1 /* 2 * QEMU AVR CPU helpers 3 * 4 * Copyright (c) 2016-2020 Michael Rolnik 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see 18 * <http://www.gnu.org/licenses/lgpl-2.1.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "cpu.h" 23 #include "hw/core/tcg-cpu-ops.h" 24 #include "exec/exec-all.h" 25 #include "exec/address-spaces.h" 26 #include "exec/helper-proto.h" 27 28 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 29 { 30 bool ret = false; 31 CPUClass *cc = CPU_GET_CLASS(cs); 32 AVRCPU *cpu = AVR_CPU(cs); 33 CPUAVRState *env = &cpu->env; 34 35 if (interrupt_request & CPU_INTERRUPT_RESET) { 36 if (cpu_interrupts_enabled(env)) { 37 cs->exception_index = EXCP_RESET; 38 cc->tcg_ops->do_interrupt(cs); 39 40 cs->interrupt_request &= ~CPU_INTERRUPT_RESET; 41 42 ret = true; 43 } 44 } 45 if (interrupt_request & CPU_INTERRUPT_HARD) { 46 if (cpu_interrupts_enabled(env) && env->intsrc != 0) { 47 int index = ctz32(env->intsrc); 48 cs->exception_index = EXCP_INT(index); 49 cc->tcg_ops->do_interrupt(cs); 50 51 env->intsrc &= env->intsrc - 1; /* clear the interrupt */ 52 cs->interrupt_request &= ~CPU_INTERRUPT_HARD; 53 54 ret = true; 55 } 56 } 57 return ret; 58 } 59 60 void avr_cpu_do_interrupt(CPUState *cs) 61 { 62 AVRCPU *cpu = AVR_CPU(cs); 63 CPUAVRState *env = &cpu->env; 64 65 uint32_t ret = env->pc_w; 66 int vector = 0; 67 int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1; 68 int base = 0; 69 70 if (cs->exception_index == EXCP_RESET) { 71 vector = 0; 72 } else if (env->intsrc != 0) { 73 vector = ctz32(env->intsrc) + 1; 74 } 75 76 if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) { 77 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 78 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); 79 cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16); 80 } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) { 81 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 82 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); 83 } else { 84 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 85 } 86 87 env->pc_w = base + vector * size; 88 env->sregI = 0; /* clear Global Interrupt Flag */ 89 90 cs->exception_index = -1; 91 } 92 93 int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf, 94 int len, bool is_write) 95 { 96 return cpu_memory_rw_debug(cs, addr, buf, len, is_write); 97 } 98 99 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 100 { 101 return addr; /* I assume 1:1 address correspondance */ 102 } 103 104 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 105 MMUAccessType access_type, int mmu_idx, 106 bool probe, uintptr_t retaddr) 107 { 108 int prot = 0; 109 MemTxAttrs attrs = {}; 110 uint32_t paddr; 111 112 address &= TARGET_PAGE_MASK; 113 114 if (mmu_idx == MMU_CODE_IDX) { 115 /* access to code in flash */ 116 paddr = OFFSET_CODE + address; 117 prot = PAGE_READ | PAGE_EXEC; 118 if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) { 119 error_report("execution left flash memory"); 120 abort(); 121 } 122 } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 123 /* 124 * access to CPU registers, exit and rebuilt this TB to use full access 125 * incase it touches specially handled registers like SREG or SP 126 */ 127 AVRCPU *cpu = AVR_CPU(cs); 128 CPUAVRState *env = &cpu->env; 129 env->fullacc = 1; 130 cpu_loop_exit_restore(cs, retaddr); 131 } else { 132 /* access to memory. nothing special */ 133 paddr = OFFSET_DATA + address; 134 prot = PAGE_READ | PAGE_WRITE; 135 } 136 137 tlb_set_page_with_attrs(cs, address, paddr, attrs, prot, 138 mmu_idx, TARGET_PAGE_SIZE); 139 140 return true; 141 } 142 143 /* 144 * helpers 145 */ 146 147 void helper_sleep(CPUAVRState *env) 148 { 149 CPUState *cs = env_cpu(env); 150 151 cs->exception_index = EXCP_HLT; 152 cpu_loop_exit(cs); 153 } 154 155 void helper_unsupported(CPUAVRState *env) 156 { 157 CPUState *cs = env_cpu(env); 158 159 /* 160 * I count not find what happens on the real platform, so 161 * it's EXCP_DEBUG for meanwhile 162 */ 163 cs->exception_index = EXCP_DEBUG; 164 if (qemu_loglevel_mask(LOG_UNIMP)) { 165 qemu_log("UNSUPPORTED\n"); 166 cpu_dump_state(cs, stderr, 0); 167 } 168 cpu_loop_exit(cs); 169 } 170 171 void helper_debug(CPUAVRState *env) 172 { 173 CPUState *cs = env_cpu(env); 174 175 cs->exception_index = EXCP_DEBUG; 176 cpu_loop_exit(cs); 177 } 178 179 void helper_break(CPUAVRState *env) 180 { 181 CPUState *cs = env_cpu(env); 182 183 cs->exception_index = EXCP_DEBUG; 184 