1 /* 2 * QEMU AVR CPU 3 * 4 * Copyright (c) 2019-2020 Michael Rolnik 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see 18 * <http://www.gnu.org/licenses/lgpl-2.1.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/qemu-print.h" 23 #include "tcg/tcg.h" 24 #include "cpu.h" 25 #include "exec/exec-all.h" 26 #include "tcg/tcg-op.h" 27 #include "exec/cpu_ldst.h" 28 #include "exec/helper-proto.h" 29 #include "exec/helper-gen.h" 30 #include "exec/log.h" 31 #include "exec/translator.h" 32 33 #define HELPER_H "helper.h" 34 #include "exec/helper-info.c.inc" 35 #undef HELPER_H 36 37 38 /* 39 * Define if you want a BREAK instruction translated to a breakpoint 40 * Active debugging connection is assumed 41 * This is for 42 * https://github.com/seharris/qemu-avr-tests/tree/master/instruction-tests 43 * tests 44 */ 45 #undef BREAKPOINT_ON_BREAK 46 47 static TCGv cpu_pc; 48 49 static TCGv cpu_Cf; 50 static TCGv cpu_Zf; 51 static TCGv cpu_Nf; 52 static TCGv cpu_Vf; 53 static TCGv cpu_Sf; 54 static TCGv cpu_Hf; 55 static TCGv cpu_Tf; 56 static TCGv cpu_If; 57 58 static TCGv cpu_rampD; 59 static TCGv cpu_rampX; 60 static TCGv cpu_rampY; 61 static TCGv cpu_rampZ; 62 63 static TCGv cpu_r[NUMBER_OF_CPU_REGISTERS]; 64 static TCGv cpu_eind; 65 static TCGv cpu_sp; 66 67 static TCGv cpu_skip; 68 69 static const char reg_names[NUMBER_OF_CPU_REGISTERS][8] = { 70 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 71 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 72 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 73 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", 74 }; 75 #define REG(x) (cpu_r[x]) 76 77 #define DISAS_EXIT DISAS_TARGET_0 /* We want return to the cpu main loop. */ 78 #define DISAS_LOOKUP DISAS_TARGET_1 /* We have a variable condition exit. */ 79 #define DISAS_CHAIN DISAS_TARGET_2 /* We have a single condition exit. */ 80 81 typedef struct DisasContext DisasContext; 82 83 /* This is the state at translation time. */ 84 struct DisasContext { 85 DisasContextBase base; 86 87 CPUAVRState *env; 88 CPUState *cs; 89 90 target_long npc; 91 uint32_t opcode; 92 93 /* Routine used to access memory */ 94 int memidx; 95 96 /* 97 * some AVR instructions can make the following instruction to be skipped 98 * Let's name those instructions 99 * A - instruction that can skip the next one 100 * B - instruction that can be skipped. this depends on execution of A 101 * there are two scenarios 102 * 1. A and B belong to the same translation block 103 * 2. A is the last instruction in the translation block and B is the last 104 * 105 * following variables are used to simplify the skipping logic, they are 106 * used in the following manner (sketch) 107 * 108 * TCGLabel *skip_label = NULL; 109 * if (ctx->skip_cond != TCG_COND_NEVER) { 110 * skip_label = gen_new_label(); 111 * tcg_gen_brcond_tl(skip_cond, skip_var0, skip_var1, skip_label); 112 * } 113 * 114 * translate(ctx); 115 * 116 * if (skip_label) { 117 * gen_set_label(skip_label); 118 * } 119 */ 120 TCGv skip_var0; 121 TCGv skip_var1; 122 TCGCond skip_cond; 123 }; 124 125 void avr_cpu_tcg_init(void) 126 { 127 int i; 128 129 #define AVR_REG_OFFS(x) offsetof(CPUAVRState, x) 130 cpu_pc = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(pc_w), "pc"); 131 cpu_Cf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregC), "Cf"); 132 cpu_Zf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregZ), "Zf"); 133 cpu_Nf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregN), "Nf"); 134 cpu_Vf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregV), "Vf"); 135 cpu_Sf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregS), "Sf"); 136 cpu_Hf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregH), "Hf"); 137 cpu_Tf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregT), "Tf"); 138 cpu_If = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregI), "If"); 139 cpu_rampD = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampD), "rampD"); 140 cpu_rampX = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampX), "rampX"); 141 cpu_rampY = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampY), "rampY"); 142 cpu_rampZ = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampZ), "rampZ"); 143 cpu_eind = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(eind), "eind"); 144 cpu_sp = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sp), "sp"); 145 cpu_skip = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(skip), "skip"); 146 147 for (i = 0; i < NUMBER_OF_CPU_REGISTERS; i++) { 148 cpu_r[i] = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(r[i]), 149 reg_names[i]); 150 } 151 #undef AVR_REG_OFFS 152 } 153 154 static int to_regs_16_31_by_one(DisasContext *ctx, int indx) 155 { 156 return 16 + (indx % 16); 157 } 158 159 static int to_regs_16_23_by_one(DisasContext *ctx, int indx) 160 { 161 return 16 + (indx % 8); 162 } 163 164 static int to_regs_24_30_by_two(DisasContext *ctx, int indx) 165 { 166 return 24 + (indx % 4) * 2; 167 } 168 169 static int to_regs_00_30_by_two(DisasContext *ctx, int indx) 170 { 171 return (indx % 16) * 2; 172 } 173 174 static uint16_t next_word(DisasContext *ctx) 175 { 176 return cpu_lduw_code(ctx->env, ctx->npc++ * 2); 177 } 178 179 static int append_16(DisasContext *ctx, int x) 180 { 181 return x << 16 | next_word(ctx); 182 } 183 184 static bool avr_have_feature(DisasContext *ctx, int feature) 185 { 186 if (!avr_feature(ctx->env, feature)) { 187 gen_helper_unsupported(tcg_env); 188 ctx->base.is_jmp = DISAS_NORETURN; 189 return false; 190 } 191 return true; 192 } 193 194 static bool decode_insn(DisasContext *ctx, uint16_t insn); 195 #include "decode-insn.c.inc" 196 197 /* 198 * Arithmetic Instructions 199 */ 200 201 /* 202 * Utility functions for updating status registers: 203 * 204 * - gen_add_CHf() 205 * - gen_add_Vf() 206 * - gen_sub_CHf() 207 * - gen_sub_Vf() 208 * - gen_NSf() 209 * - gen_ZNSf() 210 * 211 */ 212 213 static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr) 214 { 215 TCGv t1 = tcg_temp_new_i32(); 216 TCGv t2 = tcg_temp_new_i32(); 217 TCGv t3 = tcg_temp_new_i32(); 218 219 tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */ 220 tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */ 221 tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */ 222 tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */ 223 tcg_gen_or_tl(t1, t1, t3); 224 225 tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */ 226 tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */ 227 tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1); 228 } 229 230 static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr) 231 { 232 TCGv t1 = tcg_temp_new_i32(); 233 TCGv t2 = tcg_temp_new_i32(); 234 235 /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R */ 236 /* = (Rd ^ R) & ~(Rd ^ Rr) */ 237 tcg_gen_xor_tl(t1, Rd, R); 238 tcg_gen_xor_tl(t2, Rd, Rr); 239 tcg_gen_andc_tl(t1, t1, t2); 240 241 tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */ 242 } 243 244 static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr) 245 { 246 TCGv t1 = tcg_temp_new_i32(); 247 TCGv t2 = tcg_temp_new_i32(); 248 TCGv t3 = tcg_temp_new_i32(); 249 250 tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */ 251 tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */ 252 tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */ 253 tcg_gen_and_tl(t3, t3, R); 254 tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */ 255 256 tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */ 257 tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */ 258 tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1); 259 } 260 261 static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr) 262 { 263 TCGv t1 = tcg_temp_new_i32(); 264 TCGv t2 = tcg_temp_new_i32(); 265 266 /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R */ 267 /* = (Rd ^ R) & (Rd ^ R) */ 268 tcg_gen_xor_tl(t1, Rd, R); 269 tcg_gen_xor_tl(t2, Rd, Rr); 270 tcg_gen_and_tl(t1, t1, t2); 271 272 tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */ 273 } 274 275 static void gen_NSf(TCGv R) 276 { 277 tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ 278 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ 279 } 280 281 static void gen_ZNSf(TCGv R) 282 { 283 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 284 285 /* update status register */ 286 tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ 287 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ 288 } 289 290 /* 291 * Adds two registers without the C Flag and places the result in the 292 * destination register Rd. 293 */ 294 static bool trans_ADD(DisasContext *ctx, arg_ADD *a) 295 { 296 TCGv Rd = cpu_r[a->rd]; 297 TCGv Rr = cpu_r[a->rr]; 298 TCGv R = tcg_temp_new_i32(); 299 300 tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */ 301 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 302 303 /* update status register */ 304 gen_add_CHf(R, Rd, Rr); 305 gen_add_Vf(R, Rd, Rr); 306 gen_ZNSf(R); 307 308 /* update output registers */ 309 tcg_gen_mov_tl(Rd, R); 310 return true; 311 } 312 313 /* 314 * Adds two registers and the contents of the C Flag and places the result in 315 * the destination register Rd. 316 */ 317 static bool trans_ADC(DisasContext *ctx, arg_ADC *a) 318 { 319 TCGv Rd = cpu_r[a->rd]; 320 TCGv Rr = cpu_r[a->rr]; 321 TCGv R = tcg_temp_new_i32(); 322 323 tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */ 324 tcg_gen_add_tl(R, R, cpu_Cf); 325 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 326 327 /* update status register */ 328 gen_add_CHf(R, Rd, Rr); 329 gen_add_Vf(R, Rd, Rr); 330 gen_ZNSf(R); 331 332 /* update output registers */ 333 tcg_gen_mov_tl(Rd, R); 334 return true; 335 } 336 337 /* 338 * Adds an immediate value (0 - 63) to a register pair and places the result 339 * in the register pair. This instruction operates on the upper four register 340 * pairs, and is well suited for operations on the pointer registers. This 341 * instruction is not available in all devices. Refer to the device specific 342 * instruction set summary. 343 */ 344 static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a) 345 { 346 if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) { 347 return true; 348 } 349 350 TCGv RdL = cpu_r[a->rd]; 351 TCGv RdH = cpu_r[a->rd + 1]; 352 int Imm = (a->imm); 353 TCGv R = tcg_temp_new_i32(); 354 TCGv Rd = tcg_temp_new_i32(); 355 356 tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */ 357 tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */ 358 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ 359 360 /* update status register */ 361 tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */ 362 tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); 363 tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */ 364 tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); 365 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 366 tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */ 367 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */ 368 369 /* update output registers */ 370 tcg_gen_andi_tl(RdL, R, 0xff); 371 tcg_gen_shri_tl(RdH, R, 8); 372 return true; 373 } 374 375 /* 376 * Subtracts two registers and places the result in the destination 377 * register Rd. 378 */ 379 static bool trans_SUB(DisasContext *ctx, arg_SUB *a) 380 { 381 TCGv Rd = cpu_r[a->rd]; 382 TCGv Rr = cpu_r[a->rr]; 383 TCGv R = tcg_temp_new_i32(); 384 385 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ 386 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 387 388 /* update status register */ 389 tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */ 390 gen_sub_CHf(R, Rd, Rr); 391 gen_sub_Vf(R, Rd, Rr); 392 gen_ZNSf(R); 393 394 /* update output registers */ 395 tcg_gen_mov_tl(Rd, R); 396 return true; 397 } 398 399 /* 400 * Subtracts a register and a constant and places the result in the 401 * destination register Rd. This instruction is working on Register R16 to R31 402 * and is very well suited for operations on the X, Y, and Z-pointers. 