * 2; 169 } 170 171 static int to_regs_00_30_by_two(DisasContext *ctx, int indx) 172 { 173 return (indx % 16) * 2; 174 } 175 176 static uint16_t next_word(DisasContext *ctx) 177 { 178 return cpu_lduw_code(ctx->env, ctx->npc++ * 2); 179 } 180 181 static int append_16(DisasContext *ctx, int x) 182 { 183 return x << 16 | next_word(ctx); 184 } 185 186 static bool avr_have_feature(DisasContext *ctx, int feature) 187 { 188 if (!avr_feature(ctx->env, feature)) { 189 gen_helper_unsupported(cpu_env); 190 ctx->base.is_jmp = DISAS_NORETURN; 191 return false; 192 } 193 return true; 194 } 195 196 static bool decode_insn(DisasContext *ctx, uint16_t insn); 197 #include "decode-insn.c.inc" 198 199 /* 200 * Arithmetic Instructions 201 */ 202 203 /* 204 * Utility functions for updating status registers: 205 * 206 * - gen_add_CHf() 207 * - gen_add_Vf() 208 * - gen_sub_CHf() 209 * - gen_sub_Vf() 210 * - gen_NSf() 211 * - gen_ZNSf() 212 * 213 */ 214 215 static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr) 216 { 217 TCGv t1 = tcg_temp_new_i32(); 218 TCGv t2 = tcg_temp_new_i32(); 219 TCGv t3 = tcg_temp_new_i32(); 220 221 tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */ 222 tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */ 223 tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */ 224 tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */ 225 tcg_gen_or_tl(t1, t1, t3); 226 227 tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */ 228 tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */ 229 tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1); 230 231 tcg_temp_free_i32(t3); 232 tcg_temp_free_i32(t2); 233 tcg_temp_free_i32(t1); 234 } 235 236 static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr) 237 { 238 TCGv t1 = tcg_temp_new_i32(); 239 TCGv t2 = tcg_temp_new_i32(); 240 241 /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R */ 242 /* = (Rd ^ R) & ~(Rd ^ Rr) */ 243 tcg_gen_xor_tl(t1, Rd, R); 244 tcg_gen_xor_tl(t2, Rd, Rr); 245 tcg_gen_andc_tl(t1, t1, t2); 246 247 tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */ 248 249 tcg_temp_free_i32(t2); 250 tcg_temp_free_i32(t1); 251 } 252 253 static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr) 254 { 255 TCGv t1 = tcg_temp_new_i32(); 256 TCGv t2 = tcg_temp_new_i32(); 257 TCGv t3 = tcg_temp_new_i32(); 258 259 tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */ 260 tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */ 261 tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */ 262 tcg_gen_and_tl(t3, t3, R); 263 tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */ 264 265 tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */ 266 tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */ 267 tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1); 268 269 tcg_temp_free_i32(t3); 270 tcg_temp_free_i32(t2); 271 tcg_temp_free_i32(t1); 272 } 273 274 static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr) 275 { 276 TCGv t1 = tcg_temp_new_i32(); 277 TCGv t2 = tcg_temp_new_i32(); 278 279 /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R */ 280 /* = (Rd ^ R) & (Rd ^ R) */ 281 tcg_gen_xor_tl(t1, Rd, R); 282 tcg_gen_xor_tl(t2, Rd, Rr); 283 tcg_gen_and_tl(t1, t1, t2); 284 285 tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */ 286 287 tcg_temp_free_i32(t2); 288 tcg_temp_free_i32(t1); 289 } 290 291 static void gen_NSf(TCGv R) 292 { 293 tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ 294 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ 295 } 296 297 static void gen_ZNSf(TCGv R) 298 { 299 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 300 301 /* update status register */ 302 tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ 303 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ 304 } 305 306 /* 307 * Adds two registers without the C Flag and places the result in the 308 * destination register Rd. 309 */ 310 static bool trans_ADD(DisasContext *ctx, arg_ADD *a) 311 { 312 TCGv Rd = cpu_r[a->rd]; 313 TCGv Rr = cpu_r[a->rr]; 314 TCGv R = tcg_temp_new_i32(); 315 316 tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */ 317 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 318 319 /* update status register */ 320 gen_add_CHf(R, Rd, Rr); 321 gen_add_Vf(R, Rd, Rr); 322 gen_ZNSf(R); 323 324 /* update output registers */ 325 tcg_gen_mov_tl(Rd, R); 326 327 tcg_temp_free_i32(R); 328 329 return true; 330 } 331 332 /* 333 * Adds two registers and the contents of the C Flag and places the result in 334 * the destination register Rd. 335 */ 336 static bool trans_ADC(DisasContext *ctx, arg_ADC *a) 337 { 338 TCGv Rd = cpu_r[a->rd]; 339 TCGv Rr = cpu_r[a->rr]; 340 TCGv R = tcg_temp_new_i32(); 341 342 tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */ 343 tcg_gen_add_tl(R, R, cpu_Cf); 344 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 345 346 /* update status register */ 347 gen_add_CHf(R, Rd, Rr); 348 gen_add_Vf(R, Rd, Rr); 349 gen_ZNSf(R); 350 351 /* update output registers */ 352 tcg_gen_mov_tl(Rd, R); 353 354 tcg_temp_free_i32(R); 355 356 return true; 357 } 358 359 /* 360 * Adds an immediate value (0 - 63) to a register pair and places the result 361 * in the register pair. This instruction operates on the upper four register 362 * pairs, and is well suited for operations on the pointer registers. This 363 * instruction is not available in all devices. Refer to the device specific 364 * instruction set summary. 365 */ 366 static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a) 367 { 368 if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) { 369 return true; 370 } 371 372 TCGv RdL = cpu_r[a->rd]; 373 TCGv RdH = cpu_r[a->rd + 1]; 374 int Imm = (a->imm); 375 TCGv R = tcg_temp_new_i32(); 376 TCGv Rd = tcg_temp_new_i32(); 377 378 tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */ 379 tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */ 380 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ 381 382 /* update status register */ 383 tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */ 384 tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); 385 tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */ 386 tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); 387 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 388 tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */ 389 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */ 390 391 /* update output registers */ 392 tcg_gen_andi_tl(RdL, R, 0xff); 393 tcg_gen_shri_tl(RdH, R, 8); 394 395 tcg_temp_free_i32(Rd); 396 tcg_temp_free_i32(R); 397 398 return true; 399 } 400 401 /* 402 * Subtracts two registers and places the result in the destination 403 * register Rd. 404 */ 405 static bool trans_SUB(DisasContext *ctx, arg_SUB *a) 406 { 407 TCGv Rd = cpu_r[a->rd]; 408 TCGv Rr = cpu_r[a->rr]; 409 TCGv R = tcg_temp_new_i32(); 410 411 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ 412 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 413 414 /* update status register */ 415 tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */ 416 gen_sub_CHf(R, Rd, Rr); 417 gen_sub_Vf(R, Rd, Rr); 418 gen_ZNSf(R); 419 420 /* update output registers */ 421 tcg_gen_mov_tl(Rd, R); 422 423 tcg_temp_free_i32(R); 424 425 return true; 426 } 427 428 /* 429 * Subtracts a register and a constant and places the result in the 430 * destination register Rd. This instruction is working on Register R16 to R31 431 * and is very well suited for operations on the X, Y, and Z-pointers. 432 */ 433 static bool trans_SUBI(DisasContext *ctx, arg_SUBI *a) 434 { 435 TCGv Rd = cpu_r[a->rd]; 436 TCGv Rr = tcg_const_i32(a->imm); 437 TCGv R = tcg_temp_new_i32(); 438 439 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Imm */ 440 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 441 442 /* update status register */ 443 gen_sub_CHf(R, Rd, Rr); 444 gen_sub_Vf(R, Rd, Rr); 445 gen_ZNSf(R); 446 447 /* update output registers */ 448 tcg_gen_mov_tl(Rd, R); 449 450 tcg_temp_free_i32(R); 451 tcg_temp_free_i32(Rr); 452 453 return true; 454 } 455 456 /* 457 * Subtracts two registers and subtracts with the C Flag and places the 458 * result in the destination register Rd. 459 */ 460 static bool trans_SBC(DisasContext *ctx, arg_SBC *a) 461 { 462 TCGv Rd = cpu_r[a->rd]; 463 TCGv Rr = cpu_r[a->rr]; 464 TCGv R = tcg_temp_new_i32(); 465 TCGv zero = tcg_const_i32(0); 466 467 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ 468 tcg_gen_sub_tl(R, R, cpu_Cf); 469 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 470 471 /* update status register */ 472 gen_sub_CHf(R, Rd, Rr); 473 gen_sub_Vf(R, Rd, Rr); 474 gen_NSf(R); 475 476 /* 477 * Previous value remains unchanged when the result is zero; 478 * cleared otherwise. 479 */ 480 tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); 481 482 /* update output registers */ 483 tcg_gen_mov_tl(Rd, R); 484 485 tcg_temp_free_i32(zero); 486 tcg_temp_free_i32(R); 487 488 return true; 489 } 490 491 /* 492 * SBCI -- Subtract Immediate with Carry 493 */ 494 static bool trans_SBCI(DisasContext *ctx, arg_SBCI *a) 495 { 496 TCGv Rd = cpu_r[a->rd]; 497 TCGv Rr = tcg_const_i32(a->imm); 498 TCGv R = tcg_temp_new_i32(); 499 TCGv zero = tcg_const_i32(0); 500 501 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ 502 tcg_gen_sub_tl(R, R, cpu_Cf); 503 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 504 505 /* update status register */ 506 gen_sub_CHf(R, Rd, Rr); 507 gen_sub_Vf(R, Rd, Rr); 508 gen_NSf(R); 509 510 /* 511 * Previous value remains unchanged when the result is zero; 512 * cleared otherwise. 513 */ 514 tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); 515 516 /* update output registers */ 517 tcg_gen_mov_tl(Rd, R); 518 519 tcg_temp_free_i32(zero); 520 tcg_temp_free_i32(R); 521 tcg_temp_free_i32(Rr); 522 523 return true; 524 } 525 526 /* 527 * Subtracts an immediate value (0-63) from a register pair and places the 528 * result in the register pair. This instruction operates on the upper four 529 * register pairs, and is well suited for operations on the Pointer Registers. 530 * This instruction is not available in all devices. Refer to the device 531 * specific instruction set summary. 