1 /* 2 * QEMU AVR CPU 3 * 4 * Copyright (c) 2016-2020 Michael Rolnik 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see 18 * <http://www.gnu.org/licenses/lgpl-2.1.html> 19 */ 20 21 #ifndef QEMU_AVR_CPU_H 22 #define QEMU_AVR_CPU_H 23 24 #include "cpu-qom.h" 25 #include "exec/cpu-defs.h" 26 27 #ifdef CONFIG_USER_ONLY 28 #error "AVR 8-bit does not support user mode" 29 #endif 30 31 #define AVR_CPU_TYPE_SUFFIX "-" TYPE_AVR_CPU 32 #define AVR_CPU_TYPE_NAME(name) (name AVR_CPU_TYPE_SUFFIX) 33 #define CPU_RESOLVING_TYPE TYPE_AVR_CPU 34 35 #define TCG_GUEST_DEFAULT_MO 0 36 37 /* 38 * AVR has two memory spaces, data & code. 39 * e.g. both have 0 address 40 * ST/LD instructions access data space 41 * LPM/SPM and instruction fetching access code memory space 42 */ 43 #define MMU_CODE_IDX 0 44 #define MMU_DATA_IDX 1 45 46 #define EXCP_RESET 1 47 #define EXCP_INT(n) (EXCP_RESET + (n) + 1) 48 49 /* Number of CPU registers */ 50 #define NUMBER_OF_CPU_REGISTERS 32 51 /* Number of IO registers accessible by ld/st/in/out */ 52 #define NUMBER_OF_IO_REGISTERS 64 53 54 /* 55 * Offsets of AVR memory regions in host memory space. 56 * 57 * This is needed because the AVR has separate code and data address 58 * spaces that both have start from zero but have to go somewhere in 59 * host memory. 60 * 61 * It's also useful to know where some things are, like the IO registers. 62 */ 63 /* Flash program memory */ 64 #define OFFSET_CODE 0x00000000 65 /* CPU registers, IO registers, and SRAM */ 66 #define OFFSET_DATA 0x00800000 67 /* CPU registers specifically, these are mapped at the start of data */ 68 #define OFFSET_CPU_REGISTERS OFFSET_DATA 69 /* 70 * IO registers, including status register, stack pointer, and memory 71 * mapped peripherals, mapped just after CPU registers 72 */ 73 #define OFFSET_IO_REGISTERS (OFFSET_DATA + NUMBER_OF_CPU_REGISTERS) 74 75 typedef enum AVRFeature { 76 AVR_FEATURE_SRAM, 77 78 AVR_FEATURE_1_BYTE_PC, 79 AVR_FEATURE_2_BYTE_PC, 80 AVR_FEATURE_3_BYTE_PC, 81 82 AVR_FEATURE_1_BYTE_SP, 83 AVR_FEATURE_2_BYTE_SP, 84 85 AVR_FEATURE_BREAK, 86 AVR_FEATURE_DES, 87 AVR_FEATURE_RMW, /* Read Modify Write - XCH LAC LAS LAT */ 88 89 AVR_FEATURE_EIJMP_EICALL, 90 AVR_FEATURE_IJMP_ICALL, 91 AVR_FEATURE_JMP_CALL, 92 93 AVR_FEATURE_ADIW_SBIW, 94 95 AVR_FEATURE_SPM, 96 AVR_FEATURE_SPMX, 97 98 AVR_FEATURE_ELPMX, 99 AVR_FEATURE_ELPM, 100 AVR_FEATURE_LPMX, 101 AVR_FEATURE_LPM, 102 103 AVR_FEATURE_MOVW, 104 AVR_FEATURE_MUL, 105 AVR_FEATURE_RAMPD, 106 AVR_FEATURE_RAMPX, 107 AVR_FEATURE_RAMPY, 108 AVR_FEATURE_RAMPZ, 109 } AVRFeature; 110 111 typedef struct CPUArchState { 112 uint32_t pc_w; /* 0x003fffff up to 22 bits */ 113 114 uint32_t sregC; /* 0x00000001 1 bit */ 115 uint32_t sregZ; /* 0x00000001 1 bit */ 116 uint32_t sregN; /* 0x00000001 1 bit */ 117 uint32_t sregV; /* 0x00000001 1 bit */ 118 uint32_t sregS; /* 0x00000001 1 bit */ 119 uint32_t sregH; /* 0x00000001 1 bit */ 120 uint32_t sregT; /* 0x00000001 1 bit */ 121 uint32_t sregI; /* 0x00000001 1 bit */ 122 123 uint32_t rampD; /* 0x00ff0000 8 bits */ 124 uint32_t rampX; /* 0x00ff0000 8 bits */ 125 uint32_t rampY; /* 0x00ff0000 8 bits */ 126 uint32_t rampZ; /* 0x00ff0000 8 bits */ 127 uint32_t eind; /* 