403 */ 404 static bool trans_SUBI(DisasContext *ctx, arg_SUBI *a) 405 { 406 TCGv Rd = cpu_r[a->rd]; 407 TCGv Rr = tcg_constant_i32(a->imm); 408 TCGv R = tcg_temp_new_i32(); 409 410 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Imm */ 411 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 412 413 /* update status register */ 414 gen_sub_CHf(R, Rd, Rr); 415 gen_sub_Vf(R, Rd, Rr); 416 gen_ZNSf(R); 417 418 /* update output registers */ 419 tcg_gen_mov_tl(Rd, R); 420 return true; 421 } 422 423 /* 424 * Subtracts two registers and subtracts with the C Flag and places the 425 * result in the destination register Rd. 426 */ 427 static bool trans_SBC(DisasContext *ctx, arg_SBC *a) 428 { 429 TCGv Rd = cpu_r[a->rd]; 430 TCGv Rr = cpu_r[a->rr]; 431 TCGv R = tcg_temp_new_i32(); 432 TCGv zero = tcg_constant_i32(0); 433 434 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ 435 tcg_gen_sub_tl(R, R, cpu_Cf); 436 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 437 438 /* update status register */ 439 gen_sub_CHf(R, Rd, Rr); 440 gen_sub_Vf(R, Rd, Rr); 441 gen_NSf(R); 442 443 /* 444 * Previous value remains unchanged when the result is zero; 445 * cleared otherwise. 446 */ 447 tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); 448 449 /* update output registers */ 450 tcg_gen_mov_tl(Rd, R); 451 return true; 452 } 453 454 /* 455 * SBCI -- Subtract Immediate with Carry 456 */ 457 static bool trans_SBCI(DisasContext *ctx, arg_SBCI *a) 458 { 459 TCGv Rd = cpu_r[a->rd]; 460 TCGv Rr = tcg_constant_i32(a->imm); 461 TCGv R = tcg_temp_new_i32(); 462 TCGv zero = tcg_constant_i32(0); 463 464 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ 465 tcg_gen_sub_tl(R, R, cpu_Cf); 466 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 467 468 /* update status register */ 469 gen_sub_CHf(R, Rd, Rr); 470 gen_sub_Vf(R, Rd, Rr); 471 gen_NSf(R); 472 473 /* 474 * Previous value remains unchanged when the result is zero; 475 * cleared otherwise. 476 */ 477 tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); 478 479 /* update output registers */ 480 tcg_gen_mov_tl(Rd, R); 481 return true; 482 } 483 484 /* 485 * Subtracts an immediate value (0-63) from a register pair and places the 486 * result in the register pair. This instruction operates on the upper four 487 * register pairs, and is well suited for operations on the Pointer Registers. 488 * This instruction is not available in all devices. Refer to the device 489 * specific instruction set summary. 490 */ 491 static bool trans_SBIW(DisasContext *ctx, arg_SBIW *a) 492 { 493 if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) { 494 return true; 495 } 496 497 TCGv RdL = cpu_r[a->rd]; 498 TCGv RdH = cpu_r[a->rd + 1]; 499 int Imm = (a->imm); 500 TCGv R = tcg_temp_new_i32(); 501 TCGv Rd = tcg_temp_new_i32(); 502 503 tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */ 504 tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */ 505 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ 506 507 /* update status register */ 508 tcg_gen_andc_tl(cpu_Cf, R, Rd); 509 tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */ 510 tcg_gen_andc_tl(cpu_Vf, Rd, R); 511 tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */ 512 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 513 tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */ 514 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ 515 516 /* update output registers */ 517 tcg_gen_andi_tl(RdL, R, 0xff); 518 tcg_gen_shri_tl(RdH, R, 8); 519 return true; 520 } 521 522 /* 523 * Performs the logical AND between the contents of register Rd and register 524 * Rr and places the result in the destination register Rd. 525 */ 526 static bool trans_AND(DisasContext *ctx, arg_AND *a) 527 { 528 TCGv Rd = cpu_r[a->rd]; 529 TCGv Rr = cpu_r[a->rr]; 530 TCGv R = tcg_temp_new_i32(); 531 532 tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */ 533 534 /* update status register */ 535 tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */ 536 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 537 gen_ZNSf(R); 538 539 /* update output registers */ 540 tcg_gen_mov_tl(Rd, R); 541 return true; 542 } 543 544 /* 545 * Performs the logical AND between the contents of register Rd and a constant 546 * and places the result in the destination register Rd. 547 */ 548 static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a) 549 { 550 TCGv Rd = cpu_r[a->rd]; 551 int Imm = (a->imm); 552 553 tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */ 554 555 /* update status register */ 556 tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */ 557 gen_ZNSf(Rd); 558 559 return true; 560 } 561 562 /* 563 * Performs the logical OR between the contents of register Rd and register 564 * Rr and places the result in the destination register Rd. 565 */ 566 static bool trans_OR(DisasContext *ctx, arg_OR *a) 567 { 568 TCGv Rd = cpu_r[a->rd]; 569 TCGv Rr = cpu_r[a->rr]; 570 TCGv R = tcg_temp_new_i32(); 571 572 tcg_gen_or_tl(R, Rd, Rr); 573 574 /* update status register */ 575 tcg_gen_movi_tl(cpu_Vf, 0); 576 gen_ZNSf(R); 577 578 /* update output registers */ 579 tcg_gen_mov_tl(Rd, R); 580 return true; 581 } 582 583 /* 584 * Performs the logical OR between the contents of register Rd and a 585 * constant and places the result in the destination register Rd. 586 */ 587 static bool trans_ORI(DisasContext *ctx, arg_ORI *a) 588 { 589 TCGv Rd = cpu_r[a->rd]; 590 int Imm = (a->imm); 591 592 tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */ 593 594 /* update status register */ 595 tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */ 596 gen_ZNSf(Rd); 597 598 return true; 599 } 600 601 /* 602 * Performs the logical EOR between the contents of register Rd and 603 * register Rr and places the result in the destination register Rd. 604 */ 605 static bool trans_EOR(DisasContext *ctx, arg_EOR *a) 606 { 607 TCGv Rd = cpu_r[a->rd]; 608 TCGv Rr = cpu_r[a->rr]; 609 610 tcg_gen_xor_tl(Rd, Rd, Rr); 611 612 /* update status register */ 613 tcg_gen_movi_tl(cpu_Vf, 0); 614 gen_ZNSf(Rd); 615 616 return true; 617 } 618 619 /* 620 * Clears the specified bits in register Rd. Performs the logical AND 621 * between the contents of register Rd and the complement of the constant mask 622 * K. The result will be placed in register Rd. 623 */ 624 static bool trans_COM(DisasContext *ctx, arg_COM *a) 625 { 626 TCGv Rd = cpu_r[a->rd]; 627 628 tcg_gen_xori_tl(Rd, Rd, 0xff); 629 630 /* update status register */ 631 tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */ 632 tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */ 633 gen_ZNSf(Rd); 634 return true; 635 } 636 637 /* 638 * Replaces the contents of register Rd with its two's complement; the 639 * value $80 is left unchanged. 640 */ 641 static bool trans_NEG(DisasContext *ctx, arg_NEG *a) 642 { 643 TCGv Rd = cpu_r[a->rd]; 644 TCGv t0 = tcg_constant_i32(0); 645 TCGv R = tcg_temp_new_i32(); 646 647 tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */ 648 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 649 650 /* update status register */ 651 gen_sub_CHf(R, t0, Rd); 652 gen_sub_Vf(R, t0, Rd); 653 gen_ZNSf(R); 654 655 /* update output registers */ 656 tcg_gen_mov_tl(Rd, R); 657 return true; 658 } 659 660 /* 661 * Adds one -1- to the contents of register Rd and places the result in the 662 * destination register Rd. The C Flag in SREG is not affected by the 663 * operation, thus allowing the INC instruction to be used on a loop counter in 664 * multiple-precision computations. When operating on unsigned numbers, only 665 * BREQ and BRNE branches can be expected to perform consistently. When 666 * operating on two's complement values, all signed branches are available. 667 */ 668 static bool trans_INC(DisasContext *ctx, arg_INC *a) 669 { 670 TCGv Rd = cpu_r[a->rd]; 671 672 tcg_gen_addi_tl(Rd, Rd, 1); 673 tcg_gen_andi_tl(Rd, Rd, 0xff); 674 675 /* update status register */ 676 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80); /* Vf = Rd == 0x80 */ 677 gen_ZNSf(Rd); 678 679 return true; 680 } 681 682 /* 683 * Subtracts one -1- from the contents of register Rd and places the result 684 * in the destination register Rd. The C Flag in SREG is not affected by the 685 * operation, thus allowing the DEC instruction to be used on a loop counter in 686 * multiple-precision computations. When operating on unsigned values, only 687 * BREQ and BRNE branches can be expected to perform consistently. When 688 * operating on two's complement values, all signed branches are available. 689 */ 690 static bool trans_DEC(DisasContext *ctx, arg_DEC *a) 691 { 692 TCGv Rd = cpu_r[a->rd]; 693 694 tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */ 695 tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */ 696 697 /* update status register */ 698 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f); /* Vf = Rd == 0x7f */ 699 gen_ZNSf(Rd); 700 701 return true; 702 } 703 704 /* 705 * This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication. 706 */ 707 static bool trans_MUL(DisasContext *ctx, arg_MUL *a) 708 { 709 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { 710 return true; 711 } 712 713 TCGv R0 = cpu_r[0]; 714 TCGv R1 = cpu_r[1]; 715 TCGv Rd = cpu_r[a->rd]; 716 TCGv Rr = cpu_r[a->rr]; 717 TCGv R = tcg_temp_new_i32(); 718 719 tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */ 720 tcg_gen_andi_tl(R0, R, 0xff); 721 tcg_gen_shri_tl(R1, R, 8); 722 723 /* update status register */ 724 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ 725 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 726 return true; 727 } 728 729 /* 730 * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication. 731 */ 732 static bool trans_MULS(DisasContext *ctx, arg_MULS *a) 733 { 734 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { 735 return true; 736 } 737 738 TCGv R0 = cpu_r[0]; 739 TCGv R1 = cpu_r[1]; 740 TCGv Rd = cpu_r[a->rd]; 741 TCGv Rr = cpu_r[a->rr]; 742 TCGv R = tcg_temp_new_i32(); 743 TCGv t0 = tcg_temp_new_i32(); 744 TCGv t1 = tcg_temp_new_i32(); 745 746 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ 747 tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */ 748 tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */ 749 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ 750 tcg_gen_andi_tl(R0, R, 0xff); 751 tcg_gen_shri_tl(R1, R, 8); 752 753 /* update status register */ 754 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ 755 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 756 return true; 757 } 758 759 /* 760 * This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a 761 * signed and an unsigned number. 