1 /* 2 * QEMU AVR CPU helpers 3 * 4 * Copyright (c) 2016-2020 Michael Rolnik 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see 18 * <http://www.gnu.org/licenses/lgpl-2.1.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/log.h" 23 #include "cpu.h" 24 #include "hw/core/tcg-cpu-ops.h" 25 #include "exec/exec-all.h" 26 #include "exec/address-spaces.h" 27 #include "exec/helper-proto.h" 28 29 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 30 { 31 bool ret = false; 32 CPUClass *cc = CPU_GET_CLASS(cs); 33 AVRCPU *cpu = AVR_CPU(cs); 34 CPUAVRState *env = &cpu->env; 35 36 if (interrupt_request & CPU_INTERRUPT_RESET) { 37 if (cpu_interrupts_enabled(env)) { 38 cs->exception_index = EXCP_RESET; 39 cc->tcg_ops->do_interrupt(cs); 40 41 cs->interrupt_request &= ~CPU_INTERRUPT_RESET; 42 43 ret = true; 44 } 45 } 46 if (interrupt_request & CPU_INTERRUPT_HARD) { 47 if (cpu_interrupts_enabled(env) && env->intsrc != 0) { 48 int index = ctz32(env->intsrc); 49 cs->exception_index = EXCP_INT(index); 50 cc->tcg_ops->do_interrupt(cs); 51 52 env->intsrc &= env->intsrc - 1; /* clear the interrupt */ 53 if (!env->intsrc) { 54 cs->interrupt_request &= ~CPU_INTERRUPT_HARD; 55 } 56 57 ret = true; 58 } 59 } 60 return ret; 61 } 62 63 void avr_cpu_do_interrupt(CPUState *cs) 64 { 65 AVRCPU *cpu = AVR_CPU(cs); 66 CPUAVRState *env = &cpu->env; 67 68 uint32_t ret = env->pc_w; 69 int vector = 0; 70 int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1; 71 int base = 0; 72 73 if (cs->exception_index == EXCP_RESET) { 74 vector = 0; 75 } else if (env->intsrc != 0) { 76 vector = ctz32(env->intsrc) + 1; 77 } 78 79 if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) { 80 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 81 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); 82 cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16); 83 } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) { 84 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 85 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); 86 } else { 87 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 88 } 89 90 env->pc_w = base + vector * size; 91 env->sregI = 0; /* clear Global Interrupt Flag */ 92 93 cs->exception_index = -1; 94 } 95 96 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 97 { 98 return addr; /* I assume 1:1 address correspondence */ 99 } 100 101 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 102 MMUAccessType access_type, int mmu_idx, 103 bool probe, uintptr_t retaddr) 104 { 105 int prot = 0; 106 MemTxAttrs attrs = {}; 107 uint32_t paddr; 108 109 address &= TARGET_PAGE_MASK; 110 111 if (mmu_idx == MMU_CODE_IDX) { 112 /* access to code in flash */ 113 paddr = OFFSET_CODE + address; 114 prot = PAGE_READ | PAGE_EXEC; 115 if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) { 116 error_report("execution left flash memory"); 117 abort(); 118 } 119 } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 120 /* 121 * access to CPU registers, exit and rebuilt this TB to use full access 122 * incase it touches specially handled registers like SREG or SP 123 */ 124 AVRCPU *cpu = AVR_CPU(cs); 125 CPUAVRState *env = &cpu->env; 126 env->fullacc = 1; 127 cpu_loop_exit_restore(cs, retaddr); 128 } else { 129 /* access to memory. nothing special */ 130 paddr = OFFSET_DATA + address; 131 prot = PAGE_READ | PAGE_WRITE; 132 } 133 134 tlb_set_page_with_attrs(cs, address, paddr, attrs, prot, 135 mmu_idx, TARGET_PAGE_SIZE); 136 137 return true; 138 } 139 140 /* 141 * helpers 142 */ 143 144 void helper_sleep(CPUAVRState *env) 145 { 146 CPUState *cs = env_cpu(env); 147 148 cs->exception_index = EXCP_HLT; 149 cpu_loop_exit(cs); 150 } 151 152 void helper_unsupported(CPUAVRState *env) 153 { 154 CPUState *cs = env_cpu(env); 155 156 /* 157 * I count not find what happens on the real platform, so 158 * it's EXCP_DEBUG for meanwhile 159 */ 160 cs->exception_index = EXCP_DEBUG; 161 if (qemu_loglevel_mask(LOG_UNIMP)) { 162 qemu_log("UNSUPPORTED\n"); 163 cpu_dump_state(cs, stderr, 0); 164 } 165 cpu_loop_exit(cs); 166 } 167 168 void helper_debug(CPUAVRState *env) 169 { 170 CPUState *cs = env_cpu(env); 171 172 cs->exception_index = EXCP_DEBUG; 173 cpu_loop_exit(cs); 174 } 175 176 void helper_break(CPUAVRState *env) 177 { 178 CPUState *cs = env_cpu(env); 179 180 cs->exception_index = EXCP_DEBUG; 181 cpu_loop_exit(cs); 182 } 