xref: /openbmc/qemu/target/avr/helper.c (revision c2387413)
1 /*
2  * QEMU AVR CPU helpers
3  *
4  * Copyright (c) 2016-2020 Michael Rolnik
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see
18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "hw/core/tcg-cpu-ops.h"
24 #include "exec/exec-all.h"
25 #include "exec/address-spaces.h"
26 #include "exec/helper-proto.h"
27 
28 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
29 {
30     bool ret = false;
31     CPUClass *cc = CPU_GET_CLASS(cs);
32     AVRCPU *cpu = AVR_CPU(cs);
33     CPUAVRState *env = &cpu->env;
34 
35     if (interrupt_request & CPU_INTERRUPT_RESET) {
36         if (cpu_interrupts_enabled(env)) {
37             cs->exception_index = EXCP_RESET;
38             cc->tcg_ops->do_interrupt(cs);
39 
40             cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
41 
42             ret = true;
43         }
44     }
45     if (interrupt_request & CPU_INTERRUPT_HARD) {
46         if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
47             int index = ctz32(env->intsrc);
48             cs->exception_index = EXCP_INT(index);
49             cc->tcg_ops->do_interrupt(cs);
50 
51             env->intsrc &= env->intsrc - 1; /* clear the interrupt */
52             cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
53 
54             ret = true;
55         }
56     }
57     return ret;
58 }
59 
60 void avr_cpu_do_interrupt(CPUState *cs)
61 {
62     AVRCPU *cpu = AVR_CPU(cs);
63     CPUAVRState *env = &cpu->env;
64 
65     uint32_t ret = env->pc_w;
66     int vector = 0;
67     int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
68     int base = 0;
69 
70     if (cs->exception_index == EXCP_RESET) {
71         vector = 0;
72     } else if (env->intsrc != 0) {
73         vector = ctz32(env->intsrc) + 1;
74     }
75 
76     if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
77         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
78         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
79         cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
80     } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
81         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
82         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
83     } else {
84         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
85     }
86 
87     env->pc_w = base + vector * size;
88     env->sregI = 0; /* clear Global Interrupt Flag */
89 
90     cs->exception_index = -1;
91 }
92 
93 int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf,
94                             int len, bool is_write)
95 {
96     return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
97 }
98 
99 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
100 {
101     return addr; /* I assume 1:1 address correspondance */
102 }
103 
104 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
105                       MMUAccessType access_type, int mmu_idx,
106                       bool probe, uintptr_t retaddr)
107 {
108     int prot = 0;
109     MemTxAttrs attrs = {};
110     uint32_t paddr;
111 
112     address &= TARGET_PAGE_MASK;
113 
114     if (mmu_idx == MMU_CODE_IDX) {
115         /* access to code in flash */
116         paddr = OFFSET_CODE + address;
117         prot = PAGE_READ | PAGE_EXEC;
118         if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) {
119             error_report("execution left flash memory");
120             abort();
121         }
122     } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
123         /*
124          * access to CPU registers, exit and rebuilt this TB to use full access
125          * incase it touches specially handled registers like SREG or SP
126          */
127         AVRCPU *cpu = AVR_CPU(cs);
128         CPUAVRState *env = &cpu->env;
129         env->fullacc = 1;
130         cpu_loop_exit_restore(cs, retaddr);
131     } else {
132         /* access to memory. nothing special */
133         paddr = OFFSET_DATA + address;
134         prot = PAGE_READ | PAGE_WRITE;
135     }
136 
137     tlb_set_page_with_attrs(cs, address, paddr, attrs, prot,
138                             mmu_idx, TARGET_PAGE_SIZE);
139 
140     return true;
141 }
142 
143 /*
144  *  helpers
145  */
146 
147 void helper_sleep(CPUAVRState *env)
148 {
149     CPUState *cs = env_cpu(env);
150 
151     cs->exception_index = EXCP_HLT;
152     cpu_loop_exit(cs);
153 }
154 
155 void helper_unsupported(CPUAVRState *env)
156 {
157     CPUState *cs = env_cpu(env);
158 
159     /*
160      *  I count not find what happens on the real platform, so
161      *  it's EXCP_DEBUG for meanwhile
162      */
163     cs->exception_index = EXCP_DEBUG;
164     if (qemu_loglevel_mask(LOG_UNIMP)) {
165         qemu_log("UNSUPPORTED\n");
166         cpu_dump_state(cs, stderr, 0);
167     }
168     cpu_loop_exit(cs);
169 }
170 
171 void helper_debug(CPUAVRState *env)
172 {
173     CPUState *cs = env_cpu(env);
174 
175     cs->exception_index = EXCP_DEBUG;
176     cpu_loop_exit(cs);
177 }
178 
179 void helper_break(CPUAVRState *env)
180 {
181     CPUState *cs = env_cpu(env);
182 
183     cs->exception_index = EXCP_DEBUG;
184     cpu_loop_exit(cs);
185 }
186 
187 void helper_wdr(CPUAVRState *env)
188 {
189     CPUState *cs = env_cpu(env);
190 
191     /* WD is not implemented yet, placeholder */
192     cs->exception_index = EXCP_DEBUG;
193     cpu_loop_exit(cs);
194 }
195 
196 /*
197  * This function implements IN instruction
198  *
199  * It does the following
200  * a.  if an IO register belongs to CPU, its value is read and returned
201  * b.  otherwise io address is translated to mem address and physical memory
202  *     is read.