762 */ 763 static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a) 764 { 765 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { 766 return true; 767 } 768 769 TCGv R0 = cpu_r[0]; 770 TCGv R1 = cpu_r[1]; 771 TCGv Rd = cpu_r[a->rd]; 772 TCGv Rr = cpu_r[a->rr]; 773 TCGv R = tcg_temp_new_i32(); 774 TCGv t0 = tcg_temp_new_i32(); 775 776 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ 777 tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */ 778 tcg_gen_andi_tl(R, R, 0xffff); /* make R 16 bits */ 779 tcg_gen_andi_tl(R0, R, 0xff); 780 tcg_gen_shri_tl(R1, R, 8); 781 782 /* update status register */ 783 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ 784 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 785 return true; 786 } 787 788 /* 789 * This instruction performs 8-bit x 8-bit -> 16-bit unsigned 790 * multiplication and shifts the result one bit left. 791 */ 792 static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a) 793 { 794 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { 795 return true; 796 } 797 798 TCGv R0 = cpu_r[0]; 799 TCGv R1 = cpu_r[1]; 800 TCGv Rd = cpu_r[a->rd]; 801 TCGv Rr = cpu_r[a->rr]; 802 TCGv R = tcg_temp_new_i32(); 803 804 tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */ 805 806 /* update status register */ 807 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ 808 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 809 810 /* update output registers */ 811 tcg_gen_shli_tl(R, R, 1); 812 tcg_gen_andi_tl(R0, R, 0xff); 813 tcg_gen_shri_tl(R1, R, 8); 814 tcg_gen_andi_tl(R1, R1, 0xff); 815 return true; 816 } 817 818 /* 819 * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication 820 * and shifts the result one bit left. 821 */ 822 static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a) 823 { 824 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { 825 return true; 826 } 827 828 TCGv R0 = cpu_r[0]; 829 TCGv R1 = cpu_r[1]; 830 TCGv Rd = cpu_r[a->rd]; 831 TCGv Rr = cpu_r[a->rr]; 832 TCGv R = tcg_temp_new_i32(); 833 TCGv t0 = tcg_temp_new_i32(); 834 TCGv t1 = tcg_temp_new_i32(); 835 836 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ 837 tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */ 838 tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */ 839 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ 840 841 /* update status register */ 842 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ 843 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 844 845 /* update output registers */ 846 tcg_gen_shli_tl(R, R, 1); 847 tcg_gen_andi_tl(R0, R, 0xff); 848 tcg_gen_shri_tl(R1, R, 8); 849 tcg_gen_andi_tl(R1, R1, 0xff); 850 return true; 851 } 852 853 /* 854 * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication 855 * and shifts the result one bit left. 856 */ 857 static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a) 858 { 859 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { 860 return true; 861 } 862 863 TCGv R0 = cpu_r[0]; 864 TCGv R1 = cpu_r[1]; 865 TCGv Rd = cpu_r[a->rd]; 866 TCGv Rr = cpu_r[a->rr]; 867 TCGv R = tcg_temp_new_i32(); 868 TCGv t0 = tcg_temp_new_i32(); 869 870 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ 871 tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */ 872 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ 873 874 /* update status register */ 875 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ 876 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 877 878 /* update output registers */ 879 tcg_gen_shli_tl(R, R, 1); 880 tcg_gen_andi_tl(R0, R, 0xff); 881 tcg_gen_shri_tl(R1, R, 8); 882 tcg_gen_andi_tl(R1, R1, 0xff); 883 return true; 884 } 885 886 /* 887 * The module is an instruction set extension to the AVR CPU, performing 888 * DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in 889 * the CPU register file, registers R0-R7, where LSB of data is placed in LSB 890 * of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including 891 * parity bits) is placed in registers R8- R15, organized in the register file 892 * with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES 893 * instruction performs one round in the DES algorithm. Sixteen rounds must be 894 * executed in increasing order to form the correct DES ciphertext or 895 * plaintext. Intermediate results are stored in the register file (R0-R15) 896 * after each DES instruction. The instruction's operand (K) determines which 897 * round is executed, and the half carry flag (H) determines whether encryption 898 * or decryption is performed. The DES algorithm is described in 899 * "Specifications for the Data Encryption Standard" (Federal Information 900 * Processing Standards Publication 46). Intermediate results in this 901 * implementation differ from the standard because the initial permutation and 902 * the inverse initial permutation are performed each iteration. This does not 903 * affect the result in the final ciphertext or plaintext, but reduces 904 * execution time. 905 */ 906 static bool trans_DES(DisasContext *ctx, arg_DES *a) 907 { 908 /* TODO */ 909 if (!avr_have_feature(ctx, AVR_FEATURE_DES)) { 910 return true; 911 } 912 913 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); 914 915 return true; 916 } 917 918 /* 919 * Branch Instructions 920 */ 921 static void gen_jmp_ez(DisasContext *ctx) 922 { 923 tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8); 924 tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind); 925 ctx->base.is_jmp = DISAS_LOOKUP; 926 } 927 928 static void gen_jmp_z(DisasContext *ctx) 929 { 930 tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8); 931 ctx->base.is_jmp = DISAS_LOOKUP; 932 } 933 934 static void gen_push_ret(DisasContext *ctx, int ret) 935 { 936 if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) { 937 TCGv t0 = tcg_constant_i32(ret & 0x0000ff); 938 939 tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB); 940 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); 941 } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) { 942 TCGv t0 = tcg_constant_i32(ret & 0x00ffff); 943 944 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); 945 tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW); 946 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); 947 } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) { 948 TCGv lo = tcg_constant_i32(ret & 0x0000ff); 949 TCGv hi = tcg_constant_i32((ret & 0xffff00) >> 8); 950 951 tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB); 952 tcg_gen_subi_tl(cpu_sp, cpu_sp, 2); 953 tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW); 954 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); 955 } 956 } 957 958 static void gen_pop_ret(DisasContext *ctx, TCGv ret) 959 { 960 if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) { 961 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); 962 tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB); 963 } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) { 964 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); 965 tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW); 966 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); 967 } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) { 968 TCGv lo = tcg_temp_new_i32(); 969 TCGv hi = tcg_temp_new_i32(); 970 971 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); 972 tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW); 973 974 tcg_gen_addi_tl(cpu_sp, cpu_sp, 2); 975 tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB); 976 977 tcg_gen_deposit_tl(ret, lo, hi, 8, 16); 978 } 979 } 980 981 static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest) 982 { 983 const TranslationBlock *tb = ctx->base.tb; 984 985 if (translator_use_goto_tb(&ctx->base, dest)) { 986 tcg_gen_goto_tb(n); 987 tcg_gen_movi_i32(cpu_pc, dest); 988 tcg_gen_exit_tb(tb, n); 989 } else { 990 tcg_gen_movi_i32(cpu_pc, dest); 991 tcg_gen_lookup_and_goto_ptr(); 992 } 993 ctx->base.is_jmp = DISAS_NORETURN; 994 } 995 996 /* 997 * Relative jump to an address within PC - 2K +1 and PC + 2K (words). For 998 * AVR microcontrollers with Program memory not exceeding 4K words (8KB) this 999 * instruction can address the entire memory from every address location. See 1000 * also JMP. 1001 */ 1002 static bool trans_RJMP(DisasContext *ctx, arg_RJMP *a) 1003 { 1004 int dst = ctx->npc + a->imm; 1005 1006 gen_goto_tb(ctx, 0, dst); 1007 1008 return true; 1009 } 1010 1011 /* 1012 * Indirect jump to the address pointed to by the Z (16 bits) Pointer 1013 * Register in the Register File. The Z-pointer Register is 16 bits wide and 1014 * allows jump within the lowest 64K words (128KB) section of Program memory. 1015 * This instruction is not available in all devices. Refer to the device 1016 * specific instruction set summary. 1017 */ 1018 static bool trans_IJMP(DisasContext *ctx, arg_IJMP *a) 1019 { 1020 if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) { 1021 return true; 1022 } 1023 1024 gen_jmp_z(ctx); 1025 1026 return true; 1027 } 1028 1029 /* 1030 * Indirect jump to the address pointed to by the Z (16 bits) Pointer 1031 * Register in the Register File and the EIND Register in the I/O space. This 1032 * instruction allows for indirect jumps to the entire 4M (words) Program 1033 * memory space. See also IJMP. This instruction is not available in all 1034 * devices. Refer to the device specific instruction set summary. 1035 */ 1036 static bool trans_EIJMP(DisasContext *ctx, arg_EIJMP *a) 1037 { 1038 if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) { 1039 return true; 1040 } 1041 1042 gen_jmp_ez(ctx); 1043 return true; 1044 } 1045 1046 /* 1047 * Jump to an address within the entire 4M (words) Program memory. See also 1048 * RJMP. This instruction is not available in all devices. Refer to the device 1049 * specific instruction set summary.0 1050 */ 1051 static bool trans_JMP(DisasContext *ctx, arg_JMP *a) 1052 { 1053 if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) { 1054 return true; 1055 } 1056 1057 gen_goto_tb(ctx, 0, a->imm); 1058 1059 return true; 1060 } 1061 1062 /* 1063 * Relative call to an address within PC - 2K + 1 and PC + 2K (words). The 1064 * return address (the instruction after the RCALL) is stored onto the Stack. 1065 * See also CALL. For AVR microcontrollers with Program memory not exceeding 4K 1066 * words (8KB) this instruction can address the entire memory from every 1067 * address location. The Stack Pointer uses a post-decrement scheme during 1068 * RCALL. 1069 */ 1070 static bool trans_RCALL(DisasContext *ctx, arg_RCALL *a) 1071 { 1072 int ret = ctx->npc; 1073 int dst = ctx->npc + a->imm; 1074 1075 gen_push_ret(ctx, ret); 1076 gen_goto_tb(ctx, 0, dst); 1077 1078 return true; 1079 } 1080 1081 /* 1082 * Calls to a subroutine within the entire 4M (words) Program memory. The 1083 * return address (to the instruction after the CALL) will be stored onto the 1084 * Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during 1085 * CALL. This instruction is not available in all devices. Refer to the device 1086 * specific instruction set summary. 1087 */ 1088 static bool trans_ICALL(DisasContext *ctx, arg_ICALL *a) 1089 { 1090 if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) { 1091 return true; 1092 } 1093 1094 int ret = ctx->npc; 1095 1096 gen_push_ret(ctx, ret); 1097 gen_jmp_z(ctx); 1098 1099 return true; 1100 } 1101 1102 /* 1103 * Indirect call of a subroutine pointed to by the Z (16 bits) Pointer 1104 * Register in the Register File and the EIND Register in the I/O space. This 1105 * instruction allows for indirect calls to the entire 4M (words) Program 1106 * memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme 1107 * during EICALL. This instruction is not available in all devices. Refer to 1108 * the device specific instruction set summary. 