532 */ 533 static bool trans_SBIW(DisasContext *ctx, arg_SBIW *a) 534 { 535 if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) { 536 return true; 537 } 538 539 TCGv RdL = cpu_r[a->rd]; 540 TCGv RdH = cpu_r[a->rd + 1]; 541 int Imm = (a->imm); 542 TCGv R = tcg_temp_new_i32(); 543 TCGv Rd = tcg_temp_new_i32(); 544 545 tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */ 546 tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */ 547 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ 548 549 /* update status register */ 550 tcg_gen_andc_tl(cpu_Cf, R, Rd); 551 tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */ 552 tcg_gen_andc_tl(cpu_Vf, Rd, R); 553 tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */ 554 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 555 tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */ 556 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ 557 558 /* update output registers */ 559 tcg_gen_andi_tl(RdL, R, 0xff); 560 tcg_gen_shri_tl(RdH, R, 8); 561 562 tcg_temp_free_i32(Rd); 563 tcg_temp_free_i32(R); 564 565 return true; 566 } 567 568 /* 569 * Performs the logical AND between the contents of register Rd and register 570 * Rr and places the result in the destination register Rd. 571 */ 572 static bool trans_AND(DisasContext *ctx, arg_AND *a) 573 { 574 TCGv Rd = cpu_r[a->rd]; 575 TCGv Rr = cpu_r[a->rr]; 576 TCGv R = tcg_temp_new_i32(); 577 578 tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */ 579 580 /* update status register */ 581 tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */ 582 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 583 gen_ZNSf(R); 584 585 /* update output registers */ 586 tcg_gen_mov_tl(Rd, R); 587 588 tcg_temp_free_i32(R); 589 590 return true; 591 } 592 593 /* 594 * Performs the logical AND between the contents of register Rd and a constant 595 * and places the result in the destination register Rd. 596 */ 597 static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a) 598 { 599 TCGv Rd = cpu_r[a->rd]; 600 int Imm = (a->imm); 601 602 tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */ 603 604 /* update status register */ 605 tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */ 606 gen_ZNSf(Rd); 607 608 return true; 609 } 610 611 /* 612 * Performs the logical OR between the contents of register Rd and register 613 * Rr and places the result in the destination register Rd. 614 */ 615 static bool trans_OR(DisasContext *ctx, arg_OR *a) 616 { 617 TCGv Rd = cpu_r[a->rd]; 618 TCGv Rr = cpu_r[a->rr]; 619 TCGv R = tcg_temp_new_i32(); 620 621 tcg_gen_or_tl(R, Rd, Rr); 622 623 /* update status register */ 624 tcg_gen_movi_tl(cpu_Vf, 0); 625 gen_ZNSf(R); 626 627 /* update output registers */ 628 tcg_gen_mov_tl(Rd, R); 629 630 tcg_temp_free_i32(R); 631 632 return true; 633 } 634 635 /* 636 * Performs the logical OR between the contents of register Rd and a 637 * constant and places the result in the destination register Rd. 638 */ 639 static bool trans_ORI(DisasContext *ctx, arg_ORI *a) 640 { 641 TCGv Rd = cpu_r[a->rd]; 642 int Imm = (a->imm); 643 644 tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */ 645 646 /* update status register */ 647 tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */ 648 gen_ZNSf(Rd); 649 650 return true; 651 } 652 653 /* 654 * Performs the logical EOR between the contents of register Rd and 655 * register Rr and places the result in the destination register Rd. 656 */ 657 static bool trans_EOR(DisasContext *ctx, arg_EOR *a) 658 { 659 TCGv Rd = cpu_r[a->rd]; 660 TCGv Rr = cpu_r[a->rr]; 661 662 tcg_gen_xor_tl(Rd, Rd, Rr); 663 664 /* update status register */ 665 tcg_gen_movi_tl(cpu_Vf, 0); 666 gen_ZNSf(Rd); 667 668 return true; 669 } 670 671 /* 672 * Clears the specified bits in register Rd. Performs the logical AND 673 * between the contents of register Rd and the complement of the constant mask 674 * K. The result will be placed in register Rd. 675 */ 676 static bool trans_COM(DisasContext *ctx, arg_COM *a) 677 { 678 TCGv Rd = cpu_r[a->rd]; 679 TCGv R = tcg_temp_new_i32(); 680 681 tcg_gen_xori_tl(Rd, Rd, 0xff); 682 683 /* update status register */ 684 tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */ 685 tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */ 686 gen_ZNSf(Rd); 687 688 tcg_temp_free_i32(R); 689 690 return true; 691 } 692 693 /* 694 * Replaces the contents of register Rd with its two's complement; the 695 * value $80 is left unchanged. 696 */ 697 static bool trans_NEG(DisasContext *ctx, arg_NEG *a) 698 { 699 TCGv Rd = cpu_r[a->rd]; 700 TCGv t0 = tcg_const_i32(0); 701 TCGv R = tcg_temp_new_i32(); 702 703 tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */ 704 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 705 706 /* update status register */ 707 gen_sub_CHf(R, t0, Rd); 708 gen_sub_Vf(R, t0, Rd); 709 gen_ZNSf(R); 710 711 /* update output registers */ 712 tcg_gen_mov_tl(Rd, R); 713 714 tcg_temp_free_i32(t0); 715 tcg_temp_free_i32(R); 716 717 return true; 718 } 719 720 /* 721 * Adds one -1- to the contents of register Rd and places the result in the 722 * destination register Rd. The C Flag in SREG is not affected by the 723 * operation, thus allowing the INC instruction to be used on a loop counter in 724 * multiple-precision computations. When operating on unsigned numbers, only 725 * BREQ and BRNE branches can be expected to perform consistently. When 726 * operating on two's complement values, all signed branches are available. 727 */ 728 static bool trans_INC(DisasContext *ctx, arg_INC *a) 729 { 730 TCGv Rd = cpu_r[a->rd]; 731 732 tcg_gen_addi_tl(Rd, Rd, 1); 733 tcg_gen_andi_tl(Rd, Rd, 0xff); 734 735 /* update status register */ 736 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80); /* Vf = Rd == 0x80 */ 737 gen_ZNSf(Rd); 738 739 return true; 740 } 741 742 /* 743 * Subtracts one -1- from the contents of register Rd and places the result 744 * in the destination register Rd. The C Flag in SREG is not affected by the 745 * operation, thus allowing the DEC instruction to be used on a loop counter in 746 * multiple-precision computations. When operating on unsigned values, only 747 * BREQ and BRNE branches can be expected to perform consistently. When 748 * operating on two's complement values, all signed branches are available. 749 */ 750 static bool trans_DEC(DisasContext *ctx, arg_DEC *a) 751 { 752 TCGv Rd = cpu_r[a->rd]; 753 754 tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */ 755 tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */ 756 757 /* update status register */ 758 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f); /* Vf = Rd == 0x7f */ 759 gen_ZNSf(Rd); 760 761 return true; 762 } 763 764 /* 765 * This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication. 766 */ 767 static bool trans_MUL(DisasContext *ctx, arg_MUL *a) 768 { 769 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { 770 return true; 771 } 772 773 TCGv R0 = cpu_r[0]; 774 TCGv R1 = cpu_r[1]; 775 TCGv Rd = cpu_r[a->rd]; 776 TCGv Rr = cpu_r[a->rr]; 777 TCGv R = tcg_temp_new_i32(); 778 779 tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */ 780 tcg_gen_andi_tl(R0, R, 0xff); 781 tcg_gen_shri_tl(R1, R, 8); 782 783 /* update status register */ 784 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ 785 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 786 787 tcg_temp_free_i32(R); 788 789 return true; 790 } 791 792 /* 793 * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication. 794 */ 795 static bool trans_MULS(DisasContext *ctx, arg_MULS *a) 796 { 797 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { 798 return true; 799 } 800 801 TCGv R0 = cpu_r[0]; 802 TCGv R1 = cpu_r[1]; 803 TCGv Rd = cpu_r[a->rd]; 804 TCGv Rr = cpu_r[a->rr]; 805 TCGv R = tcg_temp_new_i32(); 806 TCGv t0 = tcg_temp_new_i32(); 807 TCGv t1 = tcg_temp_new_i32(); 808 809 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ 810 tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */ 811 tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */ 812 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ 813 tcg_gen_andi_tl(R0, R, 0xff); 814 tcg_gen_shri_tl(R1, R, 8); 815 816 /* update status register */ 817 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ 818 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 819 820 tcg_temp_free_i32(t1); 821 tcg_temp_free_i32(t0); 822 tcg_temp_free_i32(R); 823 824 return true; 825 } 826 827 /* 828 * This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a 829 * signed and an unsigned number. 830 */ 831 static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a) 832 { 833 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { 834 return true; 835 } 836 837 TCGv R0 = cpu_r[0]; 838 TCGv R1 = cpu_r[1]; 839 TCGv Rd = cpu_r[a->rd]; 840 TCGv Rr = cpu_r[a->rr]; 841 TCGv R = tcg_temp_new_i32(); 842 TCGv t0 = tcg_temp_new_i32(); 843 844 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ 845 tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */ 846 tcg_gen_andi_tl(R, R, 0xffff); /* make R 16 bits */ 847 tcg_gen_andi_tl(R0, R, 0xff); 848 tcg_gen_shri_tl(R1, R, 8); 849 850 /* update status register */ 851 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ 852 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 853 854 tcg_temp_free_i32(t0); 855 tcg_temp_free_i32(R); 856 857 return true; 858 } 859 860 /* 861 * This instruction performs 8-bit x 8-bit -> 16-bit unsigned 862 * multiplication and shifts the result one bit left. 863 */ 864 static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a) 865 { 866 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { 867 return true; 868 } 869 870 TCGv R0 = cpu_r[0]; 871 TCGv R1 = cpu_r[1]; 872 TCGv Rd = cpu_r[a->rd]; 873 TCGv Rr = cpu_r[a->rr]; 874 TCGv R = tcg_temp_new_i32(); 875 876 tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */ 877 878 /* update status register */ 879 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ 880 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 881 882 /* update output registers */ 883 tcg_gen_shli_tl(R, R, 1); 884 tcg_gen_andi_tl(R0, R, 0xff); 885 tcg_gen_shri_tl(R1, R, 8); 886 tcg_gen_andi_tl(R1, R1, 0xff); 887 888 889 tcg_temp_free_i32(R); 890 891 return true; 892 } 893 894 /* 895 * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication 896 * and shifts the result one bit left. 897 */ 898 static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a) 899 { 900 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { 901 return true; 902 } 903 904 TCGv R0 = cpu_r[0]; 905 TCGv R1 = cpu_r[1]; 906 TCGv Rd = cpu_r[a->rd]; 907 TCGv Rr = cpu_r[a->rr]; 908 TCGv R = tcg_temp_new_i32(); 909 TCGv t0 = tcg_temp_new_i32(); 910 TCGv t1 = tcg_temp_new_i32(); 911 912 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ 913 tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */ 914 tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */ 915 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ 916 917 /* update status register */ 918 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ 919 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 920 921 /* update output registers */ 922 tcg_gen_shli_tl(R, R, 1); 923 tcg_gen_andi_tl(R0, R, 0xff); 924 tcg_gen_shri_tl(R1, R, 8); 925 tcg_gen_andi_tl(R1, R1, 0xff); 926 927 tcg_temp_free_i32(t1); 928 tcg_temp_free_i32(t0); 929 tcg_temp_free_i32(R); 930 931 return true; 932 } 933 934 /* 935 * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication 936 * and shifts the result one bit left. 937 */ 938 static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a) 939 { 940 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { 941 return true; 942 } 943 944 TCGv R0 = cpu_r[0]; 945 TCGv R1 = cpu_r[1]; 946 TCGv Rd = cpu_r[a->rd]; 947 TCGv Rr = cpu_r[a->rr]; 948 TCGv R = tcg_temp_new_i32(); 949 TCGv t0 = tcg_temp_new_i32(); 950 951 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ 952 tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */ 953 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ 954 955 /* update status register */ 956 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ 957 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 958 959 /* update output registers */ 960 tcg_gen_shli_tl(R, R, 1); 961 