0x00ff0000 8 bits */ 128 129 uint32_t r[NUMBER_OF_CPU_REGISTERS]; /* 8 bits each */ 130 uint32_t sp; /* 16 bits */ 131 132 uint32_t skip; /* if set skip instruction */ 133 134 uint64_t intsrc; /* interrupt sources */ 135 bool fullacc; /* CPU/MEM if true MEM only otherwise */ 136 137 uint64_t features; 138 } CPUAVRState; 139 140 /** 141 * AVRCPU: 142 * @env: #CPUAVRState 143 * 144 * A AVR CPU. 145 */ 146 struct AVRCPU { 147 /*< private >*/ 148 CPUState parent_obj; 149 /*< public >*/ 150 151 CPUNegativeOffsetState neg; 152 CPUAVRState env; 153 }; 154 155 extern const struct VMStateDescription vms_avr_cpu; 156 157 void avr_cpu_do_interrupt(CPUState *cpu); 158 bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req); 159 hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 160 int avr_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 161 int avr_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 162 int avr_print_insn(bfd_vma addr, disassemble_info *info); 163 vaddr avr_cpu_gdb_adjust_breakpoint(CPUState *cpu, vaddr addr); 164 165 static inline int avr_feature(CPUAVRState *env, AVRFeature feature) 166 { 167 return (env->features & (1U << feature)) != 0; 168 } 169 170 static inline void set_avr_feature(CPUAVRState *env, int feature) 171 { 172 env->features |= (1U << feature); 173 } 174 175 #define cpu_list avr_cpu_list 176 #define cpu_mmu_index avr_cpu_mmu_index 177 178 static inline int avr_cpu_mmu_index(CPUAVRState *env, bool ifetch) 179 { 180 return ifetch ? MMU_CODE_IDX : MMU_DATA_IDX; 181 } 182 183 void avr_cpu_tcg_init(void); 184 185 void avr_cpu_list(void); 186 int cpu_avr_exec(CPUState *cpu); 187 int avr_cpu_memory_rw_debug(CPUState *cs, vaddr address, uint8_t *buf, 188 int len, bool is_write); 189 190 enum { 191 TB_FLAGS_FULL_ACCESS = 1, 192 TB_FLAGS_SKIP = 2, 193 }; 194 195 static inline void cpu_get_tb_cpu_state(CPUAVRState *env, target_ulong *pc, 196 target_ulong *cs_base, uint32_t *pflags) 197 { 198 uint32_t flags = 0; 199 200 *pc = env->pc_w * 2; 201 *cs_base = 0; 202 203 if (env->fullacc) { 204 flags |= TB_FLAGS_FULL_ACCESS; 205 } 206 if (env->skip) { 207 flags |= TB_FLAGS_SKIP; 208 } 209 210 *pflags = flags; 211 } 212 213 static inline int cpu_interrupts_enabled(CPUAVRState *env) 214 { 215 return env->sregI != 0; 216 } 217 218 static inline uint8_t cpu_get_sreg(CPUAVRState *env) 219 { 220 uint8_t sreg; 221 sreg = (env->sregC) << 0 222 | (env->sregZ) << 1 223 | (env->sregN) << 2 224 | (env->sregV) << 3 225 | (env->sregS) << 4 226 | (env->sregH) << 5 227 | (env->sregT) << 6 228 | (env->sregI) << 7; 229 return sreg; 230 } 231 232 static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg) 233 { 234 env->sregC = (sreg >> 0) & 0x01; 235 env->sregZ = (sreg >> 1) & 0x01; 236 env->sregN = (sreg >> 2) & 0x01; 237 env->sregV = (sreg >> 3) & 0x01; 238 env->sregS = (sreg >> 4) & 0x01; 239 env->sregH = (sreg >> 5) & 0x01; 240 env->sregT = (sreg >> 6) & 0x01; 241 env->sregI = (sreg >> 7) & 0x01; 242 } 243 244 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 245 MMUAccessType access_type, int mmu_idx, 246 bool probe, uintptr_t retaddr); 247 248 #include "exec/cpu-all.h" 249 250 #endif /* !defined (QEMU_AVR_CPU_H) */ 251