1109 */ 1110 static bool trans_EICALL(DisasContext *ctx, arg_EICALL *a) 1111 { 1112 if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) { 1113 return true; 1114 } 1115 1116 int ret = ctx->npc; 1117 1118 gen_push_ret(ctx, ret); 1119 gen_jmp_ez(ctx); 1120 return true; 1121 } 1122 1123 /* 1124 * Calls to a subroutine within the entire Program memory. The return 1125 * address (to the instruction after the CALL) will be stored onto the Stack. 1126 * (See also RCALL). The Stack Pointer uses a post-decrement scheme during 1127 * CALL. This instruction is not available in all devices. Refer to the device 1128 * specific instruction set summary. 1129 */ 1130 static bool trans_CALL(DisasContext *ctx, arg_CALL *a) 1131 { 1132 if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) { 1133 return true; 1134 } 1135 1136 int Imm = a->imm; 1137 int ret = ctx->npc; 1138 1139 gen_push_ret(ctx, ret); 1140 gen_goto_tb(ctx, 0, Imm); 1141 1142 return true; 1143 } 1144 1145 /* 1146 * Returns from subroutine. The return address is loaded from the STACK. 1147 * The Stack Pointer uses a preincrement scheme during RET. 1148 */ 1149 static bool trans_RET(DisasContext *ctx, arg_RET *a) 1150 { 1151 gen_pop_ret(ctx, cpu_pc); 1152 1153 ctx->base.is_jmp = DISAS_LOOKUP; 1154 return true; 1155 } 1156 1157 /* 1158 * Returns from interrupt. The return address is loaded from the STACK and 1159 * the Global Interrupt Flag is set. Note that the Status Register is not 1160 * automatically stored when entering an interrupt routine, and it is not 1161 * restored when returning from an interrupt routine. This must be handled by 1162 * the application program. The Stack Pointer uses a pre-increment scheme 1163 * during RETI. 1164 */ 1165 static bool trans_RETI(DisasContext *ctx, arg_RETI *a) 1166 { 1167 gen_pop_ret(ctx, cpu_pc); 1168 tcg_gen_movi_tl(cpu_If, 1); 1169 1170 /* Need to return to main loop to re-evaluate interrupts. */ 1171 ctx->base.is_jmp = DISAS_EXIT; 1172 return true; 1173 } 1174 1175 /* 1176 * This instruction performs a compare between two registers Rd and Rr, and 1177 * skips the next instruction if Rd = Rr. 1178 */ 1179 static bool trans_CPSE(DisasContext *ctx, arg_CPSE *a) 1180 { 1181 ctx->skip_cond = TCG_COND_EQ; 1182 ctx->skip_var0 = cpu_r[a->rd]; 1183 ctx->skip_var1 = cpu_r[a->rr]; 1184 return true; 1185 } 1186 1187 /* 1188 * This instruction performs a compare between two registers Rd and Rr. 1189 * None of the registers are changed. All conditional branches can be used 1190 * after this instruction. 1191 */ 1192 static bool trans_CP(DisasContext *ctx, arg_CP *a) 1193 { 1194 TCGv Rd = cpu_r[a->rd]; 1195 TCGv Rr = cpu_r[a->rr]; 1196 TCGv R = tcg_temp_new_i32(); 1197 1198 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ 1199 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 1200 1201 /* update status register */ 1202 gen_sub_CHf(R, Rd, Rr); 1203 gen_sub_Vf(R, Rd, Rr); 1204 gen_ZNSf(R); 1205 return true; 1206 } 1207 1208 /* 1209 * This instruction performs a compare between two registers Rd and Rr and 1210 * also takes into account the previous carry. None of the registers are 1211 * changed. All conditional branches can be used after this instruction. 1212 */ 1213 static bool trans_CPC(DisasContext *ctx, arg_CPC *a) 1214 { 1215 TCGv Rd = cpu_r[a->rd]; 1216 TCGv Rr = cpu_r[a->rr]; 1217 TCGv R = tcg_temp_new_i32(); 1218 TCGv zero = tcg_constant_i32(0); 1219 1220 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ 1221 tcg_gen_sub_tl(R, R, cpu_Cf); 1222 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 1223 /* update status register */ 1224 gen_sub_CHf(R, Rd, Rr); 1225 gen_sub_Vf(R, Rd, Rr); 1226 gen_NSf(R); 1227 1228 /* 1229 * Previous value remains unchanged when the result is zero; 1230 * cleared otherwise. 1231 */ 1232 tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); 1233 return true; 1234 } 1235 1236 /* 1237 * This instruction performs a compare between register Rd and a constant. 1238 * The register is not changed. All conditional branches can be used after this 1239 * instruction. 1240 */ 1241 static bool trans_CPI(DisasContext *ctx, arg_CPI *a) 1242 { 1243 TCGv Rd = cpu_r[a->rd]; 1244 int Imm = a->imm; 1245 TCGv Rr = tcg_constant_i32(Imm); 1246 TCGv R = tcg_temp_new_i32(); 1247 1248 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ 1249 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ 1250 1251 /* update status register */ 1252 gen_sub_CHf(R, Rd, Rr); 1253 gen_sub_Vf(R, Rd, Rr); 1254 gen_ZNSf(R); 1255 return true; 1256 } 1257 1258 /* 1259 * This instruction tests a single bit in a register and skips the next 1260 * instruction if the bit is cleared. 1261 */ 1262 static bool trans_SBRC(DisasContext *ctx, arg_SBRC *a) 1263 { 1264 TCGv Rr = cpu_r[a->rr]; 1265 1266 ctx->skip_cond = TCG_COND_EQ; 1267 ctx->skip_var0 = tcg_temp_new(); 1268 1269 tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit); 1270 return true; 1271 } 1272 1273 /* 1274 * This instruction tests a single bit in a register and skips the next 1275 * instruction if the bit is set. 1276 */ 1277 static bool trans_SBRS(DisasContext *ctx, arg_SBRS *a) 1278 { 1279 TCGv Rr = cpu_r[a->rr]; 1280 1281 ctx->skip_cond = TCG_COND_NE; 1282 ctx->skip_var0 = tcg_temp_new(); 1283 1284 tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit); 1285 return true; 1286 } 1287 1288 /* 1289 * This instruction tests a single bit in an I/O Register and skips the 1290 * next instruction if the bit is cleared. This instruction operates on the 1291 * lower 32 I/O Registers -- addresses 0-31. 1292 */ 1293 static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a) 1294 { 1295 TCGv data = tcg_temp_new_i32(); 1296 TCGv port = tcg_constant_i32(a->reg); 1297 1298 gen_helper_inb(data, tcg_env, port); 1299 tcg_gen_andi_tl(data, data, 1 << a->bit); 1300 ctx->skip_cond = TCG_COND_EQ; 1301 ctx->skip_var0 = data; 1302 1303 return true; 1304 } 1305 1306 /* 1307 * This instruction tests a single bit in an I/O Register and skips the 1308 * next instruction if the bit is set. This instruction operates on the lower 1309 * 32 I/O Registers -- addresses 0-31. 1310 */ 1311 static bool trans_SBIS(DisasContext *ctx, arg_SBIS *a) 1312 { 1313 TCGv data = tcg_temp_new_i32(); 1314 TCGv port = tcg_constant_i32(a->reg); 1315 1316 gen_helper_inb(data, tcg_env, port); 1317 tcg_gen_andi_tl(data, data, 1 << a->bit); 1318 ctx->skip_cond = TCG_COND_NE; 1319 ctx->skip_var0 = data; 1320 1321 return true; 1322 } 1323 1324 /* 1325 * Conditional relative branch. Tests a single bit in SREG and branches 1326 * relatively to PC if the bit is cleared. This instruction branches relatively 1327 * to PC in either direction (PC - 63 < = destination <= PC + 64). The 1328 * parameter k is the offset from PC and is represented in two's complement 1329 * form. 1330 */ 1331 static bool trans_BRBC(DisasContext *ctx, arg_BRBC *a) 1332 { 1333 TCGLabel *not_taken = gen_new_label(); 1334 1335 TCGv var; 1336 1337 switch (a->bit) { 1338 case 0x00: 1339 var = cpu_Cf; 1340 break; 1341 case 0x01: 1342 var = cpu_Zf; 1343 break; 1344 case 0x02: 1345 var = cpu_Nf; 1346 break; 1347 case 0x03: 1348 var = cpu_Vf; 1349 break; 1350 case 0x04: 1351 var = cpu_Sf; 1352 break; 1353 case 0x05: 1354 var = cpu_Hf; 1355 break; 1356 case 0x06: 1357 var = cpu_Tf; 1358 break; 1359 case 0x07: 1360 var = cpu_If; 1361 break; 1362 default: 1363 g_assert_not_reached(); 1364 } 1365 1366 tcg_gen_brcondi_i32(TCG_COND_NE, var, 0, not_taken); 1367 gen_goto_tb(ctx, 0, ctx->npc + a->imm); 1368 gen_set_label(not_taken); 1369 1370 ctx->base.is_jmp = DISAS_CHAIN; 1371 return true; 1372 } 1373 1374 /* 1375 * Conditional relative branch. Tests a single bit in SREG and branches 1376 * relatively to PC if the bit is set. This instruction branches relatively to 1377 * PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k 1378 * is the offset from PC and is represented in two's complement form. 1379 */ 1380 static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a) 1381 { 1382 TCGLabel *not_taken = gen_new_label(); 1383 1384 TCGv var; 1385 1386 switch (a->bit) { 1387 case 0x00: 1388 var = cpu_Cf; 1389 break; 1390 case 0x01: 1391 var = cpu_Zf; 1392 break; 1393 case 0x02: 1394 var = cpu_Nf; 1395 break; 1396 case 0x03: 1397 var = cpu_Vf; 1398 break; 1399 case 0x04: 1400 var = cpu_Sf; 1401 break; 1402 case 0x05: 1403 var = cpu_Hf; 1404 break; 1405 case 0x06: 1406 var = cpu_Tf; 1407 break; 1408 case 0x07: 1409 var = cpu_If; 1410 break; 1411 default: 1412 g_assert_not_reached(); 1413 } 1414 1415 tcg_gen_brcondi_i32(TCG_COND_EQ, var, 0, not_taken); 1416 gen_goto_tb(ctx, 0, ctx->npc + a->imm); 1417 gen_set_label(not_taken); 1418 1419 ctx->base.is_jmp = DISAS_CHAIN; 1420 return true; 1421 } 1422 1423 /* 1424 * Data Transfer Instructions 1425 */ 1426 1427 /* 1428 * in the gen_set_addr & gen_get_addr functions 1429 * H assumed to be in 0x00ff0000 format 1430 * M assumed to be in 0x000000ff format 1431 * L assumed to be in 0x000000ff format 1432 */ 1433 static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L) 1434 { 1435 1436 tcg_gen_andi_tl(L, addr, 0x000000ff); 1437 1438 tcg_gen_andi_tl(M, addr, 0x0000ff00); 1439 tcg_gen_shri_tl(M, M, 8); 1440 1441 tcg_gen_andi_tl(H, addr, 0x00ff0000); 1442 } 1443 1444 static void gen_set_xaddr(TCGv addr) 1445 { 1446 gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]); 1447 } 1448 1449 static void gen_set_yaddr(TCGv addr) 1450 { 1451 gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]); 1452 } 1453 1454 static void gen_set_zaddr(TCGv addr) 1455 { 1456 gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]); 1457 } 1458 1459 static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L) 1460 { 1461 TCGv addr = tcg_temp_new_i32(); 1462 1463 tcg_gen_deposit_tl(addr, M, H, 8, 8); 1464 tcg_gen_deposit_tl(addr, L, addr, 8, 16); 1465 1466 return addr; 1467 } 1468 1469 static TCGv gen_get_xaddr(void) 1470 { 1471 return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]); 1472 } 1473 1474 static TCGv gen_get_yaddr(void) 1475 { 1476 return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]); 1477 } 1478 1479 static TCGv gen_get_zaddr(void) 1480 { 1481 return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]); 1482 } 1483 1484 /* 1485 * Load one byte indirect from data space to register and stores an clear 1486 * the bits in data space specified by the register. The instruction can only 1487 * be used towards internal SRAM. The data location is pointed to by the Z (16 1488 * bits) Pointer Register in the Register File. Memory access is limited to the 1489 * current data segment of 64KB. To access another data segment in devices with 1490 * more than 64KB data space, the RAMPZ in register in the I/O area has to be 1491 * changed. The Z-pointer Register is left unchanged by the operation. This 1492 * instruction is especially suited for clearing status bits stored in SRAM. 1493 */ 1494 static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr) 1495 { 1496 if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) { 1497 gen_helper_fullwr(tcg_env, data, addr); 1498 } else { 1499 tcg_gen_qemu_st_tl(data, addr, MMU_DATA_IDX, MO_UB); 1500 } 1501 } 1502 1503 static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr) 1504 { 1505 if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) { 1506 gen_helper_fullrd(data, tcg_env, addr); 1507 } else { 1508 tcg_gen_qemu_ld_tl(data, addr, MMU_DATA_IDX, MO_UB); 1509 } 1510 } 1511 1512 /* 1513 * This instruction makes a copy of one register into another. The source 1514 * register Rr is left unchanged, while the destination register Rd is loaded 1515 * with a copy of Rr. 1516 */ 1517 static bool trans_MOV(DisasContext *ctx, arg_MOV *a) 1518 { 1519 TCGv Rd = cpu_r[a->rd]; 1520 TCGv Rr = cpu_r[a->rr]; 1521 1522 tcg_gen_mov_tl(Rd, Rr); 1523 1524 return true; 1525 } 1526 1527 /* 1528 * This instruction makes a copy of one register pair into another register 1529 * pair. The source register pair Rr+1:Rr is left unchanged, while the 1530 * destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This 1531 * instruction is not available in all devices. Refer to the device specific 1532 * instruction set summary. 