tcg_gen_andi_tl(R0, R, 0xff); 962 tcg_gen_shri_tl(R1, R, 8); 963 tcg_gen_andi_tl(R1, R1, 0xff); 964 965 tcg_temp_free_i32(t0); 966 tcg_temp_free_i32(R); 967 968 return true; 969 } 970 971 /* 972 * The module is an instruction set extension to the AVR CPU, performing 973 * DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in 974 * the CPU register file, registers R0-R7, where LSB of data is placed in LSB 975 * of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including 976 * parity bits) is placed in registers R8- R15, organized in the register file 977 * with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES 978 * instruction performs one round in the DES algorithm. Sixteen rounds must be 979 * executed in increasing order to form the correct DES ciphertext or 980 * plaintext. Intermediate results are stored in the register file (R0-R15) 981 * after each DES instruction. The instruction's operand (K) determines which 982 * round is executed, and the half carry flag (H) determines whether encryption 983 * or decryption is performed. The DES algorithm is described in 984 * "Specifications for the Data Encryption Standard" (Federal Information 985 * Processing Standards Publication 46). Intermediate results in this 986 * implementation differ from the standard because the initial permutation and 987 * the inverse initial permutation are performed each iteration. This does not 988 * affect the result in the final ciphertext or plaintext, but reduces 989 * execution time. 990 */ 991 static bool trans_DES(DisasContext *ctx, arg_DES *a) 992 { 993 /* TODO */ 994 if (!avr_have_feature(ctx, AVR_FEATURE_DES)) { 995 return true; 996 } 997 998 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); 999 1000 return true; 1001 } 1002 1003 /* 1004 * Branch Instructions 1005 */ 1006 static void gen_jmp_ez(DisasContext *ctx) 1007 { 1008 tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8); 1009 tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind); 1010 ctx->base.is_jmp = DISAS_LOOKUP; 1011 } 1012 1013 static void gen_jmp_z(DisasContext *ctx) 1014 { 1015 tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8); 1016 ctx->base.is_jmp = DISAS_LOOKUP; 1017 } 1018 1019 static void gen_push_ret(DisasContext *ctx, int ret) 1020 { 1021 if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) { 1022 1023 TCGv t0 = tcg_const_i32((ret & 0x0000ff)); 1024 1025 tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB); 1026 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); 1027 1028 tcg_temp_free_i32(t0); 1029 } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) { 1030 1031 TCGv t0 = tcg_const_i32((ret & 0x00ffff)); 1032 1033 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); 1034 tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW); 1035 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); 1036 1037 tcg_temp_free_i32(t0); 1038 1039 } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) { 1040 1041 TCGv lo = tcg_const_i32((ret & 0x0000ff)); 1042 TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8); 1043 1044 tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB); 1045 tcg_gen_subi_tl(cpu_sp, cpu_sp, 2); 1046 tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW); 1047 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); 1048 1049 tcg_temp_free_i32(lo); 1050 tcg_temp_free_i32(hi); 1051 } 1052 } 1053 1054 static void gen_pop_ret(DisasContext *ctx, TCGv ret) 1055 { 1056 if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) { 1057 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); 1058 tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB); 1059 } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) { 1060 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); 1061 tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW); 1062 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); 1063 } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) { 1064 TCGv lo = tcg_temp_new_i32(); 1065 TCGv hi = tcg_temp_new_i32(); 1066 1067 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); 1068 tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW); 1069 1070 tcg_gen_addi_tl(cpu_sp, cpu_sp, 2); 1071 tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB); 1072 1073 tcg_gen_deposit_tl(ret, lo, hi, 8, 16); 1074 1075 tcg_temp_free_i32(lo); 1076 tcg_temp_free_i32(hi); 1077 } 1078 } 1079 1080 static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest) 1081 { 1082 const TranslationBlock *tb = ctx->base.tb; 1083 1084 if (translator_use_goto_tb(&ctx->base, dest)) { 1085 tcg_gen_goto_tb(n); 1086 tcg_gen_movi_i32(cpu_pc, dest); 1087 tcg_gen_exit_tb(tb, n); 1088 } else { 1089 tcg_gen_movi_i32(cpu_pc, dest); 1090 tcg_gen_lookup_and_goto_ptr(); 1091 } 1092 ctx->base.is_jmp = DISAS_NORETURN; 1093 } 1094 1095 /* 1096 * Relative jump to an address within PC - 2K +1 and PC + 2K (words). For 1097 * AVR microcontrollers with Program memory not exceeding 4K words (8KB) this 1098 * instruction can address the entire memory from every address location. See 1099 * also JMP. 1100 */ 1101 static bool trans_RJMP(DisasContext *ctx, arg_RJMP *a) 1102 { 1103 int dst = ctx->npc + a->imm; 1104 1105 gen_goto_tb(ctx, 0, dst); 1106 1107 return true; 1108 } 1109 1110 /* 1111 * Indirect jump to the address pointed to by the Z (16 bits) Pointer 1112 * Register in the Register File. The Z-pointer Register is 16 bits wide and 1113 * allows jump within the lowest 64K words (128KB) section of Program memory. 1114 * This instruction is not available in all devices. Refer to the device 1115 * specific instruction set summary. 1116 */ 1117 static bool trans_IJMP(DisasContext *ctx, arg_IJMP *a) 1118 { 1119 if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) { 1120 return true; 1121 } 1122 1123 gen_jmp_z(ctx); 1124 1125 return true; 1126 } 1127 1128 /* 1129 * Indirect jump to the address pointed to by the Z (16 bits) Pointer 1130 * Register in the Register File and the EIND Register in the I/O space. This 1131 * instruction allows for indirect jumps to the entire 4M (words) Program 1132 * memory space. See also IJMP. This instruction is not available in all 1133 * devices. Refer to the device specific instruction set summary. 1134 */ 1135 static bool trans_EIJMP(DisasContext *ctx, arg_EIJMP *a) 1136 { 1137 if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) { 1138 return true; 1139 } 1140 1141 gen_jmp_ez(ctx); 1142 return true; 1143 } 1144 1145 /* 1146 * Jump to an address within the entire 4M (words) Program memory. See also 1147 * RJMP. This instruction is not available in all devices. Refer to the device 1148 * specific instruction set summary.0 1149 */ 1150 static bool trans_JMP(DisasContext *ctx, arg_JMP *a) 1151 { 1152 if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) { 1153 return true; 1154 } 1155 1156 gen_goto_tb(ctx, 0, a->imm); 1157 1158 return true; 1159 } 1160 1161 /* 1162 * Relative call to an address within PC - 2K + 1 and PC + 2K (words). The 1163 * return address (the instruction after the RCALL) is stored onto the Stack. 1164 * See also CALL. For AVR microcontrollers with Program memory not exceeding 4K 1165 * words (8KB) this instruction can address the entire memory from every 1166 * address location. The Stack Pointer uses a post-decrement scheme during 1167 * RCALL. 1168 */ 1169 static bool trans_RCALL(DisasContext *ctx, arg_RCALL *a) 1170 { 1171 int ret = ctx->npc; 1172 int dst = ctx->npc + a->imm; 1173 1174 gen_push_ret(ctx, ret); 1175 gen_goto_tb(ctx, 0, dst); 1176 1177 return true; 1178 } 1179 1180 /* 1181 * Calls to a subroutine within the entire 4M (words) Program memory. The 1182 * return address (to the instruction after the CALL) will be stored onto the 1183 * Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during 1184 * CALL. This instruction is not available in all devices. Refer to the device 1185 * specific instruction set summary. 1186 */ 1187 static bool trans_ICALL(DisasContext *ctx, arg_ICALL *a) 1188 { 1189 if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) { 1190 return true; 1191 } 1192 1193 int ret = ctx->npc; 1194 1195 gen_push_ret(ctx, ret); 1196 gen_jmp_z(ctx); 1197 1198 return true; 1199 } 1200 1201 /* 1202 * Indirect call of a subroutine pointed to by the Z (16 bits) Pointer 1203 * Register in the Register File and the EIND Register in the I/O space. This 1204 * instruction allows for indirect calls to the entire 4M (words) Program 1205 * memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme 1206 * during EICALL. This instruction is not available in all devices. Refer to 1207 * the device specific instruction set summary. 1208 */ 1209 static bool trans_EICALL(DisasContext *ctx, arg_EICALL *a) 1210 { 1211 if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) { 1212 return true; 1213 } 1214 1215 int ret = ctx->npc; 1216 1217 gen_push_ret(ctx, ret); 1218 gen_jmp_ez(ctx); 1219 return true; 1220 } 1221 1222 /* 1223 * Calls to a subroutine within the entire Program memory. The return 1224 * address (to the instruction after the CALL) will be stored onto the Stack. 1225 * (See also RCALL). The Stack Pointer uses a post-decrement scheme during 1226 * CALL. This instruction is not available in all devices. Refer to the device 1227 * specific instruction set summary. 1228 */ 1229 static bool trans_CALL(DisasContext *ctx, arg_CALL *a) 1230 { 1231 if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) { 1232 return true; 1233 } 1234 1235 int Imm = a->imm; 1236 int ret = ctx->npc; 1237 1238 gen_push_ret(ctx, ret); 1239 gen_goto_tb(ctx, 0, Imm); 1240 1241 return true; 1242 } 1243 1244 /* 1245 * Returns from subroutine. The return address is loaded from the STACK. 1246 * The Stack Pointer uses a preincrement scheme during RET. 1247 */ 1248 static bool trans_RET(DisasContext *ctx, arg_RET *a) 1249 { 1250 gen_pop_ret(ctx, cpu_pc); 1251 1252 ctx->base.is_jmp = DISAS_LOOKUP; 1253 return true; 1254 } 1255 1256 /* 1257 * Returns from interrupt. The return address is loaded from the STACK and 1258 * the Global Interrupt Flag is set. Note that the Status Register is not 1259 * automatically stored when entering an interrupt routine, and it is not 1260 * restored when returning from an interrupt routine. This must be handled by 1261 * the application program. The Stack Pointer uses a pre-increment scheme 1262 * during RETI. 1263 */ 1264 static bool trans_RETI(DisasContext *ctx, arg_RETI *a) 1265 { 1266 gen_pop_ret(ctx, cpu_pc); 1267 tcg_gen_movi_tl(cpu_If, 1); 1268 1269 /* Need to return to main loop to re-evaluate interrupts. */ 1270 ctx->base.is_jmp = DISAS_EXIT; 1271 return true; 1272 } 1273 1274 /* 1275 * This instruction performs a compare between two registers Rd and Rr, and 1276 * skips the next instruction if Rd = Rr. 1277 */ 1278 static bool trans_CPSE(DisasContext *ctx, arg_CPSE *a) 1279 { 1280 ctx->skip_cond = TCG_COND_EQ; 1281 ctx->skip_var0 = cpu_r[a->rd]; 1282 ctx->skip_var1 = cpu_r[a->rr]; 1283 return true; 1284 } 1285 1286 /* 1287 * This instruction performs a compare between two registers Rd and Rr. 1288 * None of the registers are changed. All conditional branches can be used 1289 * after this instruction. 