xref: /openbmc/qemu/target/avr/helper.c (revision 01c3ac68)
1 /*
2  * QEMU AVR CPU helpers
3  *
4  * Copyright (c) 2016-2020 Michael Rolnik
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see
18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu/error-report.h"
24 #include "cpu.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "exec/exec-all.h"
27 #include "exec/cpu_ldst.h"
28 #include "exec/address-spaces.h"
29 #include "exec/helper-proto.h"
30 
31 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
32 {
33     CPUAVRState *env = cpu_env(cs);
34 
35     /*
36      * We cannot separate a skip from the next instruction,
37      * as the skip would not be preserved across the interrupt.
38      * Separating the two insn normally only happens at page boundaries.
39      */
40     if (env->skip) {
41         return false;
42     }
43 
44     if (interrupt_request & CPU_INTERRUPT_RESET) {
45         if (cpu_interrupts_enabled(env)) {
46             cs->exception_index = EXCP_RESET;
47             avr_cpu_do_interrupt(cs);
48 
49             cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
50             return true;
51         }
52     }
53     if (interrupt_request & CPU_INTERRUPT_HARD) {
54         if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
55             int index = ctz64(env->intsrc);
56             cs->exception_index = EXCP_INT(index);
57             avr_cpu_do_interrupt(cs);
58 
59             env->intsrc &= env->intsrc - 1; /* clear the interrupt */
60             if (!env->intsrc) {
61                 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
62             }
63             return true;
64         }
65     }
66     return false;
67 }
68 
69 void avr_cpu_do_interrupt(CPUState *cs)
70 {
71     CPUAVRState *env = cpu_env(cs);
72 
73     uint32_t ret = env->pc_w;
74     int vector = 0;
75     int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
76     int base = 0;
77 
78     if (cs->exception_index == EXCP_RESET) {
79         vector = 0;
80     } else if (env->intsrc != 0) {
81         vector = ctz64(env->intsrc) + 1;
82     }
83 
84     if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
85         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
86         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
87         cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
88     } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
89         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
90         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
91     } else {
92         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
93     }
94 
95     env->pc_w = base + vector * size;
96     env->sregI = 0; /* clear Global Interrupt Flag */
97 
98     cs->exception_index = -1;
99 }
100 
101 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
102 {
103     return addr; /* I assume 1:1 address correspondence */
104 }
105 
106 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
107                       MMUAccessType access_type, int mmu_idx,
108                       bool probe, uintptr_t retaddr)
109 {
110     int prot, page_size = TARGET_PAGE_SIZE;
111     uint32_t paddr;
112 
113     address &= TARGET_PAGE_MASK;
114 
115     if (mmu_idx == MMU_CODE_IDX) {
116         /* Access to code in flash. */
117         paddr = OFFSET_CODE + address;
118         prot = PAGE_READ | PAGE_EXEC;
119         if (paddr >= OFFSET_DATA) {
120             /*
121              * This should not be possible via any architectural operations.
122              * There is certainly not an exception that we can deliver.
123              * Accept probing that might come from generic code.
124              */
125             if (probe) {
126                 return false;
127             }
128             error_report("execution left flash memory");
129             abort();
130         }
131     } else {
132         /* Access to memory. */
133         paddr = OFFSET_DATA + address;
134         prot = PAGE_READ | PAGE_WRITE;
135         if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
136             /*
137              * Access to CPU registers, exit and rebuilt this TB to use
138              * full access in case it touches specially handled registers
139              * like SREG or SP.  For probing, set page_size = 1, in order
140              * to force tlb_fill to be called for the next access.
141              */
142             if (probe) {
143                 page_size = 1;
144             } else {
145                 cpu_env(cs)->fullacc = 1;
146                 cpu_loop_exit_restore(cs, retaddr);
147             }
148         }
149     }
150 
151     tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size);
152     return true;
153 }
154 
155 /*
156  *  helpers
157  */
158 
159 void helper_sleep(CPUAVRState *env)
160 {
161     CPUState *cs = env_cpu(env);
162 
163     cs->exception_index = EXCP_HLT;
164     cpu_loop_exit(cs);
165 }
166 
167 void helper_unsupported(CPUAVRState *env)
168 {
169     CPUState *cs = env_cpu(env);
170 
171     /*
172      *  I count not find what happens on the real platform, so
173      *  it's EXCP_DEBUG for meanwhile
174      */
175     cs->exception_index = EXCP_DEBUG;
176     if (qemu_loglevel_mask(LOG_UNIMP)) {
177         qemu_log("UNSUPPORTED\n");
178         cpu_dump_state(cs, stderr, 0);
179     }
180     cpu_loop_exit(cs);
181 }
182 
183 void helper_debug(CPUAVRState *env)
184 {
185     CPUState *cs = env_cpu(env);
186 
187     cs->exception_index = EXCP_DEBUG;
188     cpu_loop_exit(cs);
189 }
190 
191 void helper_break(CPUAVRState *env)
192 {
193     CPUState *cs = env_cpu(env);
194 
195     cs->exception_index = EXCP_DEBUG;
196     cpu_loop_exit(cs);
197 }
198 
199 void helper_wdr(CPUAVRState *env)
200 {
201     qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
202 }
203 
204 /*
205  * This function implements IN instruction
206  *
207  * It does the following
208  * a.  if an IO register belongs to CPU, its value is read and returned
209  * b.  otherwise io address is translated to mem address and physical memory
210  *     is read.