1533 */ 1534 static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a) 1535 { 1536 if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) { 1537 return true; 1538 } 1539 1540 TCGv RdL = cpu_r[a->rd]; 1541 TCGv RdH = cpu_r[a->rd + 1]; 1542 TCGv RrL = cpu_r[a->rr]; 1543 TCGv RrH = cpu_r[a->rr + 1]; 1544 1545 tcg_gen_mov_tl(RdH, RrH); 1546 tcg_gen_mov_tl(RdL, RrL); 1547 1548 return true; 1549 } 1550 1551 /* 1552 * Loads an 8 bit constant directly to register 16 to 31. 1553 */ 1554 static bool trans_LDI(DisasContext *ctx, arg_LDI *a) 1555 { 1556 TCGv Rd = cpu_r[a->rd]; 1557 int imm = a->imm; 1558 1559 tcg_gen_movi_tl(Rd, imm); 1560 1561 return true; 1562 } 1563 1564 /* 1565 * Loads one byte from the data space to a register. For parts with SRAM, 1566 * the data space consists of the Register File, I/O memory and internal SRAM 1567 * (and external SRAM if applicable). For parts without SRAM, the data space 1568 * consists of the register file only. The EEPROM has a separate address space. 1569 * A 16-bit address must be supplied. Memory access is limited to the current 1570 * data segment of 64KB. The LDS instruction uses the RAMPD Register to access 1571 * memory above 64KB. To access another data segment in devices with more than 1572 * 64KB data space, the RAMPD in register in the I/O area has to be changed. 1573 * This instruction is not available in all devices. Refer to the device 1574 * specific instruction set summary. 1575 */ 1576 static bool trans_LDS(DisasContext *ctx, arg_LDS *a) 1577 { 1578 TCGv Rd = cpu_r[a->rd]; 1579 TCGv addr = tcg_temp_new_i32(); 1580 TCGv H = cpu_rampD; 1581 a->imm = next_word(ctx); 1582 1583 tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ 1584 tcg_gen_shli_tl(addr, addr, 16); 1585 tcg_gen_ori_tl(addr, addr, a->imm); 1586 1587 gen_data_load(ctx, Rd, addr); 1588 return true; 1589 } 1590 1591 /* 1592 * Loads one byte indirect from the data space to a register. For parts 1593 * with SRAM, the data space consists of the Register File, I/O memory and 1594 * internal SRAM (and external SRAM if applicable). For parts without SRAM, the 1595 * data space consists of the Register File only. In some parts the Flash 1596 * Memory has been mapped to the data space and can be read using this command. 1597 * The EEPROM has a separate address space. The data location is pointed to by 1598 * the X (16 bits) Pointer Register in the Register File. Memory access is 1599 * limited to the current data segment of 64KB. To access another data segment 1600 * in devices with more than 64KB data space, the RAMPX in register in the I/O 1601 * area has to be changed. The X-pointer Register can either be left unchanged 1602 * by the operation, or it can be post-incremented or predecremented. These 1603 * features are especially suited for accessing arrays, tables, and Stack 1604 * Pointer usage of the X-pointer Register. Note that only the low byte of the 1605 * X-pointer is updated in devices with no more than 256 bytes data space. For 1606 * such devices, the high byte of the pointer is not used by this instruction 1607 * and can be used for other purposes. The RAMPX Register in the I/O area is 1608 * updated in parts with more than 64KB data space or more than 64KB Program 1609 * memory, and the increment/decrement is added to the entire 24-bit address on 1610 * such devices. Not all variants of this instruction is available in all 1611 * devices. Refer to the device specific instruction set summary. In the 1612 * Reduced Core tinyAVR the LD instruction can be used to achieve the same 1613 * operation as LPM since the program memory is mapped to the data memory 1614 * space. 1615 */ 1616 static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a) 1617 { 1618 TCGv Rd = cpu_r[a->rd]; 1619 TCGv addr = gen_get_xaddr(); 1620 1621 gen_data_load(ctx, Rd, addr); 1622 return true; 1623 } 1624 1625 static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a) 1626 { 1627 TCGv Rd = cpu_r[a->rd]; 1628 TCGv addr = gen_get_xaddr(); 1629 1630 gen_data_load(ctx, Rd, addr); 1631 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 1632 1633 gen_set_xaddr(addr); 1634 return true; 1635 } 1636 1637 static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a) 1638 { 1639 TCGv Rd = cpu_r[a->rd]; 1640 TCGv addr = gen_get_xaddr(); 1641 1642 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ 1643 gen_data_load(ctx, Rd, addr); 1644 gen_set_xaddr(addr); 1645 return true; 1646 } 1647 1648 /* 1649 * Loads one byte indirect with or without displacement from the data space 1650 * to a register. For parts with SRAM, the data space consists of the Register 1651 * File, I/O memory and internal SRAM (and external SRAM if applicable). For 1652 * parts without SRAM, the data space consists of the Register File only. In 1653 * some parts the Flash Memory has been mapped to the data space and can be 1654 * read using this command. The EEPROM has a separate address space. The data 1655 * location is pointed to by the Y (16 bits) Pointer Register in the Register 1656 * File. Memory access is limited to the current data segment of 64KB. To 1657 * access another data segment in devices with more than 64KB data space, the 1658 * RAMPY in register in the I/O area has to be changed. The Y-pointer Register 1659 * can either be left unchanged by the operation, or it can be post-incremented 1660 * or predecremented. These features are especially suited for accessing 1661 * arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that 1662 * only the low byte of the Y-pointer is updated in devices with no more than 1663 * 256 bytes data space. For such devices, the high byte of the pointer is not 1664 * used by this instruction and can be used for other purposes. The RAMPY 1665 * Register in the I/O area is updated in parts with more than 64KB data space 1666 * or more than 64KB Program memory, and the increment/decrement/displacement 1667 * is added to the entire 24-bit address on such devices. Not all variants of 1668 * this instruction is available in all devices. Refer to the device specific 1669 * instruction set summary. In the Reduced Core tinyAVR the LD instruction can 1670 * be used to achieve the same operation as LPM since the program memory is 1671 * mapped to the data memory space. 1672 */ 1673 static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a) 1674 { 1675 TCGv Rd = cpu_r[a->rd]; 1676 TCGv addr = gen_get_yaddr(); 1677 1678 gen_data_load(ctx, Rd, addr); 1679 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 1680 1681 gen_set_yaddr(addr); 1682 return true; 1683 } 1684 1685 static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a) 1686 { 1687 TCGv Rd = cpu_r[a->rd]; 1688 TCGv addr = gen_get_yaddr(); 1689 1690 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ 1691 gen_data_load(ctx, Rd, addr); 1692 gen_set_yaddr(addr); 1693 return true; 1694 } 1695 1696 static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a) 1697 { 1698 TCGv Rd = cpu_r[a->rd]; 1699 TCGv addr = gen_get_yaddr(); 1700 1701 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ 1702 gen_data_load(ctx, Rd, addr); 1703 return true; 1704 } 1705 1706 /* 1707 * Loads one byte indirect with or without displacement from the data space 1708 * to a register. For parts with SRAM, the data space consists of the Register 1709 * File, I/O memory and internal SRAM (and external SRAM if applicable). For 1710 * parts without SRAM, the data space consists of the Register File only. In 1711 * some parts the Flash Memory has been mapped to the data space and can be 1712 * read using this command. The EEPROM has a separate address space. The data 1713 * location is pointed to by the Z (16 bits) Pointer Register in the Register 1714 * File. Memory access is limited to the current data segment of 64KB. To 1715 * access another data segment in devices with more than 64KB data space, the 1716 * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register 1717 * can either be left unchanged by the operation, or it can be post-incremented 1718 * or predecremented. These features are especially suited for Stack Pointer 1719 * usage of the Z-pointer Register, however because the Z-pointer Register can 1720 * be used for indirect subroutine calls, indirect jumps and table lookup, it 1721 * is often more convenient to use the X or Y-pointer as a dedicated Stack 1722 * Pointer. Note that only the low byte of the Z-pointer is updated in devices 1723 * with no more than 256 bytes data space. For such devices, the high byte of 1724 * the pointer is not used by this instruction and can be used for other 1725 * purposes. The RAMPZ Register in the I/O area is updated in parts with more 1726 * than 64KB data space or more than 64KB Program memory, and the 1727 * increment/decrement/displacement is added to the entire 24-bit address on 1728 * such devices. Not all variants of this instruction is available in all 1729 * devices. Refer to the device specific instruction set summary. In the 1730 * Reduced Core tinyAVR the LD instruction can be used to achieve the same 1731 * operation as LPM since the program memory is mapped to the data memory 1732 * space. For using the Z-pointer for table lookup in Program memory see the 1733 * LPM and ELPM instructions. 1734 */ 1735 static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a) 1736 { 1737 TCGv Rd = cpu_r[a->rd]; 1738 TCGv addr = gen_get_zaddr(); 1739 1740 gen_data_load(ctx, Rd, addr); 1741 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 1742 1743 gen_set_zaddr(addr); 1744 return true; 1745 } 1746 1747 static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a) 1748 { 1749 TCGv Rd = cpu_r[a->rd]; 1750 TCGv addr = gen_get_zaddr(); 1751 1752 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ 1753 gen_data_load(ctx, Rd, addr); 1754 1755 gen_set_zaddr(addr); 1756 return true; 1757 } 1758 1759 static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a) 1760 { 1761 TCGv Rd = cpu_r[a->rd]; 1762 TCGv addr = gen_get_zaddr(); 1763 1764 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ 1765 gen_data_load(ctx, Rd, addr); 1766 return true; 1767 } 1768 1769 /* 1770 * Stores one byte from a Register to the data space. For parts with SRAM, 1771 * the data space consists of the Register File, I/O memory and internal SRAM 1772 * (and external SRAM if applicable). For parts without SRAM, the data space 1773 * consists of the Register File only. The EEPROM has a separate address space. 