1 /* 2 * QEMU AVR CPU helpers 3 * 4 * Copyright (c) 2016-2020 Michael Rolnik 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see 18 * <http://www.gnu.org/licenses/lgpl-2.1.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "cpu.h" 23 #include "hw/core/tcg-cpu-ops.h" 24 #include "exec/exec-all.h" 25 #include "exec/address-spaces.h" 26 #include "exec/helper-proto.h" 27 28 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 29 { 30 bool ret = false; 31 CPUClass *cc = CPU_GET_CLASS(cs); 32 AVRCPU *cpu = AVR_CPU(cs); 33 CPUAVRState *env = &cpu->env; 34 35 if (interrupt_request & CPU_INTERRUPT_RESET) { 36 if (cpu_interrupts_enabled(env)) { 37 cs->exception_index = EXCP_RESET; 38 cc->tcg_ops->do_interrupt(cs); 39 40 cs->interrupt_request &= ~CPU_INTERRUPT_RESET; 41 42 ret = true; 43 } 44 } 45 if (interrupt_request & CPU_INTERRUPT_HARD) { 46 if (cpu_interrupts_enabled(env) && env->intsrc != 0) { 47 int index = ctz32(env->intsrc); 48 cs->exception_index = EXCP_INT(index); 49 cc->tcg_ops->do_interrupt(cs); 50 51 env->intsrc &= env->intsrc - 1; /* clear the interrupt */ 52 if (!env->intsrc) { 53 cs->interrupt_request &= ~CPU_INTERRUPT_HARD; 54 } 55 56 ret = true; 57 } 58 } 59 return ret; 60 } 61 62 void avr_cpu_do_interrupt(CPUState *cs) 63 { 64 AVRCPU *cpu = AVR_CPU(cs); 65 CPUAVRState *env = &cpu->env; 66 67 uint32_t ret = env->pc_w; 68 int vector = 0; 69 int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1; 70 int base = 0; 71 72 if (cs->exception_index == EXCP_RESET) { 73 vector = 0; 74 } else if (env->intsrc != 0) { 75 vector = ctz32(env->intsrc) + 1; 76 } 77 78 if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) { 79 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 80 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); 81 cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16); 82 } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) { 83 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 84 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); 85 } else { 86 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 87 } 88 89 env->pc_w = base + vector * size; 90 env->sregI = 0; /* clear Global Interrupt Flag */ 91 92 cs->exception_index = -1; 93 } 94 95 int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf, 96 int len, bool is_write) 97 { 98 return cpu_memory_rw_debug(cs, addr, buf, len, is_write); 99 } 100 101 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 102 { 103 return addr; /* I assume 1:1 address correspondence */ 104 } 105 106 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 107 MMUAccessType access_type, int mmu_idx, 108 bool probe, uintptr_t retaddr) 109 { 110 int prot = 0; 111 MemTxAttrs attrs = {}; 112 uint32_t paddr; 113 114 address &= TARGET_PAGE_MASK; 115 116 if (mmu_idx == MMU_CODE_IDX) { 117 /* access to code in flash */ 118 paddr = OFFSET_CODE + address; 119 prot = PAGE_READ | PAGE_EXEC; 120 if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) { 121 error_report("execution left flash memory"); 122 abort(); 123 } 124 } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 125 /* 126 * access to CPU registers, exit and rebuilt this TB to use full access 127 * incase it touches specially handled registers like SREG or SP 128 */ 129 AVRCPU *cpu = AVR_CPU(cs); 130 CPUAVRState *env = &cpu->env; 131 env->fullacc = 1; 132 cpu_loop_exit_restore(cs, retaddr); 133 } else { 134 /* access to memory. nothing special */ 135 paddr = OFFSET_DATA + address; 136 prot = PAGE_READ | PAGE_WRITE; 137 } 138 139 tlb_set_page_with_attrs(cs, address, paddr, attrs, prot, 140 mmu_idx, TARGET_PAGE_SIZE); 141 142 return true; 143 } 144 145 /* 146 * helpers 147 */ 148 149 void helper_sleep(CPUAVRState *env) 150 { 151 CPUState *cs = env_cpu(env); 152 153 cs->exception_index = EXCP_HLT; 154 cpu_loop_exit(cs); 155 } 156 157 void helper_unsupported(CPUAVRState *env) 158 { 159 CPUState *cs = env_cpu(env); 160 161 /* 162 * I count not find what happens on the real platform, so 163 * it's EXCP_DEBUG for meanwhile 164 */ 165 cs->exception_index = EXCP_DEBUG; 166 if (qemu_loglevel_mask(LOG_UNIMP)) { 167 qemu_log("UNSUPPORTED\n"); 168 cpu_dump_state(cs, stderr, 0); 169 } 170 cpu_loop_exit(cs); 171 } 172 173 void helper_debug(CPUAVRState *env) 174 { 175 CPUState *cs = env_cpu(env); 176 177 cs->exception_index = EXCP_DEBUG; 178 cpu_loop_exit(cs); 179 } 180 181 void helper_break(CPUAVRState *env) 182 { 183 CPUState *cs = env_cpu(env); 184 185 cs->exception_index = EXCP_DEBUG; 