1 /* 2 * QEMU AVR CPU helpers 3 * 4 * Copyright (c) 2016-2020 Michael Rolnik 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see 18 * <http://www.gnu.org/licenses/lgpl-2.1.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/log.h" 23 #include "qemu/error-report.h" 24 #include "cpu.h" 25 #include "hw/core/tcg-cpu-ops.h" 26 #include "exec/exec-all.h" 27 #include "exec/cpu_ldst.h" 28 #include "exec/address-spaces.h" 29 #include "exec/helper-proto.h" 30 31 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 32 { 33 AVRCPU *cpu = AVR_CPU(cs); 34 CPUAVRState *env = &cpu->env; 35 36 /* 37 * We cannot separate a skip from the next instruction, 38 * as the skip would not be preserved across the interrupt. 39 * Separating the two insn normally only happens at page boundaries. 40 */ 41 if (env->skip) { 42 return false; 43 } 44 45 if (interrupt_request & CPU_INTERRUPT_RESET) { 46 if (cpu_interrupts_enabled(env)) { 47 cs->exception_index = EXCP_RESET; 48 avr_cpu_do_interrupt(cs); 49 50 cs->interrupt_request &= ~CPU_INTERRUPT_RESET; 51 return true; 52 } 53 } 54 if (interrupt_request & CPU_INTERRUPT_HARD) { 55 if (cpu_interrupts_enabled(env) && env->intsrc != 0) { 56 int index = ctz64(env->intsrc); 57 cs->exception_index = EXCP_INT(index); 58 avr_cpu_do_interrupt(cs); 59 60 env->intsrc &= env->intsrc - 1; /* clear the interrupt */ 61 if (!env->intsrc) { 62 cs->interrupt_request &= ~CPU_INTERRUPT_HARD; 63 } 64 return true; 65 } 66 } 67 return false; 68 } 69 70 void avr_cpu_do_interrupt(CPUState *cs) 71 { 72 AVRCPU *cpu = AVR_CPU(cs); 73 CPUAVRState *env = &cpu->env; 74 75 uint32_t ret = env->pc_w; 76 int vector = 0; 77 int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1; 78 int base = 0; 79 80 if (cs->exception_index == EXCP_RESET) { 81 vector = 0; 82 } else if (env->intsrc != 0) { 83 vector = ctz64(env->intsrc) + 1; 84 } 85 86 if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) { 87 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 88 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); 89 cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16); 90 } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) { 91 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 92 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); 93 } else { 94 cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); 95 } 96 97 env->pc_w = base + vector * size; 98 env->sregI = 0; /* clear Global Interrupt Flag */ 99 100 cs->exception_index = -1; 101 } 102 103 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 104 { 105 return addr; /* I assume 1:1 address correspondence */ 106 } 107 108 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 109 MMUAccessType access_type, int mmu_idx, 110 bool probe, uintptr_t retaddr) 111 { 112 int prot, page_size = TARGET_PAGE_SIZE; 113 uint32_t paddr; 114 115 address &= TARGET_PAGE_MASK; 116 117 if (mmu_idx == MMU_CODE_IDX) { 118 /* Access to code in flash. */ 119 paddr = OFFSET_CODE + address; 120 prot = PAGE_READ | PAGE_EXEC; 121 if (paddr >= OFFSET_DATA) { 122 /* 123 * This should not be possible via any architectural operations. 124 * There is certainly not an exception that we can deliver. 125 * Accept probing that might come from generic code. 126 */ 127 if (probe) { 128 return false; 129 } 130 error_report("execution left flash memory"); 131 abort(); 132 } 133 } else { 134 /* Access to memory. */ 135 paddr = OFFSET_DATA + address; 136 prot = PAGE_READ | PAGE_WRITE; 137 if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 138 /* 139 * Access to CPU registers, exit and rebuilt this TB to use 140 * full access in case it touches specially handled registers 141 * like SREG or SP. For probing, set page_size = 1, in order 142 * to force tlb_fill to be called for the next access. 143 */ 144 if (probe) { 145 page_size = 1; 146 } else { 147 AVRCPU *cpu = AVR_CPU(cs); 148 CPUAVRState *env = &cpu->env; 149 env->fullacc = 1; 150 cpu_loop_exit_restore(cs, retaddr); 151 } 152 } 153 } 154 155 tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size); 156 return true; 157 } 158 159 /* 160 * helpers 161 */ 162 163 void helper_sleep(CPUAVRState *env) 164 { 165 CPUState *cs = env_cpu(env); 166 167 cs->exception_index = EXCP_HLT; 168 cpu_loop_exit(cs); 169 } 170 171 void helper_unsupported(CPUAVRState *env) 172 { 173 CPUState *cs = env_cpu(env); 174 175 /* 176 * I count not find what happens on the real platform, so 177 * it's EXCP_DEBUG for meanwhile 178 */ 179 cs->exception_index = EXCP_DEBUG; 180 if (qemu_loglevel_mask(LOG_UNIMP)) { 181 qemu_log("UNSUPPORTED\n"); 182 cpu_dump_state(cs, stderr, 0); 183 } 184 cpu_loop_exit(cs); 185 } 186 187 void