1774 * A 16-bit address must be supplied. Memory access is limited to the current 1775 * data segment of 64KB. The STS instruction uses the RAMPD Register to access 1776 * memory above 64KB. To access another data segment in devices with more than 1777 * 64KB data space, the RAMPD in register in the I/O area has to be changed. 1778 * This instruction is not available in all devices. Refer to the device 1779 * specific instruction set summary. 1780 */ 1781 static bool trans_STS(DisasContext *ctx, arg_STS *a) 1782 { 1783 TCGv Rd = cpu_r[a->rd]; 1784 TCGv addr = tcg_temp_new_i32(); 1785 TCGv H = cpu_rampD; 1786 a->imm = next_word(ctx); 1787 1788 tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ 1789 tcg_gen_shli_tl(addr, addr, 16); 1790 tcg_gen_ori_tl(addr, addr, a->imm); 1791 gen_data_store(ctx, Rd, addr); 1792 return true; 1793 } 1794 1795 /* 1796 * Stores one byte indirect from a register to data space. For parts with SRAM, 1797 * the data space consists of the Register File, I/O memory, and internal SRAM 1798 * (and external SRAM if applicable). For parts without SRAM, the data space 1799 * consists of the Register File only. The EEPROM has a separate address space. 1800 * 1801 * The data location is pointed to by the X (16 bits) Pointer Register in the 1802 * Register File. Memory access is limited to the current data segment of 64KB. 1803 * To access another data segment in devices with more than 64KB data space, the 1804 * RAMPX in register in the I/O area has to be changed. 1805 * 1806 * The X-pointer Register can either be left unchanged by the operation, or it 1807 * can be post-incremented or pre-decremented. These features are especially 1808 * suited for accessing arrays, tables, and Stack Pointer usage of the 1809 * X-pointer Register. Note that only the low byte of the X-pointer is updated 1810 * in devices with no more than 256 bytes data space. For such devices, the high 1811 * byte of the pointer is not used by this instruction and can be used for other 1812 * purposes. The RAMPX Register in the I/O area is updated in parts with more 1813 * than 64KB data space or more than 64KB Program memory, and the increment / 1814 * decrement is added to the entire 24-bit address on such devices. 1815 */ 1816 static bool trans_STX1(DisasContext *ctx, arg_STX1 *a) 1817 { 1818 TCGv Rd = cpu_r[a->rr]; 1819 TCGv addr = gen_get_xaddr(); 1820 1821 gen_data_store(ctx, Rd, addr); 1822 return true; 1823 } 1824 1825 static bool trans_STX2(DisasContext *ctx, arg_STX2 *a) 1826 { 1827 TCGv Rd = cpu_r[a->rr]; 1828 TCGv addr = gen_get_xaddr(); 1829 1830 gen_data_store(ctx, Rd, addr); 1831 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 1832 gen_set_xaddr(addr); 1833 return true; 1834 } 1835 1836 static bool trans_STX3(DisasContext *ctx, arg_STX3 *a) 1837 { 1838 TCGv Rd = cpu_r[a->rr]; 1839 TCGv addr = gen_get_xaddr(); 1840 1841 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ 1842 gen_data_store(ctx, Rd, addr); 1843 gen_set_xaddr(addr); 1844 return true; 1845 } 1846 1847 /* 1848 * Stores one byte indirect with or without displacement from a register to data 1849 * space. For parts with SRAM, the data space consists of the Register File, I/O 1850 * memory, and internal SRAM (and external SRAM if applicable). For parts 1851 * without SRAM, the data space consists of the Register File only. The EEPROM 1852 * has a separate address space. 1853 * 1854 * The data location is pointed to by the Y (16 bits) Pointer Register in the 1855 * Register File. Memory access is limited to the current data segment of 64KB. 1856 * To access another data segment in devices with more than 64KB data space, the 1857 * RAMPY in register in the I/O area has to be changed. 1858 * 1859 * The Y-pointer Register can either be left unchanged by the operation, or it 1860 * can be post-incremented or pre-decremented. These features are especially 1861 * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer 1862 * Register. Note that only the low byte of the Y-pointer is updated in devices 1863 * with no more than 256 bytes data space. For such devices, the high byte of 1864 * the pointer is not used by this instruction and can be used for other 1865 * purposes. The RAMPY Register in the I/O area is updated in parts with more 1866 * than 64KB data space or more than 64KB Program memory, and the increment / 1867 * decrement / displacement is added to the entire 24-bit address on such 1868 * devices. 1869 */ 1870 static bool trans_STY2(DisasContext *ctx, arg_STY2 *a) 1871 { 1872 TCGv Rd = cpu_r[a->rd]; 1873 TCGv addr = gen_get_yaddr(); 1874 1875 gen_data_store(ctx, Rd, addr); 1876 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 1877 gen_set_yaddr(addr); 1878 return true; 1879 } 1880 1881 static bool trans_STY3(DisasContext *ctx, arg_STY3 *a) 1882 { 1883 TCGv Rd = cpu_r[a->rd]; 1884 TCGv addr = gen_get_yaddr(); 1885 1886 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ 1887 gen_data_store(ctx, Rd, addr); 1888 gen_set_yaddr(addr); 1889 return true; 1890 } 1891 1892 static bool trans_STDY(DisasContext *ctx, arg_STDY *a) 1893 { 1894 TCGv Rd = cpu_r[a->rd]; 1895 TCGv addr = gen_get_yaddr(); 1896 1897 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ 1898 gen_data_store(ctx, Rd, addr); 1899 return true; 1900 } 1901 1902 /* 1903 * Stores one byte indirect with or without displacement from a register to data 1904 * space. For parts with SRAM, the data space consists of the Register File, I/O 1905 * memory, and internal SRAM (and external SRAM if applicable). For parts 1906 * without SRAM, the data space consists of the Register File only. The EEPROM 1907 * has a separate address space. 1908 * 1909 * The data location is pointed to by the Y (16 bits) Pointer Register in the 1910 * Register File. Memory access is limited to the current data segment of 64KB. 1911 * To access another data segment in devices with more than 64KB data space, the 1912 * RAMPY in register in the I/O area has to be changed. 1913 * 1914 * The Y-pointer Register can either be left unchanged by the operation, or it 1915 * can be post-incremented or pre-decremented. These features are especially 1916 * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer 1917 * Register. Note that only the low byte of the Y-pointer is updated in devices 1918 * with no more than 256 bytes data space. For such devices, the high byte of 1919 * the pointer is not used by this instruction and can be used for other 1920 * purposes. The RAMPY Register in the I/O area is updated in parts with more 1921 * than 64KB data space or more than 64KB Program memory, and the increment / 1922 * decrement / displacement is added to the entire 24-bit address on such 1923 * devices. 1924 */ 1925 static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a) 1926 { 1927 TCGv Rd = cpu_r[a->rd]; 1928 TCGv addr = gen_get_zaddr(); 1929 1930 gen_data_store(ctx, Rd, addr); 1931 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 1932 1933 gen_set_zaddr(addr); 1934 return true; 1935 } 1936 1937 static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a) 1938 { 1939 TCGv Rd = cpu_r[a->rd]; 1940 TCGv addr = gen_get_zaddr(); 1941 1942 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ 1943 gen_data_store(ctx, Rd, addr); 1944 1945 gen_set_zaddr(addr); 1946 return true; 1947 } 1948 1949 static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a) 1950 { 1951 TCGv Rd = cpu_r[a->rd]; 1952 TCGv addr = gen_get_zaddr(); 1953 1954 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ 1955 gen_data_store(ctx, Rd, addr); 1956 return true; 1957 } 1958 1959 /* 1960 * Loads one byte pointed to by the Z-register into the destination 1961 * register Rd. This instruction features a 100% space effective constant 1962 * initialization or constant data fetch. The Program memory is organized in 1963 * 16-bit words while the Z-pointer is a byte address. Thus, the least 1964 * significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high 1965 * byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of 1966 * Program memory. The Zpointer Register can either be left unchanged by the 1967 * operation, or it can be incremented. The incrementation does not apply to 1968 * the RAMPZ Register. 1969 * 1970 * Devices with Self-Programming capability can use the LPM instruction to read 1971 * the Fuse and Lock bit values. 1972 */ 1973 static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a) 1974 { 1975 if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { 1976 return true; 1977 } 1978 1979 TCGv Rd = cpu_r[0]; 1980 TCGv addr = tcg_temp_new_i32(); 1981 TCGv H = cpu_r[31]; 1982 TCGv L = cpu_r[30]; 1983 1984 tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ 1985 tcg_gen_or_tl(addr, addr, L); 1986 tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB); 1987 return true; 1988 } 1989 1990 static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a) 1991 { 1992 if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { 1993 return true; 1994 } 1995 1996 TCGv Rd = cpu_r[a->rd]; 1997 TCGv addr = tcg_temp_new_i32(); 1998 TCGv H = cpu_r[31]; 1999 TCGv L = cpu_r[30]; 2000 2001 tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ 2002 tcg_gen_or_tl(addr, addr, L); 2003 tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB); 2004 return true; 2005 } 2006 2007 static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a) 2008 { 2009 if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) { 2010 return true; 2011 } 2012 2013 TCGv Rd = cpu_r[a->rd]; 2014 TCGv addr = tcg_temp_new_i32(); 2015 TCGv H = cpu_r[31]; 2016 TCGv L = cpu_r[30]; 2017 2018 tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ 2019 tcg_gen_or_tl(addr, addr, L); 2020 tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB); 2021 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 2022 tcg_gen_andi_tl(L, addr, 0xff); 2023 tcg_gen_shri_tl(addr, addr, 8); 2024 tcg_gen_andi_tl(H, addr, 0xff); 2025 return true; 2026 } 2027 2028 /* 2029 * Loads one byte pointed to by the Z-register and the RAMPZ Register in 2030 * the I/O space, and places this byte in the destination register Rd. This 2031 * instruction features a 100% space effective constant initialization or 2032 * constant data fetch. The Program memory is organized in 16-bit words while 2033 * the Z-pointer is a byte address. Thus, the least significant bit of the 2034 * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This 2035 * instruction can address the entire Program memory space. The Z-pointer 2036 * Register can either be left unchanged by the operation, or it can be 2037 * incremented. The incrementation applies to the entire 24-bit concatenation 2038 * of the RAMPZ and Z-pointer Registers. 2039 * 2040 * Devices with Self-Programming capability can use the ELPM instruction to 2041 * read the Fuse and Lock bit value. 