1290 */ 1291 static bool trans_CP(DisasContext *ctx, arg_CP *a) 1292 { 1293 TCGv Rd = cpu_r[a->rd]; 1294 TCGv Rr = cpu_r[a->rr]; 1295 TCGv R = tcg_temp_new_i32(); 1296 1297 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ 1298 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 1299 1300 /* update status register */ 1301 gen_sub_CHf(R, Rd, Rr); 1302 gen_sub_Vf(R, Rd, Rr); 1303 gen_ZNSf(R); 1304 1305 tcg_temp_free_i32(R); 1306 1307 return true; 1308 } 1309 1310 /* 1311 * This instruction performs a compare between two registers Rd and Rr and 1312 * also takes into account the previous carry. None of the registers are 1313 * changed. All conditional branches can be used after this instruction. 1314 */ 1315 static bool trans_CPC(DisasContext *ctx, arg_CPC *a) 1316 { 1317 TCGv Rd = cpu_r[a->rd]; 1318 TCGv Rr = cpu_r[a->rr]; 1319 TCGv R = tcg_temp_new_i32(); 1320 TCGv zero = tcg_const_i32(0); 1321 1322 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ 1323 tcg_gen_sub_tl(R, R, cpu_Cf); 1324 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 1325 /* update status register */ 1326 gen_sub_CHf(R, Rd, Rr); 1327 gen_sub_Vf(R, Rd, Rr); 1328 gen_NSf(R); 1329 1330 /* 1331 * Previous value remains unchanged when the result is zero; 1332 * cleared otherwise. 1333 */ 1334 tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); 1335 1336 tcg_temp_free_i32(zero); 1337 tcg_temp_free_i32(R); 1338 1339 return true; 1340 } 1341 1342 /* 1343 * This instruction performs a compare between register Rd and a constant. 1344 * The register is not changed. All conditional branches can be used after this 1345 * instruction. 1346 */ 1347 static bool trans_CPI(DisasContext *ctx, arg_CPI *a) 1348 { 1349 TCGv Rd = cpu_r[a->rd]; 1350 int Imm = a->imm; 1351 TCGv Rr = tcg_const_i32(Imm); 1352 TCGv R = tcg_temp_new_i32(); 1353 1354 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ 1355 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 1356 1357 /* update status register */ 1358 gen_sub_CHf(R, Rd, Rr); 1359 gen_sub_Vf(R, Rd, Rr); 1360 gen_ZNSf(R); 1361 1362 tcg_temp_free_i32(R); 1363 tcg_temp_free_i32(Rr); 1364 1365 return true; 1366 } 1367 1368 /* 1369 * This instruction tests a single bit in a register and skips the next 1370 * instruction if the bit is cleared. 1371 */ 1372 static bool trans_SBRC(DisasContext *ctx, arg_SBRC *a) 1373 { 1374 TCGv Rr = cpu_r[a->rr]; 1375 1376 ctx->skip_cond = TCG_COND_EQ; 1377 ctx->skip_var0 = tcg_temp_new(); 1378 ctx->free_skip_var0 = true; 1379 1380 tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit); 1381 return true; 1382 } 1383 1384 /* 1385 * This instruction tests a single bit in a register and skips the next 1386 * instruction if the bit is set. 1387 */ 1388 static bool trans_SBRS(DisasContext *ctx, arg_SBRS *a) 1389 { 1390 TCGv Rr = cpu_r[a->rr]; 1391 1392 ctx->skip_cond = TCG_COND_NE; 1393 ctx->skip_var0 = tcg_temp_new(); 1394 ctx->free_skip_var0 = true; 1395 1396 tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit); 1397 return true; 1398 } 1399 1400 /* 1401 * This instruction tests a single bit in an I/O Register and skips the 1402 * next instruction if the bit is cleared. This instruction operates on the 1403 * lower 32 I/O Registers -- addresses 0-31. 1404 */ 1405 static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a) 1406 { 1407 TCGv temp = tcg_const_i32(a->reg); 1408 1409 gen_helper_inb(temp, cpu_env, temp); 1410 tcg_gen_andi_tl(temp, temp, 1 << a->bit); 1411 ctx->skip_cond = TCG_COND_EQ; 1412 ctx->skip_var0 = temp; 1413 ctx->free_skip_var0 = true; 1414 1415 return true; 1416 } 1417 1418 /* 1419 * This instruction tests a single bit in an I/O Register and skips the 1420 * next instruction if the bit is set. This instruction operates on the lower 1421 * 32 I/O Registers -- addresses 0-31. 1422 */ 1423 static bool trans_SBIS(DisasContext *ctx, arg_SBIS *a) 1424 { 1425 TCGv temp = tcg_const_i32(a->reg); 1426 1427 gen_helper_inb(temp, cpu_env, temp); 1428 tcg_gen_andi_tl(temp, temp, 1 << a->bit); 1429 ctx->skip_cond = TCG_COND_NE; 1430 ctx->skip_var0 = temp; 1431 ctx->free_skip_var0 = true; 1432 1433 return true; 1434 } 1435 1436 /* 1437 * Conditional relative branch. Tests a single bit in SREG and branches 1438 * relatively to PC if the bit is cleared. This instruction branches relatively 1439 * to PC in either direction (PC - 63 < = destination <= PC + 64). The 1440 * parameter k is the offset from PC and is represented in two's complement 1441 * form. 1442 */ 1443 static bool trans_BRBC(DisasContext *ctx, arg_BRBC *a) 1444 { 1445 TCGLabel *not_taken = gen_new_label(); 1446 1447 TCGv var; 1448 1449 switch (a->bit) { 1450 case 0x00: 1451 var = cpu_Cf; 1452 break; 1453 case 0x01: 1454 var = cpu_Zf; 1455 break; 1456 case 0x02: 1457 var = cpu_Nf; 1458 break; 1459 case 0x03: 1460 var = cpu_Vf; 1461 break; 1462 case 0x04: 1463 var = cpu_Sf; 1464 break; 1465 case 0x05: 1466 var = cpu_Hf; 1467 break; 1468 case 0x06: 1469 var = cpu_Tf; 1470 break; 1471 case 0x07: 1472 var = cpu_If; 1473 break; 1474 default: 1475 g_assert_not_reached(); 1476 } 1477 1478 tcg_gen_brcondi_i32(TCG_COND_NE, var, 0, not_taken); 1479 gen_goto_tb(ctx, 0, ctx->npc + a->imm); 1480 gen_set_label(not_taken); 1481 1482 ctx->base.is_jmp = DISAS_CHAIN; 1483 return true; 1484 } 1485 1486 /* 1487 * Conditional relative branch. Tests a single bit in SREG and branches 1488 * relatively to PC if the bit is set. This instruction branches relatively to 1489 * PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k 1490 * is the offset from PC and is represented in two's complement form. 1491 */ 1492 static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a) 1493 { 1494 TCGLabel *not_taken = gen_new_label(); 1495 1496 TCGv var; 1497 1498 switch (a->bit) { 1499 case 0x00: 1500 var = cpu_Cf; 1501 break; 1502 case 0x01: 1503 var = cpu_Zf; 1504 break; 1505 case 0x02: 1506 var = cpu_Nf; 1507 break; 1508 case 0x03: 1509 var = cpu_Vf; 1510 break; 1511 case 0x04: 1512 var = cpu_Sf; 1513 break; 1514 case 0x05: 1515 var = cpu_Hf; 1516 break; 1517 case 0x06: 1518 var = cpu_Tf; 1519 break; 1520 case 0x07: 1521 var = cpu_If; 1522 break; 1523 default: 1524 g_assert_not_reached(); 1525 } 1526 1527 tcg_gen_brcondi_i32(TCG_COND_EQ, var, 0, not_taken); 1528 gen_goto_tb(ctx, 0, ctx->npc + a->imm); 1529 gen_set_label(not_taken); 1530 1531 ctx->base.is_jmp = DISAS_CHAIN; 1532 return true; 1533 } 1534 1535 /* 1536 * Data Transfer Instructions 1537 */ 1538 1539 /* 1540 * in the gen_set_addr & gen_get_addr functions 1541 * H assumed to be in 0x00ff0000 format 1542 * M assumed to be in 0x000000ff format 1543 * L assumed to be in 0x000000ff format 1544 */ 1545 static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L) 1546 { 1547 1548 tcg_gen_andi_tl(L, addr, 0x000000ff); 1549 1550 tcg_gen_andi_tl(M, addr, 0x0000ff00); 1551 tcg_gen_shri_tl(M, M, 8); 1552 1553 tcg_gen_andi_tl(H, addr, 0x00ff0000); 1554 } 1555 1556 static void gen_set_xaddr(TCGv addr) 1557 { 1558 gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]); 1559 } 1560 1561 static void gen_set_yaddr(TCGv addr) 1562 { 1563 gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]); 1564 } 1565 1566 static void gen_set_zaddr(TCGv addr) 1567 { 1568 gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]); 1569 } 1570 1571 static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L) 1572 { 1573 TCGv addr = tcg_temp_new_i32(); 1574 1575 tcg_gen_deposit_tl(addr, M, H, 8, 8); 1576 tcg_gen_deposit_tl(addr, L, addr, 8, 16); 1577 1578 return addr; 1579 } 1580 1581 static TCGv gen_get_xaddr(void) 1582 { 1583 return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]); 1584 } 1585 1586 static TCGv gen_get_yaddr(void) 1587 { 1588 return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]); 1589 } 1590 1591 static TCGv gen_get_zaddr(void) 1592 { 1593 return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]); 1594 } 1595 1596 /* 1597 * Load one byte indirect from data space to register and stores an clear 1598 * the bits in data space specified by the register. The instruction can only 1599 * be used towards internal SRAM. The data location is pointed to by the Z (16 1600 * bits) Pointer Register in the Register File. Memory access is limited to the 1601 * current data segment of 64KB. To access another data segment in devices with 1602 * more than 64KB data space, the RAMPZ in register in the I/O area has to be 1603 * changed. The Z-pointer Register is left unchanged by the operation. This 1604 * instruction is especially suited for clearing status bits stored in SRAM. 1605 */ 1606 static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr) 1607 { 1608 if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) { 1609 gen_helper_fullwr(cpu_env, data, addr); 1610 } else { 1611 tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */ 1612 } 1613 } 1614 1615 static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr) 1616 { 1617 if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) { 1618 gen_helper_fullrd(data, cpu_env, addr); 1619 } else { 1620 tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] */ 1621 } 1622 } 1623 1624 /* 1625 * This instruction makes a copy of one register into another. The source 1626 * register Rr is left unchanged, while the destination register Rd is loaded 1627 * with a copy of Rr. 1628 */ 1629 static bool trans_MOV(DisasContext *ctx, arg_MOV *a) 1630 { 1631 TCGv Rd = cpu_r[a->rd]; 1632 TCGv Rr = cpu_r[a->rr]; 1633 1634 tcg_gen_mov_tl(Rd, Rr); 1635 1636 return true; 1637 } 1638 1639 /* 1640 * This instruction makes a copy of one register pair into another register 1641 * pair. The source register pair Rr+1:Rr is left unchanged, while the 1642 * destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This 1643 * instruction is not available in all devices. Refer to the device specific 1644 * instruction set summary. 1645 */ 1646 static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a) 1647 { 1648 if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) { 1649 return true; 1650 } 1651 1652 TCGv RdL = cpu_r[a->rd]; 1653 TCGv RdH = cpu_r[a->rd + 1]; 1654 TCGv RrL = cpu_r[a->rr]; 1655 TCGv RrH = cpu_r[a->rr + 1]; 1656 1657 tcg_gen_mov_tl(RdH, RrH); 1658 tcg_gen_mov_tl(RdL, RrL); 1659 1660 return true; 1661 } 1662 1663 /* 1664 * Loads an 8 bit constant directly to register 16 to 31. 1665 */ 1666 static bool trans_LDI(DisasContext *ctx, arg_LDI *a) 1667 { 1668 TCGv Rd = cpu_r[a->rd]; 1669 int imm = a->imm; 1670 1671 tcg_gen_movi_tl(Rd, imm); 1672 1673 return true; 1674 } 1675 1676 /* 1677 * Loads one byte from the data space to a register. For parts with SRAM, 1678 * the data space consists of the Register File, I/O memory and internal SRAM 1679 * (and external SRAM if applicable). For parts without SRAM, the data space 1680 * consists of the register file only. The EEPROM has a separate address space. 1681 * A 16-bit address must be supplied. Memory access is limited to the current 1682 * data segment of 64KB. The LDS instruction uses the RAMPD Register to access 1683 * memory above 64KB. To access another data segment in devices with more than 1684 * 64KB data space, the RAMPD in register in the I/O area has to be changed. 1685 * This instruction is not available in all devices. Refer to the device 1686 * specific instruction set summary. 