203  * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
204  *
205  */
206 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
207 {
208     target_ulong data = 0;
209 
210     switch (port) {
211     case 0x38: /* RAMPD */
212         data = 0xff & (env->rampD >> 16);
213         break;
214     case 0x39: /* RAMPX */
215         data = 0xff & (env->rampX >> 16);
216         break;
217     case 0x3a: /* RAMPY */
218         data = 0xff & (env->rampY >> 16);
219         break;
220     case 0x3b: /* RAMPZ */
221         data = 0xff & (env->rampZ >> 16);
222         break;
223     case 0x3c: /* EIND */
224         data = 0xff & (env->eind >> 16);
225         break;
226     case 0x3d: /* SPL */
227         data = env->sp & 0x00ff;
228         break;
229     case 0x3e: /* SPH */
230         data = env->sp >> 8;
231         break;
232     case 0x3f: /* SREG */
233         data = cpu_get_sreg(env);
234         break;
235     default:
236         /* not a special register, pass to normal memory access */
237         data = address_space_ldub(&address_space_memory,
238                                   OFFSET_IO_REGISTERS + port,
239                                   MEMTXATTRS_UNSPECIFIED, NULL);
240     }
241 
242     return data;
243 }
244 
245 /*
246  *  This function implements OUT instruction
247  *
248  *  It does the following
249  *  a.  if an IO register belongs to CPU, its value is written into the register
250  *  b.  otherwise io address is translated to mem address and physical memory
251  *      is written.
252  *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
253  *
254  */
255 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
256 {
257     data &= 0x000000ff;
258 
259     switch (port) {
260     case 0x38: /* RAMPD */
261         if (avr_feature(env, AVR_FEATURE_RAMPD)) {
262             env->rampD = (data & 0xff) << 16;
263         }
264         break;
265     case 0x39: /* RAMPX */
266         if (avr_feature(env, AVR_FEATURE_RAMPX)) {
267             env->rampX = (data & 0xff) << 16;
268         }
269         break;
270     case 0x3a: /* RAMPY */
271         if (avr_feature(env, AVR_FEATURE_RAMPY)) {
272             env->rampY = (data & 0xff) << 16;
273         }
274         break;
275     case 0x3b: /* RAMPZ */
276         if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
277             env->rampZ = (data & 0xff) << 16;
278         }
279         break;
280     case 0x3c: /* EIDN */
281         env->eind = (data & 0xff) << 16;
282         break;
283     case 0x3d: /* SPL */
284         env->sp = (env->sp & 0xff00) | (data);
285         break;
286     case 0x3e: /* SPH */
287         if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
288             env->sp = (env->sp & 0x00ff) | (data << 8);
289         }
290         break;
291     case 0x3f: /* SREG */
292         cpu_set_sreg(env, data);
293         break;
294     default:
295         /* not a special register, pass to normal memory access */
296         address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
297                           data, MEMTXATTRS_UNSPECIFIED, NULL);
298     }
299 }
300 
301 /*
302  *  this function implements LD instruction when there is a posibility to read
303  *  from a CPU register
304  */
305 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
306 {
307     uint8_t data;
308 
309     env->fullacc = false;
310 
311     if (addr < NUMBER_OF_CPU_REGISTERS) {
312         /* CPU registers */
313         data = env->r[addr];
314     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
315         /* IO registers */
316         data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
317     } else {
318         /* memory */
319         data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
320                                   MEMTXATTRS_UNSPECIFIED, NULL);
321     }
322     return data;
323 }
324 
325 /*
326  *  this function implements ST instruction when there is a posibility to write
327  *  into a CPU register
328  */
329 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
330 {
331     env->fullacc = false;
332 
333     /* Following logic assumes this: */
334     assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
335     assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
336                                   NUMBER_OF_CPU_REGISTERS);
337 
338     if (addr < NUMBER_OF_CPU_REGISTERS) {
339         /* CPU registers */
340         env->r[addr] = data;
341     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
342         /* IO registers */
343         helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
344     } else {
345         /* memory */
346         address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
347                           MEMTXATTRS_UNSPECIFIED, NULL);
348     }
349 }
350