2042 */ 2043 static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a) 2044 { 2045 if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { 2046 return true; 2047 } 2048 2049 TCGv Rd = cpu_r[0]; 2050 TCGv addr = gen_get_zaddr(); 2051 2052 tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB); 2053 return true; 2054 } 2055 2056 static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a) 2057 { 2058 if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { 2059 return true; 2060 } 2061 2062 TCGv Rd = cpu_r[a->rd]; 2063 TCGv addr = gen_get_zaddr(); 2064 2065 tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB); 2066 return true; 2067 } 2068 2069 static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a) 2070 { 2071 if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) { 2072 return true; 2073 } 2074 2075 TCGv Rd = cpu_r[a->rd]; 2076 TCGv addr = gen_get_zaddr(); 2077 2078 tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB); 2079 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ 2080 gen_set_zaddr(addr); 2081 return true; 2082 } 2083 2084 /* 2085 * SPM can be used to erase a page in the Program memory, to write a page 2086 * in the Program memory (that is already erased), and to set Boot Loader Lock 2087 * bits. In some devices, the Program memory can be written one word at a time, 2088 * in other devices an entire page can be programmed simultaneously after first 2089 * filling a temporary page buffer. In all cases, the Program memory must be 2090 * erased one page at a time. When erasing the Program memory, the RAMPZ and 2091 * Z-register are used as page address. When writing the Program memory, the 2092 * RAMPZ and Z-register are used as page or word address, and the R1:R0 2093 * register pair is used as data(1). When setting the Boot Loader Lock bits, 2094 * the R1:R0 register pair is used as data. Refer to the device documentation 2095 * for detailed description of SPM usage. This instruction can address the 2096 * entire Program memory. 2097 * 2098 * The SPM instruction is not available in all devices. Refer to the device 2099 * specific instruction set summary. 2100 * 2101 * Note: 1. R1 determines the instruction high byte, and R0 determines the 2102 * instruction low byte. 2103 */ 2104 static bool trans_SPM(DisasContext *ctx, arg_SPM *a) 2105 { 2106 /* TODO */ 2107 if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) { 2108 return true; 2109 } 2110 2111 return true; 2112 } 2113 2114 static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a) 2115 { 2116 /* TODO */ 2117 if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) { 2118 return true; 2119 } 2120 2121 return true; 2122 } 2123 2124 /* 2125 * Loads data from the I/O Space (Ports, Timers, Configuration Registers, 2126 * etc.) into register Rd in the Register File. 2127 */ 2128 static bool trans_IN(DisasContext *ctx, arg_IN *a) 2129 { 2130 TCGv Rd = cpu_r[a->rd]; 2131 TCGv port = tcg_constant_i32(a->imm); 2132 2133 gen_helper_inb(Rd, tcg_env, port); 2134 return true; 2135 } 2136 2137 /* 2138 * Stores data from register Rr in the Register File to I/O Space (Ports, 2139 * Timers, Configuration Registers, etc.). 2140 */ 2141 static bool trans_OUT(DisasContext *ctx, arg_OUT *a) 2142 { 2143 TCGv Rd = cpu_r[a->rd]; 2144 TCGv port = tcg_constant_i32(a->imm); 2145 2146 gen_helper_outb(tcg_env, port, Rd); 2147 return true; 2148 } 2149 2150 /* 2151 * This instruction stores the contents of register Rr on the STACK. The 2152 * Stack Pointer is post-decremented by 1 after the PUSH. This instruction is 2153 * not available in all devices. Refer to the device specific instruction set 2154 * summary. 2155 */ 2156 static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a) 2157 { 2158 TCGv Rd = cpu_r[a->rd]; 2159 2160 gen_data_store(ctx, Rd, cpu_sp); 2161 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); 2162 2163 return true; 2164 } 2165 2166 /* 2167 * This instruction loads register Rd with a byte from the STACK. The Stack 2168 * Pointer is pre-incremented by 1 before the POP. This instruction is not 2169 * available in all devices. Refer to the device specific instruction set 2170 * summary. 2171 */ 2172 static bool trans_POP(DisasContext *ctx, arg_POP *a) 2173 { 2174 /* 2175 * Using a temp to work around some strange behaviour: 2176 * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); 2177 * gen_data_load(ctx, Rd, cpu_sp); 2178 * seems to cause the add to happen twice. 2179 * This doesn't happen if either the add or the load is removed. 2180 */ 2181 TCGv t1 = tcg_temp_new_i32(); 2182 TCGv Rd = cpu_r[a->rd]; 2183 2184 tcg_gen_addi_tl(t1, cpu_sp, 1); 2185 gen_data_load(ctx, Rd, t1); 2186 tcg_gen_mov_tl(cpu_sp, t1); 2187 2188 return true; 2189 } 2190 2191 /* 2192 * Exchanges one byte indirect between register and data space. The data 2193 * location is pointed to by the Z (16 bits) Pointer Register in the Register 2194 * File. Memory access is limited to the current data segment of 64KB. To 2195 * access another data segment in devices with more than 64KB data space, the 2196 * RAMPZ in register in the I/O area has to be changed. 2197 * 2198 * The Z-pointer Register is left unchanged by the operation. This instruction 2199 * is especially suited for writing/reading status bits stored in SRAM. 2200 */ 2201 static bool trans_XCH(DisasContext *ctx, arg_XCH *a) 2202 { 2203 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { 2204 return true; 2205 } 2206 2207 TCGv Rd = cpu_r[a->rd]; 2208 TCGv t0 = tcg_temp_new_i32(); 2209 TCGv addr = gen_get_zaddr(); 2210 2211 gen_data_load(ctx, t0, addr); 2212 gen_data_store(ctx, Rd, addr); 2213 tcg_gen_mov_tl(Rd, t0); 2214 return true; 2215 } 2216 2217 /* 2218 * Load one byte indirect from data space to register and set bits in data 2219 * space specified by the register. The instruction can only be used towards 2220 * internal SRAM. The data location is pointed to by the Z (16 bits) Pointer 2221 * Register in the Register File. Memory access is limited to the current data 2222 * segment of 64KB. To access another data segment in devices with more than 2223 * 64KB data space, the RAMPZ in register in the I/O area has to be changed. 2224 * 2225 * The Z-pointer Register is left unchanged by the operation. This instruction 2226 * is especially suited for setting status bits stored in SRAM. 2227 */ 2228 static bool trans_LAS(DisasContext *ctx, arg_LAS *a) 2229 { 2230 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { 2231 return true; 2232 } 2233 2234 TCGv Rr = cpu_r[a->rd]; 2235 TCGv addr = gen_get_zaddr(); 2236 TCGv t0 = tcg_temp_new_i32(); 2237 TCGv t1 = tcg_temp_new_i32(); 2238 2239 gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ 2240 tcg_gen_or_tl(t1, t0, Rr); 2241 tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ 2242 gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ 2243 return true; 2244 } 2245 2246 /* 2247 * Load one byte indirect from data space to register and stores and clear 2248 * the bits in data space specified by the register. The instruction can 2249 * only be used towards internal SRAM. The data location is pointed to by 2250 * the Z (16 bits) Pointer Register in the Register File. Memory access is 2251 * limited to the current data segment of 64KB. To access another data 2252 * segment in devices with more than 64KB data space, the RAMPZ in register 2253 * in the I/O area has to be changed. 2254 * 2255 * The Z-pointer Register is left unchanged by the operation. This instruction 2256 * is especially suited for clearing status bits stored in SRAM. 2257 */ 2258 static bool trans_LAC(DisasContext *ctx, arg_LAC *a) 2259 { 2260 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { 2261 return true; 2262 } 2263 2264 TCGv Rr = cpu_r[a->rd]; 2265 TCGv addr = gen_get_zaddr(); 2266 TCGv t0 = tcg_temp_new_i32(); 2267 TCGv t1 = tcg_temp_new_i32(); 2268 2269 gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ 2270 tcg_gen_andc_tl(t1, t0, Rr); /* t1 = t0 & (0xff - Rr) = t0 & ~Rr */ 2271 tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ 2272 gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ 2273 return true; 2274 } 2275 2276 2277 /* 2278 * Load one byte indirect from data space to register and toggles bits in 2279 * the data space specified by the register. The instruction can only be used 2280 * towards SRAM. The data location is pointed to by the Z (16 bits) Pointer 2281 * Register in the Register File. Memory access is limited to the current data 2282 * segment of 64KB. To access another data segment in devices with more than 2283 * 64KB data space, the RAMPZ in register in the I/O area has to be changed. 2284 * 2285 * The Z-pointer Register is left unchanged by the operation. This instruction 2286 * is especially suited for changing status bits stored in SRAM. 2287 */ 2288 static bool trans_LAT(DisasContext *ctx, arg_LAT *a) 2289 { 2290 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { 2291 return true; 2292 } 2293 2294 TCGv Rd = cpu_r[a->rd]; 2295 TCGv addr = gen_get_zaddr(); 2296 TCGv t0 = tcg_temp_new_i32(); 2297 TCGv t1 = tcg_temp_new_i32(); 2298 2299 gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ 2300 tcg_gen_xor_tl(t1, t0, Rd); 2301 tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */ 2302 gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ 2303 return true; 2304 } 2305 2306 /* 2307 * Bit and Bit-test Instructions 2308 */ 2309 static void gen_rshift_ZNVSf(TCGv R) 2310 { 2311 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ 2312 tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ 2313 tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf); 2314 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ 2315 } 2316 2317 /* 2318 * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is 2319 * loaded into the C Flag of the SREG. This operation effectively divides an 2320 * unsigned value by two. The C Flag can be used to round the result. 2321 */ 2322 static bool trans_LSR(DisasContext *ctx, arg_LSR *a) 2323 { 2324 TCGv Rd = cpu_r[a->rd]; 2325 2326 tcg_gen_andi_tl(cpu_Cf, Rd, 1); 2327 tcg_gen_shri_tl(Rd, Rd, 1); 2328 2329 /* update status register */ 2330 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */ 2331 tcg_gen_movi_tl(cpu_Nf, 0); 2332 tcg_gen_mov_tl(cpu_Vf, cpu_Cf); 2333 tcg_gen_mov_tl(cpu_Sf, cpu_Vf); 2334 2335 return true; 2336 } 2337 2338 /* 2339 * Shifts all bits in Rd one place to the right. The C Flag is shifted into 2340 * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, combined 2341 * with ASR, effectively divides multi-byte signed values by two. Combined with 2342 * LSR it effectively divides multi-byte unsigned values by two. The Carry Flag 2343 * can be used to round the result. 2344 */ 2345 static bool trans_ROR(DisasContext *ctx, arg_ROR *a) 2346 { 2347 TCGv Rd = cpu_r[a->rd]; 2348 TCGv t0 = tcg_temp_new_i32(); 2349 2350 tcg_gen_shli_tl(t0, cpu_Cf, 7); 2351 2352 /* update status register */ 2353 tcg_gen_andi_tl(cpu_Cf, Rd, 1); 2354 2355 /* update output register */ 2356 tcg_gen_shri_tl(Rd, Rd, 1); 2357 tcg_gen_or_tl(Rd, Rd, t0); 2358 2359 /* update status register */ 2360 gen_rshift_ZNVSf(Rd); 2361 return true; 2362 } 2363 2364 /* 2365 * Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0 2366 * is loaded into the C Flag of the SREG. This operation effectively divides a 2367 * signed value by two without changing its sign. The Carry Flag can be used to 2368 * round the result. 2369 */ 2370 static bool trans_ASR(DisasContext *ctx, arg_ASR *a) 2371 { 2372 TCGv Rd = cpu_r[a->rd]; 2373 TCGv t0 = tcg_temp_new_i32(); 2374 2375 /* update status register */ 2376 tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */ 2377 2378 /* update output register */ 2379 tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */ 2380 tcg_gen_shri_tl(Rd, Rd, 1); 2381 tcg_gen_or_tl(Rd, Rd, t0); 2382 2383 /* update status register */ 2384 gen_rshift_ZNVSf(Rd); 2385 return true; 2386 } 2387 2388 /* 2389 * Swaps high and low nibbles in a register. 