1687 */ 1688 static bool trans_LDS(DisasContext *ctx, arg_LDS *a) 1689 { 1690 TCGv Rd = cpu_r[a->rd]; 1691 TCGv addr = tcg_temp_new_i32(); 1692 TCGv H = cpu_rampD; 1693 a->imm = next_word(ctx); 1694 1695 tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ 1696 tcg_gen_shli_tl(addr, addr, 16); 1697 tcg_gen_ori_tl(addr, addr, a->imm); 1698 1699 gen_data_load(ctx, Rd, addr); 1700 1701 tcg_temp_free_i32(addr); 1702 1703 return true; 1704 } 1705 1706 /* 1707 * Loads one byte indirect from the data space to a register. For parts 1708 * with SRAM, the data space consists of the Register File, I/O memory and 1709 * internal SRAM (and external SRAM if applicable). For parts without SRAM, the 1710 * data space consists of the Register File only. In some parts the Flash 1711 * Memory has been mapped to the data space and can be read using this command. 1712 * The EEPROM has a separate address space. The data location is pointed to by 1713 * the X (16 bits) Pointer Register in the Register File. Memory access is 1714 * limited to the current data segment of 64KB. To access another data segment 1715 * in devices with more than 64KB data space, the RAMPX in register in the I/O 1716 * area has to be changed. The X-pointer Register can either be left unchanged 1717 * by the operation, or it can be post-incremented or predecremented. These 1718 * features are especially suited for accessing arrays, tables, and Stack 1719 * Pointer usage of the X-pointer Register. Note that only the low byte of the 1720 * X-pointer is updated in devices with no more than 256 bytes data space. For 1721 * such devices, the high byte of the pointer is not used by this instruction 1722 * and can be used for other purposes. The RAMPX Register in the I/O area is 1723 * updated in parts with more than 64KB data space or more than 64KB Program 1724 * memory, and the increment/decrement is added to the entire 24-bit address on 1725 * such devices. Not all variants of this instruction is available in all 1726 * devices. Refer to the device specific instruction set summary. In the 1727 * Reduced Core tinyAVR the LD instruction can be used to achieve the same 1728 * operation as LPM since the program memory is mapped to the data memory 1729 * space. 1730 */ 1731 static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a) 1732 { 1733 TCGv Rd = cpu_r[a->rd]; 1734 TCGv addr = gen_get_xaddr(); 1735 1736 gen_data_load(ctx, Rd, addr); 1737 1738 tcg_temp_free_i32(addr); 1739 1740 return true; 1741 } 1742 1743 static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a) 1744 { 1745 TCGv Rd = cpu_r[a->rd]; 1746 TCGv addr = gen_get_xaddr(); 1747 1748 gen_data_load(ctx, Rd, addr); 1749 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 1750 1751 gen_set_xaddr(addr); 1752 1753 tcg_temp_free_i32(addr); 1754 1755 return true; 1756 } 1757 1758 static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a) 1759 { 1760 TCGv Rd = cpu_r[a->rd]; 1761 TCGv addr = gen_get_xaddr(); 1762 1763 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ 1764 gen_data_load(ctx, Rd, addr); 1765 gen_set_xaddr(addr); 1766 1767 tcg_temp_free_i32(addr); 1768 1769 return true; 1770 } 1771 1772 /* 1773 * Loads one byte indirect with or without displacement from the data space 1774 * to a register. For parts with SRAM, the data space consists of the Register 1775 * File, I/O memory and internal SRAM (and external SRAM if applicable). For 1776 * parts without SRAM, the data space consists of the Register File only. In 1777 * some parts the Flash Memory has been mapped to the data space and can be 1778 * read using this command. The EEPROM has a separate address space. The data 1779 * location is pointed to by the Y (16 bits) Pointer Register in the Register 1780 * File. Memory access is limited to the current data segment of 64KB. To 1781 * access another data segment in devices with more than 64KB data space, the 1782 * RAMPY in register in the I/O area has to be changed. The Y-pointer Register 1783 * can either be left unchanged by the operation, or it can be post-incremented 1784 * or predecremented. These features are especially suited for accessing 1785 * arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that 1786 * only the low byte of the Y-pointer is updated in devices with no more than 1787 * 256 bytes data space. For such devices, the high byte of the pointer is not 1788 * used by this instruction and can be used for other purposes. The RAMPY 1789 * Register in the I/O area is updated in parts with more than 64KB data space 1790 * or more than 64KB Program memory, and the increment/decrement/displacement 1791 * is added to the entire 24-bit address on such devices. Not all variants of 1792 * this instruction is available in all devices. Refer to the device specific 1793 * instruction set summary. In the Reduced Core tinyAVR the LD instruction can 1794 * be used to achieve the same operation as LPM since the program memory is 1795 * mapped to the data memory space. 1796 */ 1797 static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a) 1798 { 1799 TCGv Rd = cpu_r[a->rd]; 1800 TCGv addr = gen_get_yaddr(); 1801 1802 gen_data_load(ctx, Rd, addr); 1803 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 1804 1805 gen_set_yaddr(addr); 1806 1807 tcg_temp_free_i32(addr); 1808 1809 return true; 1810 } 1811 1812 static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a) 1813 { 1814 TCGv Rd = cpu_r[a->rd]; 1815 TCGv addr = gen_get_yaddr(); 1816 1817 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ 1818 gen_data_load(ctx, Rd, addr); 1819 gen_set_yaddr(addr); 1820 1821 tcg_temp_free_i32(addr); 1822 1823 return true; 1824 } 1825 1826 static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a) 1827 { 1828 TCGv Rd = cpu_r[a->rd]; 1829 TCGv addr = gen_get_yaddr(); 1830 1831 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ 1832 gen_data_load(ctx, Rd, addr); 1833 1834 tcg_temp_free_i32(addr); 1835 1836 return true; 1837 } 1838 1839 /* 1840 * Loads one byte indirect with or without displacement from the data space 1841 * to a register. For parts with SRAM, the data space consists of the Register 1842 * File, I/O memory and internal SRAM (and external SRAM if applicable). For 1843 * parts without SRAM, the data space consists of the Register File only. In 1844 * some parts the Flash Memory has been mapped to the data space and can be 1845 * read using this command. The EEPROM has a separate address space. The data 1846 * location is pointed to by the Z (16 bits) Pointer Register in the Register 1847 * File. Memory access is limited to the current data segment of 64KB. To 1848 * access another data segment in devices with more than 64KB data space, the 1849 * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register 1850 * can either be left unchanged by the operation, or it can be post-incremented 1851 * or predecremented. These features are especially suited for Stack Pointer 1852 * usage of the Z-pointer Register, however because the Z-pointer Register can 1853 * be used for indirect subroutine calls, indirect jumps and table lookup, it 1854 * is often more convenient to use the X or Y-pointer as a dedicated Stack 1855 * Pointer. Note that only the low byte of the Z-pointer is updated in devices 1856 * with no more than 256 bytes data space. For such devices, the high byte of 1857 * the pointer is not used by this instruction and can be used for other 1858 * purposes. The RAMPZ Register in the I/O area is updated in parts with more 1859 * than 64KB data space or more than 64KB Program memory, and the 1860 * increment/decrement/displacement is added to the entire 24-bit address on 1861 * such devices. Not all variants of this instruction is available in all 1862 * devices. Refer to the device specific instruction set summary. In the 1863 * Reduced Core tinyAVR the LD instruction can be used to achieve the same 1864 * operation as LPM since the program memory is mapped to the data memory 1865 * space. For using the Z-pointer for table lookup in Program memory see the 1866 * LPM and ELPM instructions. 1867 */ 1868 static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a) 1869 { 1870 TCGv Rd = cpu_r[a->rd]; 1871 TCGv addr = gen_get_zaddr(); 1872 1873 gen_data_load(ctx, Rd, addr); 1874 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 1875 1876 gen_set_zaddr(addr); 1877 1878 tcg_temp_free_i32(addr); 1879 1880 return true; 1881 } 1882 1883 static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a) 1884 { 1885 TCGv Rd = cpu_r[a->rd]; 1886 TCGv addr = gen_get_zaddr(); 1887 1888 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ 1889 gen_data_load(ctx, Rd, addr); 1890 1891 gen_set_zaddr(addr); 1892 1893 tcg_temp_free_i32(addr); 1894 1895 return true; 1896 } 1897 1898 static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a) 1899 { 1900 TCGv Rd = cpu_r[a->rd]; 1901 TCGv addr = gen_get_zaddr(); 1902 1903 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ 1904 gen_data_load(ctx, Rd, addr); 1905 1906 tcg_temp_free_i32(addr); 1907 1908 return true; 1909 } 1910 1911 /* 1912 * Stores one byte from a Register to the data space. For parts with SRAM, 1913 * the data space consists of the Register File, I/O memory and internal SRAM 1914 * (and external SRAM if applicable). For parts without SRAM, the data space 1915 * consists of the Register File only. The EEPROM has a separate address space. 1916 * A 16-bit address must be supplied. Memory access is limited to the current 1917 * data segment of 64KB. The STS instruction uses the RAMPD Register to access 1918 * memory above 64KB. To access another data segment in devices with more than 1919 * 64KB data space, the RAMPD in register in the I/O area has to be changed. 1920 * This instruction is not available in all devices. Refer to the device 1921 * specific instruction set summary. 1922 */ 1923 static bool trans_STS(DisasContext *ctx, arg_STS *a) 1924 { 1925 TCGv Rd = cpu_r[a->rd]; 1926 TCGv addr = tcg_temp_new_i32(); 1927 TCGv H = cpu_rampD; 1928 a->imm = next_word(ctx); 1929 1930 tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ 1931 tcg_gen_shli_tl(addr, addr, 16); 1932 tcg_gen_ori_tl(addr, addr, a->imm); 1933 gen_data_store(ctx, Rd, addr); 1934 1935 tcg_temp_free_i32(addr); 1936 1937 return true; 1938 } 1939 1940 /* 1941 * Stores one byte indirect from a register to data space. For parts with SRAM, 1942 * the data space consists of the Register File, I/O memory, and internal SRAM 1943 * (and external SRAM if applicable). For parts without SRAM, the data space 1944 * consists of the Register File only. The EEPROM has a separate address space. 1945 * 1946 * The data location is pointed to by the X (16 bits) Pointer Register in the 1947 * Register File. Memory access is limited to the current data segment of 64KB. 1948 * To access another data segment in devices with more than 64KB data space, the 1949 * RAMPX in register in the I/O area has to be changed. 