186 cpu_loop_exit(cs); 187 } 188 189 void helper_wdr(CPUAVRState *env) 190 { 191 CPUState *cs = env_cpu(env); 192 193 /* WD is not implemented yet, placeholder */ 194 cs->exception_index = EXCP_DEBUG; 195 cpu_loop_exit(cs); 196 } 197 198 /* 199 * This function implements IN instruction 200 * 201 * It does the following 202 * a. if an IO register belongs to CPU, its value is read and returned 203 * b. otherwise io address is translated to mem address and physical memory 204 * is read. 205 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation 206 * 207 */ 208 target_ulong helper_inb(CPUAVRState *env, uint32_t port) 209 { 210 target_ulong data = 0; 211 212 switch (port) { 213 case 0x38: /* RAMPD */ 214 data = 0xff & (env->rampD >> 16); 215 break; 216 case 0x39: /* RAMPX */ 217 data = 0xff & (env->rampX >> 16); 218 break; 219 case 0x3a: /* RAMPY */ 220 data = 0xff & (env->rampY >> 16); 221 break; 222 case 0x3b: /* RAMPZ */ 223 data = 0xff & (env->rampZ >> 16); 224 break; 225 case 0x3c: /* EIND */ 226 data = 0xff & (env->eind >> 16); 227 break; 228 case 0x3d: /* SPL */ 229 data = env->sp & 0x00ff; 230 break; 231 case 0x3e: /* SPH */ 232 data = env->sp >> 8; 233 break; 234 case 0x3f: /* SREG */ 235 data = cpu_get_sreg(env); 236 break; 237 default: 238 /* not a special register, pass to normal memory access */ 239 data = address_space_ldub(&address_space_memory, 240 OFFSET_IO_REGISTERS + port, 241 MEMTXATTRS_UNSPECIFIED, NULL); 242 } 243 244 return data; 245 } 246 247 /* 248 * This function implements OUT instruction 249 * 250 * It does the following 251 * a. if an IO register belongs to CPU, its value is written into the register 252 * b. otherwise io address is translated to mem address and physical memory 253 * is written. 254 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation 255 * 256 */ 257 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data) 258 { 259 data &= 0x000000ff; 260 261 switch (port) { 262 case 0x38: /* RAMPD */ 263 if (avr_feature(env, AVR_FEATURE_RAMPD)) { 264 env->rampD = (data & 0xff) << 16; 265 } 266 break; 267 case 0x39: /* RAMPX */ 268 if (avr_feature(env, AVR_FEATURE_RAMPX)) { 269 env->rampX = (data & 0xff) << 16; 270 } 271 break; 272 case 0x3a: /* RAMPY */ 273 if (avr_feature(env, AVR_FEATURE_RAMPY)) { 274 env->rampY = (data & 0xff) << 16; 275 } 276 break; 277 case 0x3b: /* RAMPZ */ 278 if (avr_feature(env, AVR_FEATURE_RAMPZ)) { 279 env->rampZ = (data & 0xff) << 16; 280 } 281 break; 282 case 0x3c: /* EIDN */ 283 env->eind = (data & 0xff) << 16; 284 break; 285 case 0x3d: /* SPL */ 286 env->sp = (env->sp & 0xff00) | (data); 287 break; 288 case 0x3e: /* SPH */ 289 if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) { 290 env->sp = (env->sp & 0x00ff) | (data << 8); 291 } 292 break; 293 case 0x3f: /* SREG */ 294 cpu_set_sreg(env, data); 295 break; 296 default: 297 /* not a special register, pass to normal memory access */ 298 address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port, 299 data, MEMTXATTRS_UNSPECIFIED, NULL); 300 } 301 } 302 303 /* 304 * this function implements LD instruction when there is a possibility to read 305 * from a CPU register 306 */ 307 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr) 308 { 309 uint8_t data; 310 311 env->fullacc = false; 312 313 if (addr < NUMBER_OF_CPU_REGISTERS) { 314 /* CPU registers */ 315 data = env->r[addr]; 316 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 317 /* IO registers */ 318 data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS); 319 } else { 320 /* memory */ 321 data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr, 322 MEMTXATTRS_UNSPECIFIED, NULL); 323 } 324 return data; 325 } 326 327 /* 328 * this function implements ST instruction when there is a possibility to write 329 * into a CPU register 330 */ 331 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr) 332 { 333 env->fullacc = false; 334 335 /* Following logic assumes this: */ 336 assert(OFFSET_CPU_REGISTERS == OFFSET_DATA); 337 assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS + 338 NUMBER_OF_CPU_REGISTERS); 339 340 if (addr < NUMBER_OF_CPU_REGISTERS) { 341 /* CPU registers */ 342 env->r[addr] = data; 343 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 344 /* IO registers */ 345 helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data); 346 } else { 347 /* memory */ 348 address_space_stb(&address_space_memory, OFFSET_DATA + addr, data, 349 MEMTXATTRS_UNSPECIFIED, NULL); 350 } 351 } 352