helper_debug(CPUAVRState *env) 188 { 189 CPUState *cs = env_cpu(env); 190 191 cs->exception_index = EXCP_DEBUG; 192 cpu_loop_exit(cs); 193 } 194 195 void helper_break(CPUAVRState *env) 196 { 197 CPUState *cs = env_cpu(env); 198 199 cs->exception_index = EXCP_DEBUG; 200 cpu_loop_exit(cs); 201 } 202 203 void helper_wdr(CPUAVRState *env) 204 { 205 qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n"); 206 } 207 208 /* 209 * This function implements IN instruction 210 * 211 * It does the following 212 * a. if an IO register belongs to CPU, its value is read and returned 213 * b. otherwise io address is translated to mem address and physical memory 214 * is read. 215 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation 216 * 217 */ 218 target_ulong helper_inb(CPUAVRState *env, uint32_t port) 219 { 220 target_ulong data = 0; 221 222 switch (port) { 223 case 0x38: /* RAMPD */ 224 data = 0xff & (env->rampD >> 16); 225 break; 226 case 0x39: /* RAMPX */ 227 data = 0xff & (env->rampX >> 16); 228 break; 229 case 0x3a: /* RAMPY */ 230 data = 0xff & (env->rampY >> 16); 231 break; 232 case 0x3b: /* RAMPZ */ 233 data = 0xff & (env->rampZ >> 16); 234 break; 235 case 0x3c: /* EIND */ 236 data = 0xff & (env->eind >> 16); 237 break; 238 case 0x3d: /* SPL */ 239 data = env->sp & 0x00ff; 240 break; 241 case 0x3e: /* SPH */ 242 data = env->sp >> 8; 243 break; 244 case 0x3f: /* SREG */ 245 data = cpu_get_sreg(env); 246 break; 247 default: 248 /* not a special register, pass to normal memory access */ 249 data = address_space_ldub(&address_space_memory, 250 OFFSET_IO_REGISTERS + port, 251 MEMTXATTRS_UNSPECIFIED, NULL); 252 } 253 254 return data; 255 } 256 257 /* 258 * This function implements OUT instruction 259 * 260 * It does the following 261 * a. if an IO register belongs to CPU, its value is written into the register 262 * b. otherwise io address is translated to mem address and physical memory 263 * is written. 264 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation 265 * 266 */ 267 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data) 268 { 269 data &= 0x000000ff; 270 271 switch (port) { 272 case 0x38: /* RAMPD */ 273 if (avr_feature(env, AVR_FEATURE_RAMPD)) { 274 env->rampD = (data & 0xff) << 16; 275 } 276 break; 277 case 0x39: /* RAMPX */ 278 if (avr_feature(env, AVR_FEATURE_RAMPX)) { 279 env->rampX = (data & 0xff) << 16; 280 } 281 break; 282 case 0x3a: /* RAMPY */ 283 if (avr_feature(env, AVR_FEATURE_RAMPY)) { 284 env->rampY = (data & 0xff) << 16; 285 } 286 break; 287 case 0x3b: /* RAMPZ */ 288 if (avr_feature(env, AVR_FEATURE_RAMPZ)) { 289 env->rampZ = (data & 0xff) << 16; 290 } 291 break; 292 case 0x3c: /* EIDN */ 293 env->eind = (data & 0xff) << 16; 294 break; 295 case 0x3d: /* SPL */ 296 env->sp = (env->sp & 0xff00) | (data); 297 break; 298 case 0x3e: /* SPH */ 299 if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) { 300 env->sp = (env->sp & 0x00ff) | (data << 8); 301 } 302 break; 303 case 0x3f: /* SREG */ 304 cpu_set_sreg(env, data); 305 break; 306 default: 307 /* not a special register, pass to normal memory access */ 308 address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port, 309 data, MEMTXATTRS_UNSPECIFIED, NULL); 310 } 311 } 312 313 /* 314 * this function implements LD instruction when there is a possibility to read 315 * from a CPU register 316 */ 317 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr) 318 { 319 uint8_t data; 320 321 env->fullacc = false; 322 323 if (addr < NUMBER_OF_CPU_REGISTERS) { 324 /* CPU registers */ 325 data = env->r[addr]; 326 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 327 /* IO registers */ 328 data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS); 329 } else { 330 /* memory */ 331 data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr, 332 MEMTXATTRS_UNSPECIFIED, NULL); 333 } 334 return data; 335 } 336 337 /* 338 * this function implements ST instruction when there is a possibility to write 339 * into a CPU register 340 */ 341 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr) 342 { 343 env->fullacc = false; 344 345 /* Following logic assumes this: */ 346 assert(OFFSET_CPU_REGISTERS == OFFSET_DATA); 347 assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS + 348 NUMBER_OF_CPU_REGISTERS); 349 350 if (addr < NUMBER_OF_CPU_REGISTERS) { 351 /* CPU registers */ 352 env->r[addr] = data; 353 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { 354 /* IO registers */ 355 helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data); 356 } else { 357 /* memory */ 358 address_space_stb(&address_space_memory, OFFSET_DATA + addr, data, 359 MEMTXATTRS_UNSPECIFIED, NULL); 360 } 361 } 362