1950 * 1951 * The X-pointer Register can either be left unchanged by the operation, or it 1952 * can be post-incremented or pre-decremented. These features are especially 1953 * suited for accessing arrays, tables, and Stack Pointer usage of the 1954 * X-pointer Register. Note that only the low byte of the X-pointer is updated 1955 * in devices with no more than 256 bytes data space. For such devices, the high 1956 * byte of the pointer is not used by this instruction and can be used for other 1957 * purposes. The RAMPX Register in the I/O area is updated in parts with more 1958 * than 64KB data space or more than 64KB Program memory, and the increment / 1959 * decrement is added to the entire 24-bit address on such devices. 1960 */ 1961 static bool trans_STX1(DisasContext *ctx, arg_STX1 *a) 1962 { 1963 TCGv Rd = cpu_r[a->rr]; 1964 TCGv addr = gen_get_xaddr(); 1965 1966 gen_data_store(ctx, Rd, addr); 1967 1968 tcg_temp_free_i32(addr); 1969 1970 return true; 1971 } 1972 1973 static bool trans_STX2(DisasContext *ctx, arg_STX2 *a) 1974 { 1975 TCGv Rd = cpu_r[a->rr]; 1976 TCGv addr = gen_get_xaddr(); 1977 1978 gen_data_store(ctx, Rd, addr); 1979 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 1980 gen_set_xaddr(addr); 1981 1982 tcg_temp_free_i32(addr); 1983 1984 return true; 1985 } 1986 1987 static bool trans_STX3(DisasContext *ctx, arg_STX3 *a) 1988 { 1989 TCGv Rd = cpu_r[a->rr]; 1990 TCGv addr = gen_get_xaddr(); 1991 1992 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ 1993 gen_data_store(ctx, Rd, addr); 1994 gen_set_xaddr(addr); 1995 1996 tcg_temp_free_i32(addr); 1997 1998 return true; 1999 } 2000 2001 /* 2002 * Stores one byte indirect with or without displacement from a register to data 2003 * space. For parts with SRAM, the data space consists of the Register File, I/O 2004 * memory, and internal SRAM (and external SRAM if applicable). For parts 2005 * without SRAM, the data space consists of the Register File only. The EEPROM 2006 * has a separate address space. 2007 * 2008 * The data location is pointed to by the Y (16 bits) Pointer Register in the 2009 * Register File. Memory access is limited to the current data segment of 64KB. 2010 * To access another data segment in devices with more than 64KB data space, the 2011 * RAMPY in register in the I/O area has to be changed. 2012 * 2013 * The Y-pointer Register can either be left unchanged by the operation, or it 2014 * can be post-incremented or pre-decremented. These features are especially 2015 * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer 2016 * Register. Note that only the low byte of the Y-pointer is updated in devices 2017 * with no more than 256 bytes data space. For such devices, the high byte of 2018 * the pointer is not used by this instruction and can be used for other 2019 * purposes. The RAMPY Register in the I/O area is updated in parts with more 2020 * than 64KB data space or more than 64KB Program memory, and the increment / 2021 * decrement / displacement is added to the entire 24-bit address on such 2022 * devices. 2023 */ 2024 static bool trans_STY2(DisasContext *ctx, arg_STY2 *a) 2025 { 2026 TCGv Rd = cpu_r[a->rd]; 2027 TCGv addr = gen_get_yaddr(); 2028 2029 gen_data_store(ctx, Rd, addr); 2030 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 2031 gen_set_yaddr(addr); 2032 2033 tcg_temp_free_i32(addr); 2034 2035 return true; 2036 } 2037 2038 static bool trans_STY3(DisasContext *ctx, arg_STY3 *a) 2039 { 2040 TCGv Rd = cpu_r[a->rd]; 2041 TCGv addr = gen_get_yaddr(); 2042 2043 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ 2044 gen_data_store(ctx, Rd, addr); 2045 gen_set_yaddr(addr); 2046 2047 tcg_temp_free_i32(addr); 2048 2049 return true; 2050 } 2051 2052 static bool trans_STDY(DisasContext *ctx, arg_STDY *a) 2053 { 2054 TCGv Rd = cpu_r[a->rd]; 2055 TCGv addr = gen_get_yaddr(); 2056 2057 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ 2058 gen_data_store(ctx, Rd, addr); 2059 2060 tcg_temp_free_i32(addr); 2061 2062 return true; 2063 } 2064 2065 /* 2066 * Stores one byte indirect with or without displacement from a register to data 2067 * space. For parts with SRAM, the data space consists of the Register File, I/O 2068 * memory, and internal SRAM (and external SRAM if applicable). For parts 2069 * without SRAM, the data space consists of the Register File only. The EEPROM 2070 * has a separate address space. 2071 * 2072 * The data location is pointed to by the Y (16 bits) Pointer Register in the 2073 * Register File. Memory access is limited to the current data segment of 64KB. 2074 * To access another data segment in devices with more than 64KB data space, the 2075 * RAMPY in register in the I/O area has to be changed. 2076 * 2077 * The Y-pointer Register can either be left unchanged by the operation, or it 2078 * can be post-incremented or pre-decremented. These features are especially 2079 * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer 2080 * Register. Note that only the low byte of the Y-pointer is updated in devices 2081 * with no more than 256 bytes data space. For such devices, the high byte of 2082 * the pointer is not used by this instruction and can be used for other 2083 * purposes. The RAMPY Register in the I/O area is updated in parts with more 2084 * than 64KB data space or more than 64KB Program memory, and the increment / 2085 * decrement / displacement is added to the entire 24-bit address on such 2086 * devices. 2087 */ 2088 static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a) 2089 { 2090 TCGv Rd = cpu_r[a->rd]; 2091 TCGv addr = gen_get_zaddr(); 2092 2093 gen_data_store(ctx, Rd, addr); 2094 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 2095 2096 gen_set_zaddr(addr); 2097 2098 tcg_temp_free_i32(addr); 2099 2100 return true; 2101 } 2102 2103 static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a) 2104 { 2105 TCGv Rd = cpu_r[a->rd]; 2106 TCGv addr = gen_get_zaddr(); 2107 2108 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ 2109 gen_data_store(ctx, Rd, addr); 2110 2111 gen_set_zaddr(addr); 2112 2113 tcg_temp_free_i32(addr); 2114 2115 return true; 2116 } 2117 2118 static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a) 2119 { 2120 TCGv Rd = cpu_r[a->rd]; 2121 TCGv addr = gen_get_zaddr(); 2122 2123 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ 2124 gen_data_store(ctx, Rd, addr); 2125 2126 tcg_temp_free_i32(addr); 2127 2128 return true; 2129 } 2130 2131 /* 2132 * Loads one byte pointed to by the Z-register into the destination 2133 * register Rd. This instruction features a 100% space effective constant 2134 * initialization or constant data fetch. The Program memory is organized in 2135 * 16-bit words while the Z-pointer is a byte address. Thus, the least 2136 * significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high 2137 * byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of 2138 * Program memory. The Zpointer Register can either be left unchanged by the 2139 * operation, or it can be incremented. The incrementation does not apply to 2140 * the RAMPZ Register. 2141 * 2142 * Devices with Self-Programming capability can use the LPM instruction to read 2143 * the Fuse and Lock bit values. 2144 */ 2145 static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a) 2146 { 2147 if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { 2148 return true; 2149 } 2150 2151 TCGv Rd = cpu_r[0]; 2152 TCGv addr = tcg_temp_new_i32(); 2153 TCGv H = cpu_r[31]; 2154 TCGv L = cpu_r[30]; 2155 2156 tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ 2157 tcg_gen_or_tl(addr, addr, L); 2158 tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ 2159 2160 tcg_temp_free_i32(addr); 2161 2162 return true; 2163 } 2164 2165 static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a) 2166 { 2167 if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { 2168 return true; 2169 } 2170 2171 TCGv Rd = cpu_r[a->rd]; 2172 TCGv addr = tcg_temp_new_i32(); 2173 TCGv H = cpu_r[31]; 2174 TCGv L = cpu_r[30]; 2175 2176 tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ 2177 tcg_gen_or_tl(addr, addr, L); 2178 tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ 2179 2180 tcg_temp_free_i32(addr); 2181 2182 return true; 2183 } 2184 2185 static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a) 2186 { 2187 if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) { 2188 return true; 2189 } 2190 2191 TCGv Rd = cpu_r[a->rd]; 2192 TCGv addr = tcg_temp_new_i32(); 2193 TCGv H = cpu_r[31]; 2194 TCGv L = cpu_r[30]; 2195 2196 tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ 2197 tcg_gen_or_tl(addr, addr, L); 2198 tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ 2199 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 2200 tcg_gen_andi_tl(L, addr, 0xff); 2201 tcg_gen_shri_tl(addr, addr, 8); 2202 tcg_gen_andi_tl(H, addr, 0xff); 2203 2204 tcg_temp_free_i32(addr); 2205 2206 return true; 2207 } 2208 2209 /* 2210 * Loads one byte pointed to by the Z-register and the RAMPZ Register in 2211 * the I/O space, and places this byte in the destination register Rd. This 2212 * instruction features a 100% space effective constant initialization or 2213 * constant data fetch. The Program memory is organized in 16-bit words while 2214 * the Z-pointer is a byte address. Thus, the least significant bit of the 2215 * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This 2216 * instruction can address the entire Program memory space. The Z-pointer 2217 * Register can either be left unchanged by the operation, or it can be 2218 * incremented. The incrementation applies to the entire 24-bit concatenation 2219 * of the RAMPZ and Z-pointer Registers. 2220 * 2221 * Devices with Self-Programming capability can use the ELPM instruction to 2222 * read the Fuse and Lock bit value. 2223 */ 2224 static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a) 2225 { 2226 if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { 2227 return true; 2228 } 2229 2230 TCGv Rd = cpu_r[0]; 2231 TCGv addr = gen_get_zaddr(); 2232 2233 tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ 2234 2235 tcg_temp_free_i32(addr); 2236 2237 return true; 2238 } 2239 2240 static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a) 2241 { 2242 if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { 2243 return true; 2244 } 2245 2246 TCGv Rd = cpu_r[a->rd]; 2247 TCGv addr = gen_get_zaddr(); 2248 2249 tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ 2250 2251 tcg_temp_free_i32(addr); 2252 2253 return true; 2254 } 2255 2256 static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a) 2257 { 2258 if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) { 2259 return true; 2260 } 2261 2262 TCGv Rd = cpu_r[a->rd]; 2263 TCGv addr = gen_get_zaddr(); 2264 2265 tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ 2266 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 2267 gen_set_zaddr(addr); 2268 2269 tcg_temp_free_i32(addr); 2270 2271 return true; 2272 } 2273 2274 /* 2275 * SPM can be used to erase a page in the Program memory, to write a page 2276 * in the Program memory (that is already erased), and to set Boot Loader Lock 2277 * bits. In some devices, the Program memory can be written one word at a time, 2278 * in other devices an entire page can be programmed simultaneously after first 2279 * filling a temporary page buffer. In all cases, the Program memory must be 2280 * erased one page at a time. When erasing the Program memory, the RAMPZ and 2281 * Z-register are used as page address. When writing the Program memory, the 2282 * RAMPZ and Z-register are used as page or word address, and the R1:R0 2283 * register pair is used as data(1). When setting the Boot Loader Lock bits, 2284 * the R1:R0 register pair is used as data. Refer to the device documentation 2285 * for detailed description of SPM usage. This instruction can address the 2286 * entire Program memory. 