xref: /openbmc/qemu/target/avr/helper.c (revision ed3a06b1)
1 /*
2  * QEMU AVR CPU helpers
3  *
4  * Copyright (c) 2016-2020 Michael Rolnik
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see
18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "cpu.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "exec/exec-all.h"
26 #include "exec/address-spaces.h"
27 #include "exec/helper-proto.h"
28 
29 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
30 {
31     bool ret = false;
32     CPUClass *cc = CPU_GET_CLASS(cs);
33     AVRCPU *cpu = AVR_CPU(cs);
34     CPUAVRState *env = &cpu->env;
35 
36     if (interrupt_request & CPU_INTERRUPT_RESET) {
37         if (cpu_interrupts_enabled(env)) {
38             cs->exception_index = EXCP_RESET;
39             cc->tcg_ops->do_interrupt(cs);
40 
41             cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
42 
43             ret = true;
44         }
45     }
46     if (interrupt_request & CPU_INTERRUPT_HARD) {
47         if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
48             int index = ctz32(env->intsrc);
49             cs->exception_index = EXCP_INT(index);
50             cc->tcg_ops->do_interrupt(cs);
51 
52             env->intsrc &= env->intsrc - 1; /* clear the interrupt */
53             if (!env->intsrc) {
54                 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
55             }
56 
57             ret = true;
58         }
59     }
60     return ret;
61 }
62 
63 void avr_cpu_do_interrupt(CPUState *cs)
64 {
65     AVRCPU *cpu = AVR_CPU(cs);
66     CPUAVRState *env = &cpu->env;
67 
68     uint32_t ret = env->pc_w;
69     int vector = 0;
70     int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
71     int base = 0;
72 
73     if (cs->exception_index == EXCP_RESET) {
74         vector = 0;
75     } else if (env->intsrc != 0) {
76         vector = ctz32(env->intsrc) + 1;
77     }
78 
79     if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
80         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
81         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
82         cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
83     } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
84         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
85         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
86     } else {
87         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
88     }
89 
90     env->pc_w = base + vector * size;
91     env->sregI = 0; /* clear Global Interrupt Flag */
92 
93     cs->exception_index = -1;
94 }
95 
96 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
97 {
98     return addr; /* I assume 1:1 address correspondence */
99 }
100 
101 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
102                       MMUAccessType access_type, int mmu_idx,
103                       bool probe, uintptr_t retaddr)
104 {
105     int prot = 0;
106     MemTxAttrs attrs = {};
107     uint32_t paddr;
108 
109     address &= TARGET_PAGE_MASK;
110 
111     if (mmu_idx == MMU_CODE_IDX) {
112         /* access to code in flash */
113         paddr = OFFSET_CODE + address;
114         prot = PAGE_READ | PAGE_EXEC;
115         if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) {
116             error_report("execution left flash memory");
117             abort();
118         }
119     } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
120         /*
121          * access to CPU registers, exit and rebuilt this TB to use full access
122          * incase it touches specially handled registers like SREG or SP
123          */
124         AVRCPU *cpu = AVR_CPU(cs);
125         CPUAVRState *env = &cpu->env;
126         env->fullacc = 1;
127         cpu_loop_exit_restore(cs, retaddr);
128     } else {
129         /* access to memory. nothing special */
130         paddr = OFFSET_DATA + address;
131         prot = PAGE_READ | PAGE_WRITE;
132     }
133 
134     tlb_set_page_with_attrs(cs, address, paddr, attrs, prot,
135                             mmu_idx, TARGET_PAGE_SIZE);
136 
137     return true;
138 }
139 
140 /*
141  *  helpers
142  */
143 
144 void helper_sleep(CPUAVRState *env)
145 {
146     CPUState *cs = env_cpu(env);
147 
148     cs->exception_index = EXCP_HLT;
149     cpu_loop_exit(cs);
150 }
151 
152 void helper_unsupported(CPUAVRState *env)
153 {
154     CPUState *cs = env_cpu(env);
155 
156     /*
157      *  I count not find what happens on the real platform, so
158      *  it's EXCP_DEBUG for meanwhile
159      */
160     cs->exception_index = EXCP_DEBUG;
161     if (qemu_loglevel_mask(LOG_UNIMP)) {
162         qemu_log("UNSUPPORTED\n");
163         cpu_dump_state(cs, stderr, 0);
164     }
165     cpu_loop_exit(cs);
166 }
167 
168 void helper_debug(CPUAVRState *env)
169 {
170     CPUState *cs = env_cpu(env);
171 
172     cs->exception_index = EXCP_DEBUG;
173     cpu_loop_exit(cs);
174 }
175 
176 void helper_break(CPUAVRState *env)
177 {
178     CPUState *cs = env_cpu(env);
179 
180     cs->exception_index = EXCP_DEBUG;
181     cpu_loop_exit(cs);
182 }
183 
184 void helper_wdr(CPUAVRState *env)
185 {
186     qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
187 }
188 
189 /*
190  * This function implements IN instruction
191  *
192  * It does the following
193  * a.  if an IO register belongs to CPU, its value is read and returned
194  * b.  otherwise io address is translated to mem address and physical memory
195  *     is read.