183 184 void helper_wdr(CPUAVRState *env) 185 { 186 qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n"); 187 } 188 189 /* 190 * This function implements IN instruction 191 * 192 * It does the following 193 * a. if an IO register belongs to CPU, its value is read and returned 194 * b. otherwise io address is translated to mem address and physical memory 195 * is read. 196 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation 197 * 198 */ 199 target_ulong helper_inb(CPUAVRState *env, uint32_t port) 200 { 201 target_ulong data = 0; 202 203 switch (port) { 204 case 0x38: /* RAMPD */ 205 data = 0xff & (env->rampD >> 16); 206 break; 207 case 0x39: /* RAMPX */ 208 data = 0xff & (env->rampX >> 16); 209 break; 210 case 0x3a: /* RAMPY */ 211 data = 0xff & (env->rampY >> 16); 212 break; 213 case 0x3b: /* RAMPZ */ 214 data = 0xff & (env->rampZ >> 16); 215 break; 216 case 0x3c: /* EIND */ 217 data = 0xff & (env->eind >> 16); 218 break; 219 case 0x3d: /* SPL */ 220 data = env->sp & 0x00ff; 221 break; 222 case 0x3e: /* SPH */ 223 data = env->sp >> 8; 224 break; 225 case 0x3f: /* SREG */ 226 data = cpu_get_sreg(env); 227 break; 228 default: 229 /* not a special register, pass to normal memory access */ 230 data = address_space_ldub(&address_space_memory, 231 OFFSET_IO_REGISTERS + port, 232 MEMTXATTRS_UNSPECIFIED, NULL); 233 } 234 235 return data; 236 } 237 238 /* 239 * This function implements OUT instruction 240 * 241 * It does the following 242 * a. if an IO register belongs to CPU, its value is written into the register 243 * b. otherwise io address is translated to mem address and physical memory 244 * is written. 245 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation 246 * 247 */ 248 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data) 249 { 250 data &= 0x000000ff; 251 252 switch (port) { 253 case 0x38: /* RAMPD */ 254 if (avr_feature(env, AVR_FEATURE_RAMPD)) { 255 env->rampD = (data & 0xff) << 16; 256 } 257 break; 258 case 0x39: /* RAMPX */ 259 if (avr_feature(env, AVR_FEATURE_RAMPX)) { 260 env->rampX = (data & 0xff) << 16; 261 } 262 break; 263 case 0x3a: /* RAMPY */ 264 if (avr_feature(env, AVR_FEATURE_RAMPY)) { 265 env->rampY = (data & 0xff) << 16; 266 } 267 break; 268 case 0x3b: /* RAMPZ */ 269 if (avr_feature(env, AVR_FEATURE_RAMPZ)) { 270 env->rampZ = (data & 0xff) << 16; 271 } 272 break; 273 case 0x3c: /* EIDN */ 274 env->eind = (data & 0xff) << 16; 275 break; 276 case 0x3d: /* SPL */ 277 env->sp = (env->sp & 0xff00) | (data); 278 break; 279 case 0x3e: /* SPH */ 280 if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) { 281 env->sp = (env->sp & 0x00ff) | (data << 8); 282 } 283 break; 284 case 0x3f: /* SREG */ 285 cpu_set_sreg(env, data); 286 break; 287 default: 288 /* not a special register, pass to normal memory access */ 289 address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port, 290 data, MEMTXATTRS_UNSPECIFIED, NULL); 291 } 292 } 293 294 /* 295 * this function implements LD instruction when there is a possibility to read 296 * from a CPU register 297 */ 298 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr) 299 { 300 uint8_t data; 301 302 env->fullacc = false; 303 304 if (addr < NUMBER_OF_CPU_REGISTERS) { 305 /* CPU registers */ 306 data = env->r[addr]; 307 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 308 /* IO registers */ 309 data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS); 310 } else { 311 /* memory */ 312 data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr, 313 MEMTXATTRS_UNSPECIFIED, NULL); 314 } 315 return data; 316 } 317 318 /* 319 * this function implements ST instruction when there is a possibility to write 320 * into a CPU register 321 */ 322 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr) 323 { 324 env->fullacc = false; 325 326 /* Following logic assumes this: */ 327 assert(OFFSET_CPU_REGISTERS == OFFSET_DATA); 328 assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS + 329 NUMBER_OF_CPU_REGISTERS); 330 331 if (addr < NUMBER_OF_CPU_REGISTERS) { 332 /* CPU registers */ 333 env->r[addr] = data; 334 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 335 /* IO registers */ 336 helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data); 337 } else { 338 /* memory */ 339 address_space_stb(&address_space_memory, OFFSET_DATA + addr, data, 340 MEMTXATTRS_UNSPECIFIED, NULL); 341 } 342 } 343