2287 * 2288 * The SPM instruction is not available in all devices. Refer to the device 2289 * specific instruction set summary. 2290 * 2291 * Note: 1. R1 determines the instruction high byte, and R0 determines the 2292 * instruction low byte. 2293 */ 2294 static bool trans_SPM(DisasContext *ctx, arg_SPM *a) 2295 { 2296 /* TODO */ 2297 if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) { 2298 return true; 2299 } 2300 2301 return true; 2302 } 2303 2304 static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a) 2305 { 2306 /* TODO */ 2307 if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) { 2308 return true; 2309 } 2310 2311 return true; 2312 } 2313 2314 /* 2315 * Loads data from the I/O Space (Ports, Timers, Configuration Registers, 2316 * etc.) into register Rd in the Register File. 2317 */ 2318 static bool trans_IN(DisasContext *ctx, arg_IN *a) 2319 { 2320 TCGv Rd = cpu_r[a->rd]; 2321 TCGv port = tcg_const_i32(a->imm); 2322 2323 gen_helper_inb(Rd, cpu_env, port); 2324 2325 tcg_temp_free_i32(port); 2326 2327 return true; 2328 } 2329 2330 /* 2331 * Stores data from register Rr in the Register File to I/O Space (Ports, 2332 * Timers, Configuration Registers, etc.). 2333 */ 2334 static bool trans_OUT(DisasContext *ctx, arg_OUT *a) 2335 { 2336 TCGv Rd = cpu_r[a->rd]; 2337 TCGv port = tcg_const_i32(a->imm); 2338 2339 gen_helper_outb(cpu_env, port, Rd); 2340 2341 tcg_temp_free_i32(port); 2342 2343 return true; 2344 } 2345 2346 /* 2347 * This instruction stores the contents of register Rr on the STACK. The 2348 * Stack Pointer is post-decremented by 1 after the PUSH. This instruction is 2349 * not available in all devices. Refer to the device specific instruction set 2350 * summary. 2351 */ 2352 static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a) 2353 { 2354 TCGv Rd = cpu_r[a->rd]; 2355 2356 gen_data_store(ctx, Rd, cpu_sp); 2357 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); 2358 2359 return true; 2360 } 2361 2362 /* 2363 * This instruction loads register Rd with a byte from the STACK. The Stack 2364 * Pointer is pre-incremented by 1 before the POP. This instruction is not 2365 * available in all devices. Refer to the device specific instruction set 2366 * summary. 2367 */ 2368 static bool trans_POP(DisasContext *ctx, arg_POP *a) 2369 { 2370 /* 2371 * Using a temp to work around some strange behaviour: 2372 * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); 2373 * gen_data_load(ctx, Rd, cpu_sp); 2374 * seems to cause the add to happen twice. 2375 * This doesn't happen if either the add or the load is removed. 2376 */ 2377 TCGv t1 = tcg_temp_new_i32(); 2378 TCGv Rd = cpu_r[a->rd]; 2379 2380 tcg_gen_addi_tl(t1, cpu_sp, 1); 2381 gen_data_load(ctx, Rd, t1); 2382 tcg_gen_mov_tl(cpu_sp, t1); 2383 2384 return true; 2385 } 2386 2387 /* 2388 * Exchanges one byte indirect between register and data space. The data 2389 * location is pointed to by the Z (16 bits) Pointer Register in the Register 2390 * File. Memory access is limited to the current data segment of 64KB. To 2391 * access another data segment in devices with more than 64KB data space, the 2392 * RAMPZ in register in the I/O area has to be changed. 2393 * 2394 * The Z-pointer Register is left unchanged by the operation. This instruction 2395 * is especially suited for writing/reading status bits stored in SRAM. 2396 */ 2397 static bool trans_XCH(DisasContext *ctx, arg_XCH *a) 2398 { 2399 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { 2400 return true; 2401 } 2402 2403 TCGv Rd = cpu_r[a->rd]; 2404 TCGv t0 = tcg_temp_new_i32(); 2405 TCGv addr = gen_get_zaddr(); 2406 2407 gen_data_load(ctx, t0, addr); 2408 gen_data_store(ctx, Rd, addr); 2409 tcg_gen_mov_tl(Rd, t0); 2410 2411 tcg_temp_free_i32(t0); 2412 tcg_temp_free_i32(addr); 2413 2414 return true; 2415 } 2416 2417 /* 2418 * Load one byte indirect from data space to register and set bits in data 2419 * space specified by the register. The instruction can only be used towards 2420 * internal SRAM. The data location is pointed to by the Z (16 bits) Pointer 2421 * Register in the Register File. Memory access is limited to the current data 2422 * segment of 64KB. To access another data segment in devices with more than 2423 * 64KB data space, the RAMPZ in register in the I/O area has to be changed. 2424 * 2425 * The Z-pointer Register is left unchanged by the operation. This instruction 2426 * is especially suited for setting status bits stored in SRAM. 2427 */ 2428 static bool trans_LAS(DisasContext *ctx, arg_LAS *a) 2429 { 2430 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { 2431 return true; 2432 } 2433 2434 TCGv Rr = cpu_r[a->rd]; 2435 TCGv addr = gen_get_zaddr(); 2436 TCGv t0 = tcg_temp_new_i32(); 2437 TCGv t1 = tcg_temp_new_i32(); 2438 2439 gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ 2440 tcg_gen_or_tl(t1, t0, Rr); 2441 tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ 2442 gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ 2443 2444 tcg_temp_free_i32(t1); 2445 tcg_temp_free_i32(t0); 2446 tcg_temp_free_i32(addr); 2447 2448 return true; 2449 } 2450 2451 /* 2452 * Load one byte indirect from data space to register and stores and clear 2453 * the bits in data space specified by the register. The instruction can 2454 * only be used towards internal SRAM. The data location is pointed to by 2455 * the Z (16 bits) Pointer Register in the Register File. Memory access is 2456 * limited to the current data segment of 64KB. To access another data 2457 * segment in devices with more than 64KB data space, the RAMPZ in register 2458 * in the I/O area has to be changed. 2459 * 2460 * The Z-pointer Register is left unchanged by the operation. This instruction 2461 * is especially suited for clearing status bits stored in SRAM. 2462 */ 2463 static bool trans_LAC(DisasContext *ctx, arg_LAC *a) 2464 { 2465 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { 2466 return true; 2467 } 2468 2469 TCGv Rr = cpu_r[a->rd]; 2470 TCGv addr = gen_get_zaddr(); 2471 TCGv t0 = tcg_temp_new_i32(); 2472 TCGv t1 = tcg_temp_new_i32(); 2473 2474 gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ 2475 tcg_gen_andc_tl(t1, t0, Rr); /* t1 = t0 & (0xff - Rr) = t0 & ~Rr */ 2476 tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ 2477 gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ 2478 2479 tcg_temp_free_i32(t1); 2480 tcg_temp_free_i32(t0); 2481 tcg_temp_free_i32(addr); 2482 2483 return true; 2484 } 2485 2486 2487 /* 2488 * Load one byte indirect from data space to register and toggles bits in 2489 * the data space specified by the register. The instruction can only be used 2490 * towards SRAM. The data location is pointed to by the Z (16 bits) Pointer 2491 * Register in the Register File. Memory access is limited to the current data 2492 * segment of 64KB. To access another data segment in devices with more than 2493 * 64KB data space, the RAMPZ in register in the I/O area has to be changed. 2494 * 2495 * The Z-pointer Register is left unchanged by the operation. This instruction 2496 * is especially suited for changing status bits stored in SRAM. 2497 */ 2498 static bool trans_LAT(DisasContext *ctx, arg_LAT *a) 2499 { 2500 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { 2501 return true; 2502 } 2503 2504 TCGv Rd = cpu_r[a->rd]; 2505 TCGv addr = gen_get_zaddr(); 2506 TCGv t0 = tcg_temp_new_i32(); 2507 TCGv t1 = tcg_temp_new_i32(); 2508 2509 gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ 2510 tcg_gen_xor_tl(t1, t0, Rd); 2511 tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */ 2512 gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ 2513 2514 tcg_temp_free_i32(t1); 2515 tcg_temp_free_i32(t0); 2516 tcg_temp_free_i32(addr); 2517 2518 return true; 2519 } 2520 2521 /* 2522 * Bit and Bit-test Instructions 2523 */ 2524 static void gen_rshift_ZNVSf(TCGv R) 2525 { 2526 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 2527 tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ 2528 tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf); 2529 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ 2530 } 2531 2532 /* 2533 * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is 2534 * loaded into the C Flag of the SREG. This operation effectively divides an 2535 * unsigned value by two. The C Flag can be used to round the result. 2536 */ 2537 static bool trans_LSR(DisasContext *ctx, arg_LSR *a) 2538 { 2539 TCGv Rd = cpu_r[a->rd]; 2540 2541 tcg_gen_andi_tl(cpu_Cf, Rd, 1); 2542 tcg_gen_shri_tl(Rd, Rd, 1); 2543 2544 /* update status register */ 2545 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */ 2546 tcg_gen_movi_tl(cpu_Nf, 0); 2547 tcg_gen_mov_tl(cpu_Vf, cpu_Cf); 2548 tcg_gen_mov_tl(cpu_Sf, cpu_Vf); 2549 2550 return true; 2551 } 2552 2553 /* 2554 * Shifts all bits in Rd one place to the right. The C Flag is shifted into 2555 * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, combined 2556 * with ASR, effectively divides multi-byte signed values by two. Combined with 2557 * LSR it effectively divides multi-byte unsigned values by two. The Carry Flag 2558 * can be used to round the result. 2559 */ 2560 static bool trans_ROR(DisasContext *ctx, arg_ROR *a) 2561 { 2562 TCGv Rd = cpu_r[a->rd]; 2563 TCGv t0 = tcg_temp_new_i32(); 2564 2565 tcg_gen_shli_tl(t0, cpu_Cf, 7); 2566 2567 /* update status register */ 2568 tcg_gen_andi_tl(cpu_Cf, Rd, 1); 2569 2570 /* update output register */ 2571 tcg_gen_shri_tl(Rd, Rd, 1); 2572 tcg_gen_or_tl(Rd, Rd, t0); 2573 2574 /* update status register */ 2575 gen_rshift_ZNVSf(Rd); 2576 2577 tcg_temp_free_i32(t0); 2578 2579 return true; 2580 } 2581 2582 /* 2583 * Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0 2584 * is loaded into the C Flag of the SREG. This operation effectively divides a 2585 * signed value by two without changing its sign. The Carry Flag can be used to 2586 * round the result. 2587 */ 2588 static bool trans_ASR(DisasContext *ctx, arg_ASR *a) 2589 { 2590 TCGv Rd = cpu_r[a->rd]; 2591 TCGv t0 = tcg_temp_new_i32(); 2592 2593 /* update status register */ 2594 tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */ 2595 2596 /* update output register */ 2597 tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */ 2598 tcg_gen_shri_tl(Rd, Rd, 1); 2599 tcg_gen_or_tl(Rd, Rd, t0); 2600 2601 /* update status register */ 2602 gen_rshift_ZNVSf(Rd); 2603 2604 tcg_temp_free_i32(t0); 2605 2606 return true; 2607 } 2608 2609 /* 2610 * Swaps high and low nibbles in a register. 