196  * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
197  *
198  */
199 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
200 {
201     target_ulong data = 0;
202 
203     switch (port) {
204     case 0x38: /* RAMPD */
205         data = 0xff & (env->rampD >> 16);
206         break;
207     case 0x39: /* RAMPX */
208         data = 0xff & (env->rampX >> 16);
209         break;
210     case 0x3a: /* RAMPY */
211         data = 0xff & (env->rampY >> 16);
212         break;
213     case 0x3b: /* RAMPZ */
214         data = 0xff & (env->rampZ >> 16);
215         break;
216     case 0x3c: /* EIND */
217         data = 0xff & (env->eind >> 16);
218         break;
219     case 0x3d: /* SPL */
220         data = env->sp & 0x00ff;
221         break;
222     case 0x3e: /* SPH */
223         data = env->sp >> 8;
224         break;
225     case 0x3f: /* SREG */
226         data = cpu_get_sreg(env);
227         break;
228     default:
229         /* not a special register, pass to normal memory access */
230         data = address_space_ldub(&address_space_memory,
231                                   OFFSET_IO_REGISTERS + port,
232                                   MEMTXATTRS_UNSPECIFIED, NULL);
233     }
234 
235     return data;
236 }
237 
238 /*
239  *  This function implements OUT instruction
240  *
241  *  It does the following
242  *  a.  if an IO register belongs to CPU, its value is written into the register
243  *  b.  otherwise io address is translated to mem address and physical memory
244  *      is written.
245  *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
246  *
247  */
248 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
249 {
250     data &= 0x000000ff;
251 
252     switch (port) {
253     case 0x38: /* RAMPD */
254         if (avr_feature(env, AVR_FEATURE_RAMPD)) {
255             env->rampD = (data & 0xff) << 16;
256         }
257         break;
258     case 0x39: /* RAMPX */
259         if (avr_feature(env, AVR_FEATURE_RAMPX)) {
260             env->rampX = (data & 0xff) << 16;
261         }
262         break;
263     case 0x3a: /* RAMPY */
264         if (avr_feature(env, AVR_FEATURE_RAMPY)) {
265             env->rampY = (data & 0xff) << 16;
266         }
267         break;
268     case 0x3b: /* RAMPZ */
269         if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
270             env->rampZ = (data & 0xff) << 16;
271         }
272         break;
273     case 0x3c: /* EIDN */
274         env->eind = (data & 0xff) << 16;
275         break;
276     case 0x3d: /* SPL */
277         env->sp = (env->sp & 0xff00) | (data);
278         break;
279     case 0x3e: /* SPH */
280         if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
281             env->sp = (env->sp & 0x00ff) | (data << 8);
282         }
283         break;
284     case 0x3f: /* SREG */
285         cpu_set_sreg(env, data);
286         break;
287     default:
288         /* not a special register, pass to normal memory access */
289         address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
290                           data, MEMTXATTRS_UNSPECIFIED, NULL);
291     }
292 }
293 
294 /*
295  *  this function implements LD instruction when there is a possibility to read
296  *  from a CPU register
297  */
298 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
299 {
300     uint8_t data;
301 
302     env->fullacc = false;
303 
304     if (addr < NUMBER_OF_CPU_REGISTERS) {
305         /* CPU registers */
306         data = env->r[addr];
307     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
308         /* IO registers */
309         data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
310     } else {
311         /* memory */
312         data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
313                                   MEMTXATTRS_UNSPECIFIED, NULL);
314     }
315     return data;
316 }
317 
318 /*
319  *  this function implements ST instruction when there is a possibility to write
320  *  into a CPU register
321  */
322 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
323 {
324     env->fullacc = false;
325 
326     /* Following logic assumes this: */
327     assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
328     assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
329                                   NUMBER_OF_CPU_REGISTERS);
330 
331     if (addr < NUMBER_OF_CPU_REGISTERS) {
332         /* CPU registers */
333         env->r[addr] = data;
334     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
335         /* IO registers */
336         helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
337     } else {
338         /* memory */
339         address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
340                           MEMTXATTRS_UNSPECIFIED, NULL);
341     }
342 }
343