1 /* 2 * QEMU AVR CPU helpers 3 * 4 * Copyright (c) 2016-2020 Michael Rolnik 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see 18 * <http://www.gnu.org/licenses/lgpl-2.1.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/address-spaces.h" 25 #include "exec/helper-proto.h" 26 27 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 28 { 29 bool ret = false; 30 CPUClass *cc = CPU_GET_CLASS(cs); 31 AVRCPU *cpu = AVR_CPU(cs); 32 CPUAVRState *env = &cpu->env; 33 34 if (interrupt_request & CPU_INTERRUPT_RESET) { 35 if (cpu_interrupts_enabled(env)) { 36 cs->exception_index = EXCP_RESET; 37 cc->do_interrupt(cs); 38 39 cs->interrupt_request &= ~CPU_INTERRUPT_RESET; 40 41 ret = true; 42 } 43 } 44 if (interrupt_request & CPU_INTERRUPT_HARD) { 45 if (cpu_interrupts_enabled(env) && env->intsrc != 0) { 46 int index = ctz32(env->intsrc); 47 cs->exception_index = EXCP_INT(index); 48 cc->do_interrupt(cs); 49 50 env->intsrc &= env->intsrc - 1; /* clear the interrupt */ 51 cs->interrupt_request &= ~CPU_INTERRUPT_HARD; 52 53 ret = true; 54 } 55 } 56 return ret; 57 } 58 59 void avr_cpu_do_interrupt(CPUState *cs) 60 { 61 AVRCPU *cpu = AVR_CPU(cs); 62 CPUAVRState *env = &cpu->env; 63 64 uint32_t ret = env->pc_w; 65 int vector = 0; 66 int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1; 67 int base = 0; 68 69 if (cs->exception_index == EXCP_RESET) { 70 vector = 0; 71 } else if (env->intsrc != 0) { 72 vector = ctz32(env->intsrc) + 1; 73 } 74 75 if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) { 76 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 77 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); 78 cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16); 79 } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) { 80 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 81 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); 82 } else { 83 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 84 } 85 86 env->pc_w = base + vector * size; 87 env->sregI = 0; /* clear Global Interrupt Flag */ 88 89 cs->exception_index = -1; 90 } 91 92 int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf, 93 int len, bool is_write) 94 { 95 return cpu_memory_rw_debug(cs, addr, buf, len, is_write); 96 } 97 98 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 99 { 100 return addr; /* I assume 1:1 address correspondance */ 101 } 102 103 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 104 MMUAccessType access_type, int mmu_idx, 105 bool probe, uintptr_t retaddr) 106 { 107 int prot = 0; 108 MemTxAttrs attrs = {}; 109 uint32_t paddr; 110 111 address &= TARGET_PAGE_MASK; 112 113 if (mmu_idx == MMU_CODE_IDX) { 114 /* access to code in flash */ 115 paddr = OFFSET_CODE + address; 116 prot = PAGE_READ | PAGE_EXEC; 117 if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) { 118 error_report("execution left flash memory"); 119 abort(); 120 } 121 } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 122 /* 123 * access to CPU registers, exit and rebuilt this TB to use full access 124 * incase it touches specially handled registers like SREG or SP 125 */ 126 AVRCPU *cpu = AVR_CPU(cs); 127 CPUAVRState *env = &cpu->env; 128 env->fullacc = 1; 129 cpu_loop_exit_restore(cs, retaddr); 130 } else { 131 /* access to memory. nothing special */ 132 paddr = OFFSET_DATA + address; 133 prot = PAGE_READ | PAGE_WRITE; 134 } 135 136 tlb_set_page_with_attrs(cs, address, paddr, attrs, prot, 137 mmu_idx, TARGET_PAGE_SIZE); 138 139 return true; 140 } 141 142 /* 143 * helpers 144 */ 145 146 void helper_sleep(CPUAVRState *env) 147 { 148 CPUState *cs = env_cpu(env); 149 150 cs->exception_index = EXCP_HLT; 151 cpu_loop_exit(cs); 152 } 153 154 void helper_unsupported(CPUAVRState *env) 155 { 156 CPUState *cs = env_cpu(env); 157 158 /* 159 * I count not find what happens on the real platform, so 160 * it's EXCP_DEBUG for meanwhile 161 */ 162 cs->exception_index = EXCP_DEBUG; 163 if (qemu_loglevel_mask(LOG_UNIMP)) { 164 qemu_log("UNSUPPORTED\n"); 165 cpu_dump_state(cs, stderr, 0); 166 } 167 cpu_loop_exit(cs); 168 } 169 170 void helper_debug(CPUAVRState *env) 171 { 172 CPUState *cs = env_cpu(env); 173 174 cs->exception_index = EXCP_DEBUG; 175 cpu_loop_exit(cs); 176 } 177 178 void helper_break(CPUAVRState *env) 179 { 180 CPUState *cs = env_cpu(env); 181 182 cs->exception_index = EXCP_DEBUG; 183 cpu_loop_exit(cs); 184 } 185 186 void helper_wdr(CPUAVRState *env) 187 { 188 CPUState *cs = env_cpu(env); 189 190 /* WD is not implemented yet, placeholder */ 191 cs->exception_index = EXCP_DEBUG; 192 cpu_loop_exit(cs); 193 } 194 195 /* 196 * This function implements IN instruction 197 * 198 * It does the following 199 * a. if an IO register belongs to CPU, its value is read and returned 200 * b. otherwise io address is translated to mem address and physical memory 201 * is read. 202 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation 203 * 204 */ 205 target_ulong helper_inb(CPUAVRState *env, uint32_t port) 206 { 207 target_ulong data = 0; 208 209 switch (port) { 210 case 0x38: /* RAMPD */ 211 data = 0xff & (env->rampD >> 16); 212 break; 213 case 0x39: /* RAMPX */ 214 data = 0xff & (env->rampX >> 16); 215 break; 216 case 0x3a: /* RAMPY */ 217 data = 0xff & (env->rampY >> 16); 218 break; 219 case 0x3b: /* RAMPZ */ 220 data = 0xff & (env->rampZ >> 16); 221 break; 222 case 0x3c: /* EIND */ 223 data = 0xff & (env->eind >> 16); 224 break; 225 case 0x3d: /* SPL */ 226 data = env->sp & 0x00ff; 227 break; 228 case 0x3e: /* SPH */ 229 data = env->sp >> 8; 230 break; 231 case 0x3f: /* SREG */ 232 data = cpu_get_sreg(env); 233 break; 234 default: 235 /* not a special register, pass to normal memory access */ 236 data = address_space_ldub(&address_space_memory, 237 OFFSET_IO_REGISTERS + port, 238 MEMTXATTRS_UNSPECIFIED, NULL); 239 } 240 241 return data; 242 } 243 244 /* 245 * This function implements OUT instruction 246 * 247 * It does the following 248 * a. if an IO register belongs to CPU, its value is written into the register 249 * b. otherwise io address is translated to mem address and physical memory 250 * is written. 251 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation 252 * 253 */ 254 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data) 255 { 256 data &= 0x000000ff; 257 258 switch (port) { 259 case 0x38: /* RAMPD */ 260 if (avr_feature(env, AVR_FEATURE_RAMPD)) { 261 env->rampD = (data & 0xff) << 16; 262 } 263 break; 264 case 0x39: /* RAMPX */ 265 if (avr_feature(env, AVR_FEATURE_RAMPX)) { 266 env->rampX = (data & 0xff) << 16; 267 } 268 break; 269 case 0x3a: /* RAMPY */ 270 if (avr_feature(env, AVR_FEATURE_RAMPY)) { 271 env->rampY = (data & 0xff) << 16; 272 } 273 break; 274 case 0x3b: /* RAMPZ */ 275 if (avr_feature(env, AVR_FEATURE_RAMPZ)) { 276 env->rampZ = (data & 0xff) << 16; 277 } 278 break; 279 case 0x3c: /* EIDN */ 280 env->eind = (data & 0xff) << 16; 281 break; 282 case 0x3d: /* SPL */ 283 env->sp = (env->sp & 0xff00) | (data); 284 break; 285 case 0x3e: /* SPH */ 286 if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) { 287 env->sp = (env->sp & 0x00ff) | (data << 8); 288 } 289 break; 290 case 0x3f: /* SREG */ 291 cpu_set_sreg(env, data); 292 break; 293 default: 294 /* not a special register, pass to normal memory access */ 295 address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port, 296 data, MEMTXATTRS_UNSPECIFIED, NULL); 297 } 298 } 299 300 /* 301 * this function implements LD instruction when there is a posibility to read 302 * from a CPU register 303 */ 304 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr) 305 { 306 uint8_t data; 307 308 env->fullacc = false; 309 310 if (addr < NUMBER_OF_CPU_REGISTERS) { 311 /* CPU registers */ 312 data = env->r[addr]; 313 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 314 /* IO registers */ 315 data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS); 316 } else { 317 /* memory */ 318 data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr, 319 MEMTXATTRS_UNSPECIFIED, NULL); 320 } 321 return data; 322 } 323 324 /* 325 * this function implements ST instruction when there is a posibility to write 326 * into a CPU register 327 */ 328 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr) 329 { 330 env->fullacc = false; 331 332 /* Following logic assumes this: */ 333 assert(OFFSET_CPU_REGISTERS == OFFSET_DATA); 334 assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS + 335 NUMBER_OF_CPU_REGISTERS); 336 337 if (addr < NUMBER_OF_CPU_REGISTERS) { 338 /* CPU registers */ 339 env->r[addr] = data; 340 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 341 /* IO registers */ 342 helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data); 343 } else { 344 /* memory */ 345 address_space_stb(&address_space_memory, OFFSET_DATA + addr, data, 346 MEMTXATTRS_UNSPECIFIED, NULL); 347 } 348 } 349