2390 */ 2391 static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a) 2392 { 2393 TCGv Rd = cpu_r[a->rd]; 2394 TCGv t0 = tcg_temp_new_i32(); 2395 TCGv t1 = tcg_temp_new_i32(); 2396 2397 tcg_gen_andi_tl(t0, Rd, 0x0f); 2398 tcg_gen_shli_tl(t0, t0, 4); 2399 tcg_gen_andi_tl(t1, Rd, 0xf0); 2400 tcg_gen_shri_tl(t1, t1, 4); 2401 tcg_gen_or_tl(Rd, t0, t1); 2402 return true; 2403 } 2404 2405 /* 2406 * Sets a specified bit in an I/O Register. This instruction operates on 2407 * the lower 32 I/O Registers -- addresses 0-31. 2408 */ 2409 static bool trans_SBI(DisasContext *ctx, arg_SBI *a) 2410 { 2411 TCGv data = tcg_temp_new_i32(); 2412 TCGv port = tcg_constant_i32(a->reg); 2413 2414 gen_helper_inb(data, tcg_env, port); 2415 tcg_gen_ori_tl(data, data, 1 << a->bit); 2416 gen_helper_outb(tcg_env, port, data); 2417 return true; 2418 } 2419 2420 /* 2421 * Clears a specified bit in an I/O Register. This instruction operates on 2422 * the lower 32 I/O Registers -- addresses 0-31. 2423 */ 2424 static bool trans_CBI(DisasContext *ctx, arg_CBI *a) 2425 { 2426 TCGv data = tcg_temp_new_i32(); 2427 TCGv port = tcg_constant_i32(a->reg); 2428 2429 gen_helper_inb(data, tcg_env, port); 2430 tcg_gen_andi_tl(data, data, ~(1 << a->bit)); 2431 gen_helper_outb(tcg_env, port, data); 2432 return true; 2433 } 2434 2435 /* 2436 * Stores bit b from Rd to the T Flag in SREG (Status Register). 2437 */ 2438 static bool trans_BST(DisasContext *ctx, arg_BST *a) 2439 { 2440 TCGv Rd = cpu_r[a->rd]; 2441 2442 tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit); 2443 tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit); 2444 2445 return true; 2446 } 2447 2448 /* 2449 * Copies the T Flag in the SREG (Status Register) to bit b in register Rd. 2450 */ 2451 static bool trans_BLD(DisasContext *ctx, arg_BLD *a) 2452 { 2453 TCGv Rd = cpu_r[a->rd]; 2454 TCGv t1 = tcg_temp_new_i32(); 2455 2456 tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */ 2457 tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */ 2458 tcg_gen_or_tl(Rd, Rd, t1); 2459 return true; 2460 } 2461 2462 /* 2463 * Sets a single Flag or bit in SREG. 2464 */ 2465 static bool trans_BSET(DisasContext *ctx, arg_BSET *a) 2466 { 2467 switch (a->bit) { 2468 case 0x00: 2469 tcg_gen_movi_tl(cpu_Cf, 0x01); 2470 break; 2471 case 0x01: 2472 tcg_gen_movi_tl(cpu_Zf, 0x01); 2473 break; 2474 case 0x02: 2475 tcg_gen_movi_tl(cpu_Nf, 0x01); 2476 break; 2477 case 0x03: 2478 tcg_gen_movi_tl(cpu_Vf, 0x01); 2479 break; 2480 case 0x04: 2481 tcg_gen_movi_tl(cpu_Sf, 0x01); 2482 break; 2483 case 0x05: 2484 tcg_gen_movi_tl(cpu_Hf, 0x01); 2485 break; 2486 case 0x06: 2487 tcg_gen_movi_tl(cpu_Tf, 0x01); 2488 break; 2489 case 0x07: 2490 tcg_gen_movi_tl(cpu_If, 0x01); 2491 break; 2492 } 2493 2494 return true; 2495 } 2496 2497 /* 2498 * Clears a single Flag in SREG. 2499 */ 2500 static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a) 2501 { 2502 switch (a->bit) { 2503 case 0x00: 2504 tcg_gen_movi_tl(cpu_Cf, 0x00); 2505 break; 2506 case 0x01: 2507 tcg_gen_movi_tl(cpu_Zf, 0x00); 2508 break; 2509 case 0x02: 2510 tcg_gen_movi_tl(cpu_Nf, 0x00); 2511 break; 2512 case 0x03: 2513 tcg_gen_movi_tl(cpu_Vf, 0x00); 2514 break; 2515 case 0x04: 2516 tcg_gen_movi_tl(cpu_Sf, 0x00); 2517 break; 2518 case 0x05: 2519 tcg_gen_movi_tl(cpu_Hf, 0x00); 2520 break; 2521 case 0x06: 2522 tcg_gen_movi_tl(cpu_Tf, 0x00); 2523 break; 2524 case 0x07: 2525 tcg_gen_movi_tl(cpu_If, 0x00); 2526 break; 2527 } 2528 2529 return true; 2530 } 2531 2532 /* 2533 * MCU Control Instructions 2534 */ 2535 2536 /* 2537 * The BREAK instruction is used by the On-chip Debug system, and is 2538 * normally not used in the application software. When the BREAK instruction is 2539 * executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip 2540 * Debugger access to internal resources. If any Lock bits are set, or either 2541 * the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK 2542 * instruction as a NOP and will not enter the Stopped mode. This instruction 2543 * is not available in all devices. Refer to the device specific instruction 2544 * set summary. 2545 */ 2546 static bool trans_BREAK(DisasContext *ctx, arg_BREAK *a) 2547 { 2548 if (!avr_have_feature(ctx, AVR_FEATURE_BREAK)) { 2549 return true; 2550 } 2551 2552 #ifdef BREAKPOINT_ON_BREAK 2553 tcg_gen_movi_tl(cpu_pc, ctx->npc - 1); 2554 gen_helper_debug(tcg_env); 2555 ctx->base.is_jmp = DISAS_EXIT; 2556 #else 2557 /* NOP */ 2558 #endif 2559 2560 return true; 2561 } 2562 2563 /* 2564 * This instruction performs a single cycle No Operation. 2565 */ 2566 static bool trans_NOP(DisasContext *ctx, arg_NOP *a) 2567 { 2568 2569 /* NOP */ 2570 2571 return true; 2572 } 2573 2574 /* 2575 * This instruction sets the circuit in sleep mode defined by the MCU 2576 * Control Register. 2577 */ 2578 static bool trans_SLEEP(DisasContext *ctx, arg_SLEEP *a) 2579 { 2580 gen_helper_sleep(tcg_env); 2581 ctx->base.is_jmp = DISAS_NORETURN; 2582 return true; 2583 } 2584 2585 /* 2586 * This instruction resets the Watchdog Timer. This instruction must be 2587 * executed within a limited time given by the WD prescaler. See the Watchdog 2588 * Timer hardware specification. 2589 */ 2590 static bool trans_WDR(DisasContext *ctx, arg_WDR *a) 2591 { 2592 gen_helper_wdr(tcg_env); 2593 2594 return true; 2595 } 2596 2597 /* 2598 * Core translation mechanism functions: 2599 * 2600 * - translate() 2601 * - canonicalize_skip() 2602 * - gen_intermediate_code() 2603 * - restore_state_to_opc() 2604 * 2605 */ 2606 static void translate(DisasContext *ctx) 2607 { 2608 uint32_t opcode = next_word(ctx); 2609 2610 if (!decode_insn(ctx, opcode)) { 2611 gen_helper_unsupported(tcg_env); 2612 ctx->base.is_jmp = DISAS_NORETURN; 2613 } 2614 } 2615 2616 /* Standardize the cpu_skip condition to NE. */ 2617 static bool canonicalize_skip(DisasContext *ctx) 2618 { 2619 switch (ctx->skip_cond) { 2620 case TCG_COND_NEVER: 2621 /* Normal case: cpu_skip is known to be false. */ 2622 return false; 2623 2624 case TCG_COND_ALWAYS: 2625 /* 2626 * Breakpoint case: cpu_skip is known to be true, via TB_FLAGS_SKIP. 2627 * The breakpoint is on the instruction being skipped, at the start 2628 * of the TranslationBlock. No need to update. 2629 */ 2630 return false; 2631 2632 case TCG_COND_NE: 2633 if (ctx->skip_var1 == NULL) { 2634 tcg_gen_mov_tl(cpu_skip, ctx->skip_var0); 2635 } else { 2636 tcg_gen_xor_tl(cpu_skip, ctx->skip_var0, ctx->skip_var1); 2637 ctx->skip_var1 = NULL; 2638 } 2639 break; 2640 2641 default: 2642 /* Convert to a NE condition vs 0. */ 2643 if (ctx->skip_var1 == NULL) { 2644 tcg_gen_setcondi_tl(ctx->skip_cond, cpu_skip, ctx->skip_var0, 0); 2645 } else { 2646 tcg_gen_setcond_tl(ctx->skip_cond, cpu_skip, 2647 ctx->skip_var0, ctx->skip_var1); 2648 ctx->skip_var1 = NULL; 2649 } 2650 ctx->skip_cond = TCG_COND_NE; 2651 break; 2652 } 2653 ctx->skip_var0 = cpu_skip; 2654 return true; 2655 } 2656 2657 static void avr_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) 2658 { 2659 DisasContext *ctx = container_of(dcbase, DisasContext, base); 2660 CPUAVRState *env = cpu_env(cs); 2661 uint32_t tb_flags = ctx->base.tb->flags; 2662 2663 ctx->cs = cs; 2664 ctx->env = env; 2665 ctx->npc = ctx->base.pc_first / 2; 2666 2667 ctx->skip_cond = TCG_COND_NEVER; 2668 if (tb_flags & TB_FLAGS_SKIP) { 2669 ctx->skip_cond = TCG_COND_ALWAYS; 2670 ctx->skip_var0 = cpu_skip; 2671 } 2672 2673 if (tb_flags & TB_FLAGS_FULL_ACCESS) { 2674 /* 2675 * This flag is set by ST/LD instruction we will regenerate it ONLY 2676 * with mem/cpu memory access instead of mem access 2677 */ 2678 ctx->base.max_insns = 1; 2679 } 2680 } 2681 2682 static void avr_tr_tb_start(DisasContextBase *db, CPUState *cs) 2683 { 2684 } 2685 2686 static void avr_tr_insn_start(DisasContextBase *dcbase, CPUState *cs) 2687 { 2688 DisasContext *ctx = container_of(dcbase, DisasContext, base); 2689 2690 tcg_gen_insn_start(ctx->npc); 2691 } 2692 2693 static void avr_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs) 2694 { 2695 DisasContext *ctx = container_of(dcbase, DisasContext, base); 2696 TCGLabel *skip_label = NULL; 2697 2698 /* Conditionally skip the next instruction, if indicated. */ 2699 if (ctx->skip_cond != TCG_COND_NEVER) { 2700 skip_label = gen_new_label(); 2701 if (ctx->skip_var0 == cpu_skip) { 2702 /* 2703 * Copy cpu_skip so that we may zero it before the branch. 2704 * This ensures that cpu_skip is non-zero after the label 2705 * if and only if the skipped insn itself sets a skip. 2706 */ 2707 ctx->skip_var0 = tcg_temp_new(); 2708 tcg_gen_mov_tl(ctx->skip_var0, cpu_skip); 2709 tcg_gen_movi_tl(cpu_skip, 0); 2710 } 2711 if (ctx->skip_var1 == NULL) { 2712 tcg_gen_brcondi_tl(ctx->skip_cond, ctx->skip_var0, 0, skip_label); 2713 } else { 2714 tcg_gen_brcond_tl(ctx->skip_cond, ctx->skip_var0, 2715 ctx->skip_var1, skip_label); 2716 ctx->skip_var1 = NULL; 2717 } 2718 ctx->skip_cond = TCG_COND_NEVER; 2719 ctx->skip_var0 = NULL; 2720 } 2721 2722 translate(ctx); 2723 2724 ctx->base.pc_next = ctx->npc * 2; 2725 2726 if (skip_label) { 2727 canonicalize_skip(ctx); 2728 gen_set_label(skip_label); 2729 2730 switch (ctx->base.is_jmp) { 2731 case DISAS_NORETURN: 2732 ctx->base.is_jmp = DISAS_CHAIN; 2733 break; 2734 case DISAS_NEXT: 2735 if (ctx->base.tb->flags & TB_FLAGS_SKIP) { 2736 ctx->base.is_jmp = DISAS_TOO_MANY; 2737 } 2738 break; 2739 default: 2740 break; 2741 } 2742 } 2743 2744 if (ctx->base.is_jmp == DISAS_NEXT) { 2745 target_ulong page_first = ctx->base.pc_first & TARGET_PAGE_MASK; 2746 2747 if ((ctx->base.pc_next - page_first) >= TARGET_PAGE_SIZE - 4) { 2748 ctx->base.is_jmp = DISAS_TOO_MANY; 2749 } 2750 } 2751 } 2752 2753 static void avr_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs) 2754 { 2755 DisasContext *ctx = container_of(dcbase, DisasContext, base); 2756 bool nonconst_skip = canonicalize_skip(ctx); 2757 /* 2758 * Because we disable interrupts while env->skip is set, 2759 * we must return to the main loop to re-evaluate afterward. 2760 */ 2761 bool force_exit = ctx->base.tb->flags & TB_FLAGS_SKIP; 2762 2763 switch (ctx->base.is_jmp) { 2764 case DISAS_NORETURN: 2765 assert(!nonconst_skip); 2766 break; 2767 case DISAS_NEXT: 2768 case DISAS_TOO_MANY: 2769 case DISAS_CHAIN: 2770 if (!nonconst_skip && !force_exit) { 2771 /* Note gen_goto_tb checks singlestep. */ 2772 gen_goto_tb(ctx, 1, ctx->npc); 2773 break; 2774 } 2775 tcg_gen_movi_tl(cpu_pc, ctx->npc); 2776 /* fall through */ 2777 case DISAS_LOOKUP: 2778 if (!force_exit) { 2779 tcg_gen_lookup_and_goto_ptr(); 2780 break; 2781 } 2782 /* fall through */ 2783 case DISAS_EXIT: 2784 tcg_gen_exit_tb(NULL, 0); 2785 break; 2786 default: 2787 g_assert_not_reached(); 2788 } 2789 } 2790 2791 static void avr_tr_disas_log(const DisasContextBase *dcbase, 2792 CPUState *cs, FILE *logfile) 2793 { 2794 fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first)); 2795 target_disas(logfile, cs, dcbase->pc_first, dcbase->tb->size); 2796 } 2797 2798 static const TranslatorOps avr_tr_ops = { 2799 .init_disas_context = avr_tr_init_disas_context, 2800 .tb_start = avr_tr_tb_start, 2801 .insn_start = avr_tr_insn_start, 2802 .translate_insn = avr_tr_translate_insn, 2803 .tb_stop = avr_tr_tb_stop, 2804 .disas_log = avr_tr_disas_log, 2805 }; 2806 2807 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns, 2808 target_ulong pc, void *host_pc) 2809 { 2810 DisasContext dc = { }; 2811 translator_loop(cs, tb, max_insns, pc, host_pc, &avr_tr_ops, &dc.base); 2812 } 2813