cpu_loop_exit(cs); 185 } 186 187 void helper_wdr(CPUAVRState *env) 188 { 189 CPUState *cs = env_cpu(env); 190 191 /* WD is not implemented yet, placeholder */ 192 cs->exception_index = EXCP_DEBUG; 193 cpu_loop_exit(cs); 194 } 195 196 /* 197 * This function implements IN instruction 198 * 199 * It does the following 200 * a. if an IO register belongs to CPU, its value is read and returned 201 * b. otherwise io address is translated to mem address and physical memory 202 * is read. 203 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation 204 * 205 */ 206 target_ulong helper_inb(CPUAVRState *env, uint32_t port) 207 { 208 target_ulong data = 0; 209 210 switch (port) { 211 case 0x38: /* RAMPD */ 212 data = 0xff & (env->rampD >> 16); 213 break; 214 case 0x39: /* RAMPX */ 215 data = 0xff & (env->rampX >> 16); 216 break; 217 case 0x3a: /* RAMPY */ 218 data = 0xff & (env->rampY >> 16); 219 break; 220 case 0x3b: /* RAMPZ */ 221 data = 0xff & (env->rampZ >> 16); 222 break; 223 case 0x3c: /* EIND */ 224 data = 0xff & (env->eind >> 16); 225 break; 226 case 0x3d: /* SPL */ 227 data = env->sp & 0x00ff; 228 break; 229 case 0x3e: /* SPH */ 230 data = env->sp >> 8; 231 break; 232 case 0x3f: /* SREG */ 233 data = cpu_get_sreg(env); 234 break; 235 default: 236 /* not a special register, pass to normal memory access */ 237 data = address_space_ldub(&address_space_memory, 238 OFFSET_IO_REGISTERS + port, 239 MEMTXATTRS_UNSPECIFIED, NULL); 240 } 241 242 return data; 243 } 244 245 /* 246 * This function implements OUT instruction 247 * 248 * It does the following 249 * a. if an IO register belongs to CPU, its value is written into the register 250 * b. otherwise io address is translated to mem address and physical memory 251 * is written. 252 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation 253 * 254 */ 255 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data) 256 { 257 data &= 0x000000ff; 258 259 switch (port) { 260 case 0x38: /* RAMPD */ 261 if (avr_feature(env, AVR_FEATURE_RAMPD)) { 262 env->rampD = (data & 0xff) << 16; 263 } 264 break; 265 case 0x39: /* RAMPX */ 266 if (avr_feature(env, AVR_FEATURE_RAMPX)) { 267 env->rampX = (data & 0xff) << 16; 268 } 269 break; 270 case 0x3a: /* RAMPY */ 271 if (avr_feature(env, AVR_FEATURE_RAMPY)) { 272 env->rampY = (data & 0xff) << 16; 273 } 274 break; 275 case 0x3b: /* RAMPZ */ 276 if (avr_feature(env, AVR_FEATURE_RAMPZ)) { 277 env->rampZ = (data & 0xff) << 16; 278 } 279 break; 280 case 0x3c: /* EIDN */ 281 env->eind = (data & 0xff) << 16; 282 break; 283 case 0x3d: /* SPL */ 284 env->sp = (env->sp & 0xff00) | (data); 285 break; 286 case 0x3e: /* SPH */ 287 if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) { 288 env->sp = (env->sp & 0x00ff) | (data << 8); 289 } 290 break; 291 case 0x3f: /* SREG */ 292 cpu_set_sreg(env, data); 293 break; 294 default: 295 /* not a special register, pass to normal memory access */ 296 address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port, 297 data, MEMTXATTRS_UNSPECIFIED, NULL); 298 } 299 } 300 301 /* 302 * this function implements LD instruction when there is a posibility to read 303 * from a CPU register 304 */ 305 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr) 306 { 307 uint8_t data; 308 309 env->fullacc = false; 310 311 if (addr < NUMBER_OF_CPU_REGISTERS) { 312 /* CPU registers */ 313 data = env->r[addr]; 314 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 315 /* IO registers */ 316 data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS); 317 } else { 318 /* memory */ 319 data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr, 320 MEMTXATTRS_UNSPECIFIED, NULL); 321 } 322 return data; 323 } 324 325 /* 326 * this function implements ST instruction when there is a posibility to write 327 * into a CPU register 328 */ 329 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr) 330 { 331 env->fullacc = false; 332 333 /* Following logic assumes this: */ 334 assert(OFFSET_CPU_REGISTERS == OFFSET_DATA); 335 assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS + 336 NUMBER_OF_CPU_REGISTERS); 337 338 if (addr < NUMBER_OF_CPU_REGISTERS) { 339 /* CPU registers */ 340 env->r[addr] = data; 341 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 342 /* IO registers */ 343 helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data); 344 } else { 345 /* memory */ 346 address_space_stb(&address_space_memory, OFFSET_DATA + addr, data, 347 MEMTXATTRS_UNSPECIFIED, NULL); 348 } 349 } 350