211  * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
212  *
213  */
214 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
215 {
216     target_ulong data = 0;
217 
218     switch (port) {
219     case 0x38: /* RAMPD */
220         data = 0xff & (env->rampD >> 16);
221         break;
222     case 0x39: /* RAMPX */
223         data = 0xff & (env->rampX >> 16);
224         break;
225     case 0x3a: /* RAMPY */
226         data = 0xff & (env->rampY >> 16);
227         break;
228     case 0x3b: /* RAMPZ */
229         data = 0xff & (env->rampZ >> 16);
230         break;
231     case 0x3c: /* EIND */
232         data = 0xff & (env->eind >> 16);
233         break;
234     case 0x3d: /* SPL */
235         data = env->sp & 0x00ff;
236         break;
237     case 0x3e: /* SPH */
238         data = env->sp >> 8;
239         break;
240     case 0x3f: /* SREG */
241         data = cpu_get_sreg(env);
242         break;
243     default:
244         /* not a special register, pass to normal memory access */
245         data = address_space_ldub(&address_space_memory,
246                                   OFFSET_IO_REGISTERS + port,
247                                   MEMTXATTRS_UNSPECIFIED, NULL);
248     }
249 
250     return data;
251 }
252 
253 /*
254  *  This function implements OUT instruction
255  *
256  *  It does the following
257  *  a.  if an IO register belongs to CPU, its value is written into the register
258  *  b.  otherwise io address is translated to mem address and physical memory
259  *      is written.
260  *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
261  *
262  */
263 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
264 {
265     data &= 0x000000ff;
266 
267     switch (port) {
268     case 0x38: /* RAMPD */
269         if (avr_feature(env, AVR_FEATURE_RAMPD)) {
270             env->rampD = (data & 0xff) << 16;
271         }
272         break;
273     case 0x39: /* RAMPX */
274         if (avr_feature(env, AVR_FEATURE_RAMPX)) {
275             env->rampX = (data & 0xff) << 16;
276         }
277         break;
278     case 0x3a: /* RAMPY */
279         if (avr_feature(env, AVR_FEATURE_RAMPY)) {
280             env->rampY = (data & 0xff) << 16;
281         }
282         break;
283     case 0x3b: /* RAMPZ */
284         if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
285             env->rampZ = (data & 0xff) << 16;
286         }
287         break;
288     case 0x3c: /* EIDN */
289         env->eind = (data & 0xff) << 16;
290         break;
291     case 0x3d: /* SPL */
292         env->sp = (env->sp & 0xff00) | (data);
293         break;
294     case 0x3e: /* SPH */
295         if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
296             env->sp = (env->sp & 0x00ff) | (data << 8);
297         }
298         break;
299     case 0x3f: /* SREG */
300         cpu_set_sreg(env, data);
301         break;
302     default:
303         /* not a special register, pass to normal memory access */
304         address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
305                           data, MEMTXATTRS_UNSPECIFIED, NULL);
306     }
307 }
308 
309 /*
310  *  this function implements LD instruction when there is a possibility to read
311  *  from a CPU register
312  */
313 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
314 {
315     uint8_t data;
316 
317     env->fullacc = false;
318 
319     if (addr < NUMBER_OF_CPU_REGISTERS) {
320         /* CPU registers */
321         data = env->r[addr];
322     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
323         /* IO registers */
324         data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
325     } else {
326         /* memory */
327         data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
328                                   MEMTXATTRS_UNSPECIFIED, NULL);
329     }
330     return data;
331 }
332 
333 /*
334  *  this function implements ST instruction when there is a possibility to write
335  *  into a CPU register
336  */
337 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
338 {
339     env->fullacc = false;
340 
341     /* Following logic assumes this: */
342     assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
343     assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
344                                   NUMBER_OF_CPU_REGISTERS);
345 
346     if (addr < NUMBER_OF_CPU_REGISTERS) {
347         /* CPU registers */
348         env->r[addr] = data;
349     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
350         /* IO registers */
351         helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
352     } else {
353         /* memory */
354         address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
355                           MEMTXATTRS_UNSPECIFIED, NULL);
356     }
357 }
358