2611 */ 2612 static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a) 2613 { 2614 TCGv Rd = cpu_r[a->rd]; 2615 TCGv t0 = tcg_temp_new_i32(); 2616 TCGv t1 = tcg_temp_new_i32(); 2617 2618 tcg_gen_andi_tl(t0, Rd, 0x0f); 2619 tcg_gen_shli_tl(t0, t0, 4); 2620 tcg_gen_andi_tl(t1, Rd, 0xf0); 2621 tcg_gen_shri_tl(t1, t1, 4); 2622 tcg_gen_or_tl(Rd, t0, t1); 2623 2624 tcg_temp_free_i32(t1); 2625 tcg_temp_free_i32(t0); 2626 2627 return true; 2628 } 2629 2630 /* 2631 * Sets a specified bit in an I/O Register. This instruction operates on 2632 * the lower 32 I/O Registers -- addresses 0-31. 2633 */ 2634 static bool trans_SBI(DisasContext *ctx, arg_SBI *a) 2635 { 2636 TCGv data = tcg_temp_new_i32(); 2637 TCGv port = tcg_const_i32(a->reg); 2638 2639 gen_helper_inb(data, cpu_env, port); 2640 tcg_gen_ori_tl(data, data, 1 << a->bit); 2641 gen_helper_outb(cpu_env, port, data); 2642 2643 tcg_temp_free_i32(port); 2644 tcg_temp_free_i32(data); 2645 2646 return true; 2647 } 2648 2649 /* 2650 * Clears a specified bit in an I/O Register. This instruction operates on 2651 * the lower 32 I/O Registers -- addresses 0-31. 2652 */ 2653 static bool trans_CBI(DisasContext *ctx, arg_CBI *a) 2654 { 2655 TCGv data = tcg_temp_new_i32(); 2656 TCGv port = tcg_const_i32(a->reg); 2657 2658 gen_helper_inb(data, cpu_env, port); 2659 tcg_gen_andi_tl(data, data, ~(1 << a->bit)); 2660 gen_helper_outb(cpu_env, port, data); 2661 2662 tcg_temp_free_i32(data); 2663 tcg_temp_free_i32(port); 2664 2665 return true; 2666 } 2667 2668 /* 2669 * Stores bit b from Rd to the T Flag in SREG (Status Register). 2670 */ 2671 static bool trans_BST(DisasContext *ctx, arg_BST *a) 2672 { 2673 TCGv Rd = cpu_r[a->rd]; 2674 2675 tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit); 2676 tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit); 2677 2678 return true; 2679 } 2680 2681 /* 2682 * Copies the T Flag in the SREG (Status Register) to bit b in register Rd. 2683 */ 2684 static bool trans_BLD(DisasContext *ctx, arg_BLD *a) 2685 { 2686 TCGv Rd = cpu_r[a->rd]; 2687 TCGv t1 = tcg_temp_new_i32(); 2688 2689 tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */ 2690 tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */ 2691 tcg_gen_or_tl(Rd, Rd, t1); 2692 2693 tcg_temp_free_i32(t1); 2694 2695 return true; 2696 } 2697 2698 /* 2699 * Sets a single Flag or bit in SREG. 2700 */ 2701 static bool trans_BSET(DisasContext *ctx, arg_BSET *a) 2702 { 2703 switch (a->bit) { 2704 case 0x00: 2705 tcg_gen_movi_tl(cpu_Cf, 0x01); 2706 break; 2707 case 0x01: 2708 tcg_gen_movi_tl(cpu_Zf, 0x01); 2709 break; 2710 case 0x02: 2711 tcg_gen_movi_tl(cpu_Nf, 0x01); 2712 break; 2713 case 0x03: 2714 tcg_gen_movi_tl(cpu_Vf, 0x01); 2715 break; 2716 case 0x04: 2717 tcg_gen_movi_tl(cpu_Sf, 0x01); 2718 break; 2719 case 0x05: 2720 tcg_gen_movi_tl(cpu_Hf, 0x01); 2721 break; 2722 case 0x06: 2723 tcg_gen_movi_tl(cpu_Tf, 0x01); 2724 break; 2725 case 0x07: 2726 tcg_gen_movi_tl(cpu_If, 0x01); 2727 break; 2728 } 2729 2730 return true; 2731 } 2732 2733 /* 2734 * Clears a single Flag in SREG. 2735 */ 2736 static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a) 2737 { 2738 switch (a->bit) { 2739 case 0x00: 2740 tcg_gen_movi_tl(cpu_Cf, 0x00); 2741 break; 2742 case 0x01: 2743 tcg_gen_movi_tl(cpu_Zf, 0x00); 2744 break; 2745 case 0x02: 2746 tcg_gen_movi_tl(cpu_Nf, 0x00); 2747 break; 2748 case 0x03: 2749 tcg_gen_movi_tl(cpu_Vf, 0x00); 2750 break; 2751 case 0x04: 2752 tcg_gen_movi_tl(cpu_Sf, 0x00); 2753 break; 2754 case 0x05: 2755 tcg_gen_movi_tl(cpu_Hf, 0x00); 2756 break; 2757 case 0x06: 2758 tcg_gen_movi_tl(cpu_Tf, 0x00); 2759 break; 2760 case 0x07: 2761 tcg_gen_movi_tl(cpu_If, 0x00); 2762 break; 2763 } 2764 2765 return true; 2766 } 2767 2768 /* 2769 * MCU Control Instructions 2770 */ 2771 2772 /* 2773 * The BREAK instruction is used by the On-chip Debug system, and is 2774 * normally not used in the application software. When the BREAK instruction is 2775 * executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip 2776 * Debugger access to internal resources. If any Lock bits are set, or either 2777 * the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK 2778 * instruction as a NOP and will not enter the Stopped mode. This instruction 2779 * is not available in all devices. Refer to the device specific instruction 2780 * set summary. 2781 */ 2782 static bool trans_BREAK(DisasContext *ctx, arg_BREAK *a) 2783 { 2784 if (!avr_have_feature(ctx, AVR_FEATURE_BREAK)) { 2785 return true; 2786 } 2787 2788 #ifdef BREAKPOINT_ON_BREAK 2789 tcg_gen_movi_tl(cpu_pc, ctx->npc - 1); 2790 gen_helper_debug(cpu_env); 2791 ctx->base.is_jmp = DISAS_EXIT; 2792 #else 2793 /* NOP */ 2794 #endif 2795 2796 return true; 2797 } 2798 2799 /* 2800 * This instruction performs a single cycle No Operation. 2801 */ 2802 static bool trans_NOP(DisasContext *ctx, arg_NOP *a) 2803 { 2804 2805 /* NOP */ 2806 2807 return true; 2808 } 2809 2810 /* 2811 * This instruction sets the circuit in sleep mode defined by the MCU 2812 * Control Register. 2813 */ 2814 static bool trans_SLEEP(DisasContext *ctx, arg_SLEEP *a) 2815 { 2816 gen_helper_sleep(cpu_env); 2817 ctx->base.is_jmp = DISAS_NORETURN; 2818 return true; 2819 } 2820 2821 /* 2822 * This instruction resets the Watchdog Timer. This instruction must be 2823 * executed within a limited time given by the WD prescaler. See the Watchdog 2824 * Timer hardware specification. 2825 */ 2826 static bool trans_WDR(DisasContext *ctx, arg_WDR *a) 2827 { 2828 gen_helper_wdr(cpu_env); 2829 2830 return true; 2831 } 2832 2833 /* 2834 * Core translation mechanism functions: 2835 * 2836 * - translate() 2837 * - canonicalize_skip() 2838 * - gen_intermediate_code() 2839 * - restore_state_to_opc() 2840 * 2841 */ 2842 static void translate(DisasContext *ctx) 2843 { 2844 uint32_t opcode = next_word(ctx); 2845 2846 if (!decode_insn(ctx, opcode)) { 2847 gen_helper_unsupported(cpu_env); 2848 ctx->base.is_jmp = DISAS_NORETURN; 2849 } 2850 } 2851 2852 /* Standardize the cpu_skip condition to NE. */ 2853 static bool canonicalize_skip(DisasContext *ctx) 2854 { 2855 switch (ctx->skip_cond) { 2856 case TCG_COND_NEVER: 2857 /* Normal case: cpu_skip is known to be false. */ 2858 return false; 2859 2860 case TCG_COND_ALWAYS: 2861 /* 2862 * Breakpoint case: cpu_skip is known to be true, via TB_FLAGS_SKIP. 2863 * The breakpoint is on the instruction being skipped, at the start 2864 * of the TranslationBlock. No need to update. 2865 */ 2866 return false; 2867 2868 case TCG_COND_NE: 2869 if (ctx->skip_var1 == NULL) { 2870 tcg_gen_mov_tl(cpu_skip, ctx->skip_var0); 2871 } else { 2872 tcg_gen_xor_tl(cpu_skip, ctx->skip_var0, ctx->skip_var1); 2873 ctx->skip_var1 = NULL; 2874 } 2875 break; 2876 2877 default: 2878 /* Convert to a NE condition vs 0. */ 2879 if (ctx->skip_var1 == NULL) { 2880 tcg_gen_setcondi_tl(ctx->skip_cond, cpu_skip, ctx->skip_var0, 0); 2881 } else { 2882 tcg_gen_setcond_tl(ctx->skip_cond, cpu_skip, 2883 ctx->skip_var0, ctx->skip_var1); 2884 ctx->skip_var1 = NULL; 2885 } 2886 ctx->skip_cond = TCG_COND_NE; 2887 break; 2888 } 2889 if (ctx->free_skip_var0) { 2890 tcg_temp_free(ctx->skip_var0); 2891 ctx->free_skip_var0 = false; 2892 } 2893 ctx->skip_var0 = cpu_skip; 2894 return true; 2895 } 2896 2897 static void avr_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) 2898 { 2899 DisasContext *ctx = container_of(dcbase, DisasContext, base); 2900 CPUAVRState *env = cs->env_ptr; 2901 uint32_t tb_flags = ctx->base.tb->flags; 2902 2903 ctx->cs = cs; 2904 ctx->env = env; 2905 ctx->npc = ctx->base.pc_first / 2; 2906 2907 ctx->skip_cond = TCG_COND_NEVER; 2908 if (tb_flags & TB_FLAGS_SKIP) { 2909 ctx->skip_cond = TCG_COND_ALWAYS; 2910 ctx->skip_var0 = cpu_skip; 2911 } 2912 2913 if (tb_flags & TB_FLAGS_FULL_ACCESS) { 2914 /* 2915 * This flag is set by ST/LD instruction we will regenerate it ONLY 2916 * with mem/cpu memory access instead of mem access 2917 */ 2918 ctx->base.max_insns = 1; 2919 } 2920 } 2921 2922 static void avr_tr_tb_start(DisasContextBase *db, CPUState *cs) 2923 { 2924 } 2925 2926 static void avr_tr_insn_start(DisasContextBase *dcbase, CPUState *cs) 2927 { 2928 DisasContext *ctx = container_of(dcbase, DisasContext, base); 2929 2930 tcg_gen_insn_start(ctx->npc); 2931 } 2932 2933 static void avr_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs) 2934 { 2935 DisasContext *ctx = container_of(dcbase, DisasContext, base); 2936 TCGLabel *skip_label = NULL; 2937 2938 /* Conditionally skip the next instruction, if indicated. */ 2939 if (ctx->skip_cond != TCG_COND_NEVER) { 2940 skip_label = gen_new_label(); 2941 if (ctx->skip_var0 == cpu_skip) { 2942 /* 2943 * Copy cpu_skip so that we may zero it before the branch. 2944 * This ensures that cpu_skip is non-zero after the label 2945 * if and only if the skipped insn itself sets a skip. 2946 */ 2947 ctx->free_skip_var0 = true; 2948 ctx->skip_var0 = tcg_temp_new(); 2949 tcg_gen_mov_tl(ctx->skip_var0, cpu_skip); 2950 tcg_gen_movi_tl(cpu_skip, 0); 2951 } 2952 if (ctx->skip_var1 == NULL) { 2953 tcg_gen_brcondi_tl(ctx->skip_cond, ctx->skip_var0, 0, skip_label); 2954 } else { 2955 tcg_gen_brcond_tl(ctx->skip_cond, ctx->skip_var0, 2956 ctx->skip_var1, skip_label); 2957 ctx->skip_var1 = NULL; 2958 } 2959 if (ctx->free_skip_var0) { 2960 tcg_temp_free(ctx->skip_var0); 2961 ctx->free_skip_var0 = false; 2962 } 2963 ctx->skip_cond = TCG_COND_NEVER; 2964 ctx->skip_var0 = NULL; 2965 } 2966 2967 translate(ctx); 2968 2969 ctx->base.pc_next = ctx->npc * 2; 2970 2971 if (skip_label) { 2972 canonicalize_skip(ctx); 2973 gen_set_label(skip_label); 2974 if (ctx->base.is_jmp == DISAS_NORETURN) { 2975 ctx->base.is_jmp = DISAS_CHAIN; 2976 } 2977 } 2978 2979 if (ctx->base.is_jmp == DISAS_NEXT) { 2980 target_ulong page_first = ctx->base.pc_first & TARGET_PAGE_MASK; 2981 2982 if ((ctx->base.pc_next - page_first) >= TARGET_PAGE_SIZE - 4) { 2983 ctx->base.is_jmp = DISAS_TOO_MANY; 2984 } 2985 } 2986 } 2987 2988 static void avr_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs) 2989 { 2990 DisasContext *ctx = container_of(dcbase, DisasContext, base); 2991 bool nonconst_skip = canonicalize_skip(ctx); 2992 2993 switch (ctx->base.is_jmp) { 2994 case DISAS_NORETURN: 2995 assert(!nonconst_skip); 2996 break; 2997 case DISAS_NEXT: 2998 case DISAS_TOO_MANY: 2999 case DISAS_CHAIN: 3000 if (!nonconst_skip) { 3001 /* Note gen_goto_tb checks singlestep. */ 3002 gen_goto_tb(ctx, 1, ctx->npc); 3003 break; 3004 } 3005 tcg_gen_movi_tl(cpu_pc, ctx->npc); 3006 /* fall through */ 3007 case DISAS_LOOKUP: 3008 tcg_gen_lookup_and_goto_ptr(); 3009 break; 3010 case DISAS_EXIT: 3011 tcg_gen_exit_tb(NULL, 0); 3012 break; 3013 default: 3014 g_assert_not_reached(); 3015 } 3016 } 3017 3018 static void avr_tr_disas_log(const DisasContextBase *dcbase, CPUState *cs) 3019 { 3020 qemu_log("IN: %s\n", lookup_symbol(dcbase->pc_first)); 3021 log_target_disas(cs, dcbase->pc_first, dcbase->tb->size); 3022 } 3023 3024 static const TranslatorOps avr_tr_ops = { 3025 .init_disas_context = avr_tr_init_disas_context, 3026 .tb_start = avr_tr_tb_start, 3027 .insn_start = avr_tr_insn_start, 3028 .translate_insn = avr_tr_translate_insn, 3029 .tb_stop = avr_tr_tb_stop, 3030 .disas_log = avr_tr_disas_log, 3031 }; 3032 3033 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns) 3034 { 3035 DisasContext dc = { }; 3036 translator_loop(&avr_tr_ops, &dc.base, cs, tb, max_insns); 3037 } 3038 3039 void restore_state_to_opc(CPUAVRState *env, TranslationBlock *tb, 3040 target_ulong *data) 3041 { 3042 env->pc_w = data[0]; 3043 } 3044